summaryrefslogtreecommitdiff
path: root/upb/table.c
blob: 31c91b145ad9989923ea409850c561c20fa8794b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2009 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * There are a few printf's strewn throughout this file, uncommenting them
 * can be useful for debugging.
 */

#include "upb/table.h"

#include <assert.h>
#include <stdlib.h>
#include <string.h>

static const double MAX_LOAD = 0.85;

// The minimum percentage of an array part that we will allow.  This is a
// speed/memory-usage tradeoff (though it's not straightforward because of
// cache effects).  The lower this is, the more memory we'll use.
static const double MIN_DENSITY = 0.1;

static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed);

/* Base table (shared code) ***************************************************/

static uint32_t upb_table_size(const upb_table *t) { return 1 << t->size_lg2; }
static size_t upb_table_entrysize(const upb_table *t) { return t->entry_size; }
static size_t upb_table_valuesize(const upb_table *t) { return t->value_size; }

void upb_table_init(upb_table *t, uint32_t size, uint16_t entry_size) {
  t->count = 0;
  t->entry_size = entry_size;
  t->size_lg2 = 1;
  while(upb_table_size(t) < size) t->size_lg2++;
  size_t bytes = upb_table_size(t) * t->entry_size;
  t->mask = upb_table_size(t) - 1;
  t->entries = malloc(bytes);
}

void upb_table_free(upb_table *t) { free(t->entries); }

/* upb_inttable ***************************************************************/

static upb_inttable_entry *intent(const upb_inttable *t, int32_t i) {
  //printf("looking up int entry %d, size of entry: %d\n", i, t->t.entry_size);
  return UPB_INDEX(t->t.entries, i, t->t.entry_size);
}

static uint32_t upb_inttable_hashtablesize(const upb_inttable *t) {
  return upb_table_size(&t->t);
}

void upb_inttable_sizedinit(upb_inttable *t, uint32_t arrsize, uint32_t hashsize,
                            uint16_t value_size) {
  size_t entsize = _upb_inttable_entrysize(value_size);
  upb_table_init(&t->t, hashsize, entsize);
  for (uint32_t i = 0; i < upb_table_size(&t->t); i++) {
    upb_inttable_entry *e = intent(t, i);
    e->hdr.key = 0;
    e->hdr.next = UPB_END_OF_CHAIN;
    e->val.has_entry = 0;
  }
  t->t.value_size = value_size;
  // Always make the array part at least 1 long, so that we know key 0
  // won't be in the hash part (which lets us speed up that code path).
  t->array_size = UPB_MAX(1, arrsize);
  t->array = malloc(upb_table_valuesize(&t->t) * t->array_size);
  t->array_count = 0;
  for (uint32_t i = 0; i < t->array_size; i++) {
    upb_inttable_value *val = UPB_INDEX(t->array, i, upb_table_valuesize(&t->t));
    val->has_entry = false;
  }
}

void upb_inttable_init(upb_inttable *t, uint32_t hashsize, uint16_t value_size) {
  upb_inttable_sizedinit(t, 0, hashsize, value_size);
}

void upb_inttable_free(upb_inttable *t) {
  upb_table_free(&t->t);
  free(t->array);
}

static uint32_t empty_intbucket(upb_inttable *table)
{
  // TODO: does it matter that this is biased towards the front of the table?
  for(uint32_t i = 0; i < upb_inttable_hashtablesize(table); i++) {
    upb_inttable_entry *e = intent(table, i);
    if(!e->val.has_entry) return i;
  }
  assert(false);
  return 0;
}

// The insert routines have a lot more code duplication between int/string
// variants than I would like, but there's just a bit too much that varies to
// parameterize them.
static void intinsert(upb_inttable *t, uint32_t key, const void *val) {
  assert(upb_inttable_lookup(t, key) == NULL);
  upb_inttable_value *table_val;
  if (_upb_inttable_isarrkey(t, key)) {
    table_val = UPB_INDEX(t->array, key, upb_table_valuesize(&t->t));
    t->array_count++;
    //printf("Inserting key %d to Array part! %p\n", key, table_val);
  } else {
    t->t.count++;
    uint32_t bucket = _upb_inttable_bucket(t, key);
    upb_inttable_entry *table_e = intent(t, bucket);
    //printf("Hash part!  Inserting into bucket %d?\n", bucket);
    if(table_e->val.has_entry) {  /* Collision. */
      //printf("Collision!\n");
      if(bucket == _upb_inttable_bucket(t, table_e->hdr.key)) {
        /* Existing element is in its main posisiton.  Find an empty slot to
         * place our new element and append it to this key's chain. */
        uint32_t empty_bucket = empty_intbucket(t);
        while (table_e->hdr.next != UPB_END_OF_CHAIN)
          table_e = intent(t, table_e->hdr.next);
        table_e->hdr.next = empty_bucket;
        table_e = intent(t, empty_bucket);
      } else {
        /* Existing element is not in its main position.  Move it to an empty
         * slot and put our element in its main position. */
        uint32_t empty_bucket = empty_intbucket(t);
        uint32_t evictee_bucket = _upb_inttable_bucket(t, table_e->hdr.key);
        memcpy(intent(t, empty_bucket), table_e, t->t.entry_size); /* copies next */
        upb_inttable_entry *evictee_e = intent(t, evictee_bucket);
        while(1) {
          assert(evictee_e->val.has_entry);
          assert(evictee_e->hdr.next != UPB_END_OF_CHAIN);
          if(evictee_e->hdr.next == bucket) {
            evictee_e->hdr.next = empty_bucket;
            break;
          }
          evictee_e = intent(t, evictee_e->hdr.next);
        }
        /* table_e remains set to our mainpos. */
      }
    }
    //printf("Inserting!  to:%p, copying to: %p\n", table_e, &table_e->val);
    table_val = &table_e->val;
    table_e->hdr.key = key;
    table_e->hdr.next = UPB_END_OF_CHAIN;
  }
  memcpy(table_val, val, upb_table_valuesize(&t->t));
  table_val->has_entry = true;
  assert(upb_inttable_lookup(t, key) == table_val);
}

// Insert all elements from src into dest.  Caller ensures that a resize will
// not be necessary.
static void upb_inttable_insertall(upb_inttable *dst, upb_inttable *src) {
  for(upb_inttable_iter i = upb_inttable_begin(src); !upb_inttable_done(i);
      i = upb_inttable_next(src, i)) {
    //printf("load check: %d %d\n", upb_table_count(&dst->t), upb_inttable_hashtablesize(dst));
    assert((double)(upb_table_count(&dst->t)) /
                    upb_inttable_hashtablesize(dst) <= MAX_LOAD);
    intinsert(dst, upb_inttable_iter_key(i), upb_inttable_iter_value(i));
  }
}

void upb_inttable_insert(upb_inttable *t, uint32_t key, const void *val) {
  if((double)(t->t.count + 1) / upb_inttable_hashtablesize(t) > MAX_LOAD) {
    //printf("RESIZE!\n");
    // Need to resize.  Allocate new table with double the size of however many
    // elements we have now, add old elements to it.  We create the new hash
    // table without an array part, even if the old table had an array part.
    // If/when the user calls upb_inttable_compact() again, we'll create an
    // array part then.
    upb_inttable new_table;
    //printf("Old table count=%d, size=%d\n", upb_inttable_count(t), upb_inttable_hashtablesize(t));
    upb_inttable_init(&new_table, upb_inttable_count(t)*2, upb_table_valuesize(&t->t));
    upb_inttable_insertall(&new_table, t);
    upb_inttable_free(t);
    *t = new_table;
  }
  intinsert(t, key, val);
}

void upb_inttable_compact(upb_inttable *t) {
  // Find the largest array part we can that satisfies the MIN_DENSITY
  // definition.  For now we just count down powers of two.
  uint32_t largest_key = 0;
  for(upb_inttable_iter i = upb_inttable_begin(t); !upb_inttable_done(i);
      i = upb_inttable_next(t, i)) {
    largest_key = UPB_MAX(largest_key, upb_inttable_iter_key(i));
  }
  int lg2_array = 0;
  while ((1UL << lg2_array) < largest_key) ++lg2_array;
  ++lg2_array;  // Undo the first iteration.
  size_t array_size = 0;
  int array_count = 0;
  while (lg2_array > 0) {
    array_size = (1 << --lg2_array);
    //printf("Considering size %d (btw, our table has %d things total)\n", array_size, upb_inttable_count(t));
    if ((double)upb_inttable_count(t) / array_size < MIN_DENSITY) {
      // Even if 100% of the keys were in the array pary, an array of this
      // size would not be dense enough.
      continue;
    }
    array_count = 0;
    for(upb_inttable_iter i = upb_inttable_begin(t); !upb_inttable_done(i);
        i = upb_inttable_next(t, i)) {
      if (upb_inttable_iter_key(i) < array_size)
        array_count++;
    }
    //printf("There would be %d things in that array\n", array_count);
    if ((double)array_count / array_size >= MIN_DENSITY) break;
  }
  upb_inttable new_table;
  int hash_size = (upb_inttable_count(t) - array_count + 1) / MAX_LOAD;
  //printf("array_count: %d, array_size: %d, hash_size: %d, table size: %d\n", array_count, array_size, hash_size, upb_inttable_count(t));
  upb_inttable_sizedinit(&new_table, array_size, hash_size,
                         upb_table_valuesize(&t->t));
  //printf("For %d things, using array size=%d, hash_size = %d\n", upb_inttable_count(t), array_size, hash_size);
  upb_inttable_insertall(&new_table, t);
  upb_inttable_free(t);
  *t = new_table;
}

upb_inttable_iter upb_inttable_begin(const upb_inttable *t) {
  upb_inttable_iter iter = {-1, NULL, true};  // -1 will overflow to 0 on the first iteration.
  return upb_inttable_next(t, iter);
}

upb_inttable_iter upb_inttable_next(const upb_inttable *t,
                                    upb_inttable_iter iter) {
  const size_t hdrsize = sizeof(upb_inttable_header);
  const size_t entsize = upb_table_entrysize(&t->t);
  if (iter.array_part) {
    while (++iter.key < t->array_size) {
      //printf("considering value %d\n", iter.key);
      iter.value = UPB_INDEX(t->array, iter.key, t->t.value_size);
      if (iter.value->has_entry) return iter;
    }
    //printf("Done with array part!\n");
    iter.array_part = false;
    // Point to the value of the table[-1] entry.
    iter.value = UPB_INDEX(intent(t, -1), 1, hdrsize);
  }
  void *end = intent(t, upb_inttable_hashtablesize(t));
  // Point to the entry for the value that was previously in iter.
  upb_inttable_entry *e = UPB_INDEX(iter.value, -1, hdrsize);
  do {
    e = UPB_INDEX(e, 1, entsize);
    //printf("considering value %p (val: %p)\n", e, &e->val);
    if(e == end) {
      //printf("No values.\n");
      iter.value = NULL;
      return iter;
    }
  } while(!e->val.has_entry);
  //printf("USING VALUE! %p\n", e);
  iter.key = e->hdr.key;
  iter.value = &e->val;
  return iter;
}


/* upb_strtable ***************************************************************/

static upb_strtable_entry *strent(const upb_strtable *t, int32_t i) {
  //fprintf(stderr, "i: %d, table_size: %d\n", i, upb_table_size(&t->t));
  assert(i <= (int32_t)upb_table_size(&t->t));
  return UPB_INDEX(t->t.entries, i, t->t.entry_size);
}

static uint32_t upb_strtable_size(const upb_strtable *t) {
  return upb_table_size(&t->t);
}

void upb_strtable_init(upb_strtable *t, uint32_t size, uint16_t valuesize) {
  t->t.value_size = valuesize;
  size_t entsize = upb_align_up(sizeof(upb_strtable_header) + valuesize, 8);
  upb_table_init(&t->t, size, entsize);
  for (uint32_t i = 0; i < upb_table_size(&t->t); i++) {
    upb_strtable_entry *e = strent(t, i);
    e->hdr.key = NULL;
    e->hdr.next = UPB_END_OF_CHAIN;
  }
}

void upb_strtable_free(upb_strtable *t) {
  // Free keys from the strtable.
  upb_strtable_iter i;
  for(upb_strtable_begin(&i, t); !upb_strtable_done(&i); upb_strtable_next(&i))
    free((char*)upb_strtable_iter_key(&i));
  upb_table_free(&t->t);
}

static uint32_t strtable_bucket(const upb_strtable *t, const char *key) {
  uint32_t hash = MurmurHash2(key, strlen(key), 0);
  return (hash & t->t.mask);
}

void *upb_strtable_lookup(const upb_strtable *t, const char *key) {
  uint32_t bucket = strtable_bucket(t, key);
  upb_strtable_entry *e;
  do {
    e = strent(t, bucket);
    if(e->hdr.key && strcmp(e->hdr.key, key) == 0) return &e->val;
  } while((bucket = e->hdr.next) != UPB_END_OF_CHAIN);
  return NULL;
}

void *upb_strtable_lookupl(const upb_strtable *t, const char *key, size_t len) {
  // TODO: improve.
  char *key2 = malloc(len+1);
  memcpy(key2, key, len);
  key2[len] = '\0';
  void *ret = upb_strtable_lookup(t, key2);
  free(key2);
  return ret;
}

static uint32_t empty_strbucket(upb_strtable *table) {
  // TODO: does it matter that this is biased towards the front of the table?
  for(uint32_t i = 0; i < upb_strtable_size(table); i++) {
    upb_strtable_entry *e = strent(table, i);
    if(!e->hdr.key) return i;
  }
  assert(false);
  return 0;
}

static void strinsert(upb_strtable *t, const char *key, const void *val) {
  assert(upb_strtable_lookup(t, key) == NULL);
  t->t.count++;
  uint32_t bucket = strtable_bucket(t, key);
  upb_strtable_entry *table_e = strent(t, bucket);
  if(table_e->hdr.key) {  /* Collision. */
    if(bucket == strtable_bucket(t, table_e->hdr.key)) {
      /* Existing element is in its main posisiton.  Find an empty slot to
       * place our new element and append it to this key's chain. */
      uint32_t empty_bucket = empty_strbucket(t);
      while (table_e->hdr.next != UPB_END_OF_CHAIN)
        table_e = strent(t, table_e->hdr.next);
      table_e->hdr.next = empty_bucket;
      table_e = strent(t, empty_bucket);
    } else {
      /* Existing element is not in its main position.  Move it to an empty
       * slot and put our element in its main position. */
      uint32_t empty_bucket = empty_strbucket(t);
      uint32_t evictee_bucket = strtable_bucket(t, table_e->hdr.key);
      memcpy(strent(t, empty_bucket), table_e, t->t.entry_size); /* copies next */
      upb_strtable_entry *evictee_e = strent(t, evictee_bucket);
      while(1) {
        assert(evictee_e->hdr.key);
        assert(evictee_e->hdr.next != UPB_END_OF_CHAIN);
        if(evictee_e->hdr.next == bucket) {
          evictee_e->hdr.next = empty_bucket;
          break;
        }
        evictee_e = strent(t, evictee_e->hdr.next);
      }
      /* table_e remains set to our mainpos. */
    }
  }
  //fprintf(stderr, "val: %p\n", val);
  //fprintf(stderr, "val size: %d\n", t->t.value_size);
  memcpy(&table_e->val, val, t->t.value_size);
  table_e->hdr.key = strdup(key);
  table_e->hdr.next = UPB_END_OF_CHAIN;
  //fprintf(stderr, "Looking up, string=%s...\n", key);
  assert(upb_strtable_lookup(t, key) == &table_e->val);
  //printf("Yay!\n");
}

void upb_strtable_insert(upb_strtable *t, const char *key, const void *val) {
  if((double)(t->t.count + 1) / upb_strtable_size(t) > MAX_LOAD) {
    // Need to resize.  New table of double the size, add old elements to it.
    //printf("RESIZE!!\n");
    upb_strtable new_table;
    upb_strtable_init(&new_table, upb_strtable_size(t)*2, t->t.value_size);
    upb_strtable_iter i;
    upb_strtable_begin(&i, t);
    for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
      strinsert(&new_table,
                upb_strtable_iter_key(&i),
                upb_strtable_iter_value(&i));
    }
    upb_strtable_free(t);
    *t = new_table;
  }
  strinsert(t, key, val);
}

void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
  i->e = strent(t, -1);
  i->t = t;
  upb_strtable_next(i);
}

void upb_strtable_next(upb_strtable_iter *i) {
  upb_strtable_entry *end = strent(i->t, upb_strtable_size(i->t));
  upb_strtable_entry *cur = i->e;
  do {
    cur = (void*)((char*)cur + i->t->t.entry_size);
    if(cur == end) { i->e = NULL; return; }
  } while(cur->hdr.key == NULL);
  i->e = cur;
}

#ifdef UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby (released as public domain).
// Reformatted and C99-ified by Joshua Haberman.
// Note - This code makes a few assumptions about how your machine behaves -
//   1. We can read a 4-byte value from any address without crashing
//   2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
// And it has a few limitations -
//   1. It will not work incrementally.
//   2. It will not produce the same results on little-endian and big-endian
//      machines.
static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed)
{
  // 'm' and 'r' are mixing constants generated offline.
  // They're not really 'magic', they just happen to work well.
  const uint32_t m = 0x5bd1e995;
  const int32_t r = 24;

  // Initialize the hash to a 'random' value
  uint32_t h = seed ^ len;

  // Mix 4 bytes at a time into the hash
  const uint8_t * data = (const uint8_t *)key;
  while(len >= 4) {
    uint32_t k = *(uint32_t *)data;

    k *= m;
    k ^= k >> r;
    k *= m;

    h *= m;
    h ^= k;

    data += 4;
    len -= 4;
  }

  // Handle the last few bytes of the input array
  switch(len) {
    case 3: h ^= data[2] << 16;
    case 2: h ^= data[1] << 8;
    case 1: h ^= data[0]; h *= m;
  };

  // Do a few final mixes of the hash to ensure the last few
  // bytes are well-incorporated.
  h ^= h >> 13;
  h *= m;
  h ^= h >> 15;

  return h;
}

#else // !UPB_UNALIGNED_READS_OK

//-----------------------------------------------------------------------------
// MurmurHashAligned2, by Austin Appleby
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
// on certain platforms.
// Performance will be lower than MurmurHash2

#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }

static uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed)
{
  const uint32_t m = 0x5bd1e995;
  const int32_t r = 24;
  const uint8_t * data = (const uint8_t *)key;
  uint32_t h = seed ^ len;
  uint8_t align = (uintptr_t)data & 3;

  if(align && (len >= 4)) {
    // Pre-load the temp registers
    uint32_t t = 0, d = 0;

    switch(align) {
      case 1: t |= data[2] << 16;
      case 2: t |= data[1] << 8;
      case 3: t |= data[0];
    }

    t <<= (8 * align);

    data += 4-align;
    len -= 4-align;

    int32_t sl = 8 * (4-align);
    int32_t sr = 8 * align;

    // Mix

    while(len >= 4) {
      d = *(uint32_t *)data;
      t = (t >> sr) | (d << sl);

      uint32_t k = t;

      MIX(h,k,m);

      t = d;

      data += 4;
      len -= 4;
    }

    // Handle leftover data in temp registers

    d = 0;

    if(len >= align) {
      switch(align) {
        case 3: d |= data[2] << 16;
        case 2: d |= data[1] << 8;
        case 1: d |= data[0];
      }

      uint32_t k = (t >> sr) | (d << sl);
      MIX(h,k,m);

      data += align;
      len -= align;

      //----------
      // Handle tail bytes

      switch(len) {
        case 3: h ^= data[2] << 16;
        case 2: h ^= data[1] << 8;
        case 1: h ^= data[0]; h *= m;
      };
    } else {
      switch(len) {
        case 3: d |= data[2] << 16;
        case 2: d |= data[1] << 8;
        case 1: d |= data[0];
        case 0: h ^= (t >> sr) | (d << sl); h *= m;
      }
    }

    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return h;
  } else {
    while(len >= 4) {
      uint32_t k = *(uint32_t *)data;

      MIX(h,k,m);

      data += 4;
      len -= 4;
    }

    //----------
    // Handle tail bytes

    switch(len) {
      case 3: h ^= data[2] << 16;
      case 2: h ^= data[1] << 8;
      case 1: h ^= data[0]; h *= m;
    };

    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return h;
  }
}
#undef MIX

#endif // UPB_UNALIGNED_READS_OK
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback