summaryrefslogtreecommitdiff
path: root/upb/refcounted.c
blob: 1e517b7182fb0e5284251031658197e40cb1a1d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2012 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * Our key invariants are:
 * 1. reference cycles never span groups
 * 2. for ref2(to, from), we increment to's count iff group(from) != group(to)
 *
 * The previous two are how we avoid leaking cycles.  Other important
 * invariants are:
 * 3. for mutable objects "from" and "to", if there exists a ref2(to, from)
 *    this implies group(from) == group(to).  (In practice, what we implement
 *    is even stronger; "from" and "to" will share a group if there has *ever*
 *    been a ref2(to, from), but all that is necessary for correctness is the
 *    weaker one).
 * 4. mutable and immutable objects are never in the same group.
 */

#include "upb/refcounted.h"

#include <setjmp.h>
#include <stdlib.h>

uint32_t static_refcount = 1;

/* arch-specific atomic primitives  *******************************************/

#ifdef UPB_THREAD_UNSAFE  //////////////////////////////////////////////////////

static void atomic_inc(uint32_t *a) { (*a)++; }
static bool atomic_dec(uint32_t *a) { return --(*a) == 0; }

#elif (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || __GNUC__ > 4 ///////////////////

static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); }
static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; }

#elif defined(WIN32) ///////////////////////////////////////////////////////////

#include <Windows.h>

static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); }
static bool atomic_dec(upb_atomic_t *a) {
  return InterlockedDecrement(&a->val) == 0;
}

#else
#error Atomic primitives not defined for your platform/CPU.  \
       Implement them or compile with UPB_THREAD_UNSAFE.
#endif


/* Reference tracking (debug only) ********************************************/

#ifdef UPB_DEBUG_REFS

#ifdef UPB_THREAD_UNSAFE

static void upb_lock() {}
static void upb_unlock() {}

#else

// User must define functions that lock/unlock a global mutex and link this
// file against them.
void upb_lock();
void upb_unlock();

#endif

// UPB_DEBUG_REFS mode counts on being able to malloc() memory in some
// code-paths that can normally never fail, like upb_refcounted_ref().  Since
// we have no way to propagage out-of-memory errors back to the user, and since
// these errors can only occur in UPB_DEBUG_REFS mode, we immediately fail.
#define CHECK_OOM(predicate) assert(predicate)

typedef struct {
  const upb_refcounted *obj;  // Object we are taking a ref on.
  int count;  // How many refs there are (duplicates only allowed for ref2).
  bool is_ref2;
} trackedref;

trackedref *trackedref_new(const upb_refcounted *obj, bool is_ref2) {
  trackedref *ret = malloc(sizeof(*ret));
  CHECK_OOM(ret);
  ret->obj = obj;
  ret->count = 1;
  ret->is_ref2 = is_ref2;
  return ret;
}

// A reversible function for obfuscating a uintptr_t.
// This depends on sizeof(uintptr_t) <= sizeof(uint64_t), so would fail
// on 128-bit machines.
static uintptr_t obfuscate(const void *x) { return ~(uintptr_t)x; }

static upb_value obfuscate_v(const void *x) {
  return upb_value_uint64(obfuscate(x));
}

static const void *unobfuscate_v(upb_value x) {
  return (void*)~upb_value_getuint64(x);
}

//
// Stores tracked references according to the following scheme:
//   (upb_inttable)reftracks = {
//     (void*)owner -> (upb_inttable*) = {
//       obfuscate((upb_refcounted*)obj) -> obfuscate((trackedref*)is_ref2)
//     }
//   }
//
// obfuscate() is a function that hides the link from the heap checker, so
// that it is not followed for the purposes of deciding what has "indirectly
// leaked."  Even though we have a pointer to the trackedref*, we want it to
// appear leaked if it is not freed.
//
// This scheme gives us the following desirable properties:
//
//   1. We can easily determine whether an (owner->obj) ref already exists
//      and error out if a duplicate ref is taken.
//
//   2. Because the trackedref is allocated with malloc() at the point that
//      the ref is taken, that memory will be leaked if the ref is not released.
//      Because the malloc'd memory points to the refcounted object, the object
//      itself will only be considered "indirectly leaked" by smart memory
//      checkers like Valgrind.  This will correctly blame the ref leaker
//      instead of the innocent code that allocated the object to begin with.
//
//   3. We can easily enumerate all of the ref2 refs for a given owner, which
//      allows us to double-check that the object's visit() function is
//      correctly implemented.
//
static upb_inttable reftracks = UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR);

static upb_inttable *trygettab(const void *p) {
  upb_value v;
  return upb_inttable_lookupptr(&reftracks, p, &v) ? upb_value_getptr(v) : NULL;
}

// Gets or creates the tracking table for the given owner.
static upb_inttable *gettab(const void *p) {
  upb_inttable *tab = trygettab(p);
  if (tab == NULL) {
    tab = malloc(sizeof(*tab));
    CHECK_OOM(tab);
    upb_inttable_init(tab, UPB_CTYPE_UINT64);
    upb_inttable_insertptr(&reftracks, p, upb_value_ptr(tab));
  }
  return tab;
}

static void track(const upb_refcounted *r, const void *owner, bool ref2) {
  upb_lock();
  upb_inttable *refs = gettab(owner);
  upb_value v;
  if (upb_inttable_lookup(refs, obfuscate(r), &v)) {
    trackedref *ref = (trackedref*)unobfuscate_v(v);
    // Since we allow multiple ref2's for the same to/from pair without
    // allocating separate memory for each one, we lose the fine-grained
    // tracking behavior we get with regular refs.  Since ref2s only happen
    // inside upb, we'll accept this limitation until/unless there is a really
    // difficult upb-internal bug that can't be figured out without it.
    assert(ref2);
    assert(ref->is_ref2);
    ref->count++;
  } else {
    trackedref *ref = trackedref_new(r, ref2);
    bool ok = upb_inttable_insert(refs, obfuscate(r), obfuscate_v(ref));
    CHECK_OOM(ok);
  }
  upb_unlock();
}

static void untrack(const upb_refcounted *r, const void *owner, bool ref2) {
  upb_lock();
  upb_inttable *refs = gettab(owner);
  upb_value v;
  bool found = upb_inttable_lookup(refs, obfuscate(r), &v);
  // This assert will fail if an owner attempts to release a ref it didn't have.
  UPB_ASSERT_VAR(found, found);
  trackedref *ref = (trackedref*)unobfuscate_v(v);
  assert(ref->is_ref2 == ref2);
  if (--ref->count == 0) {
    free(ref);
    upb_inttable_remove(refs, obfuscate(r), NULL);
    if (upb_inttable_count(refs) == 0) {
      upb_inttable_uninit(refs);
      free(refs);
      upb_inttable_removeptr(&reftracks, owner, NULL);
    }
  }
  upb_unlock();
}

static void checkref(const upb_refcounted *r, const void *owner, bool ref2) {
  upb_lock();
  upb_inttable *refs = gettab(owner);
  upb_value v;
  bool found = upb_inttable_lookup(refs, obfuscate(r), &v);
  UPB_ASSERT_VAR(found, found);
  trackedref *ref = (trackedref*)unobfuscate_v(v);
  assert(ref->obj == r);
  assert(ref->is_ref2 == ref2);
  upb_unlock();
}

// Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that
// originate from the given owner.
static void getref2s(const upb_refcounted *owner, upb_inttable *tab) {
  upb_lock();
  upb_inttable *refs = trygettab(owner);
  if (refs) {
    upb_inttable_iter i;
    upb_inttable_begin(&i, refs);
    for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
      trackedref *ref = (trackedref*)unobfuscate_v(upb_inttable_iter_value(&i));
      if (ref->is_ref2) {
        upb_value count = upb_value_int32(ref->count);
        bool ok = upb_inttable_insertptr(tab, ref->obj, count);
        CHECK_OOM(ok);
      }
    }
  }
  upb_unlock();
}

typedef struct {
  upb_inttable ref2;
  const upb_refcounted *obj;
} check_state;

static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj,
                        void *closure) {
  check_state *s = closure;
  assert(obj == s->obj);
  assert(subobj);
  upb_inttable *ref2 = &s->ref2;
  upb_value v;
  bool removed = upb_inttable_removeptr(ref2, subobj, &v);
  // The following assertion will fail if the visit() function visits a subobj
  // that it did not have a ref2 on, or visits the same subobj too many times.
  assert(removed);
  int32_t newcount = upb_value_getint32(v) - 1;
  if (newcount > 0) {
    upb_inttable_insert(ref2, (uintptr_t)subobj, upb_value_int32(newcount));
  }
}

static void visit(const upb_refcounted *r, upb_refcounted_visit *v,
                  void *closure) {
  // In DEBUG_REFS mode we know what existing ref2 refs there are, so we know
  // exactly the set of nodes that visit() should visit.  So we verify visit()'s
  // correctness here.
  check_state state;
  state.obj = r;
  bool ok = upb_inttable_init(&state.ref2, UPB_CTYPE_INT32);
  CHECK_OOM(ok);
  getref2s(r, &state.ref2);

  // This should visit any children in the ref2 table.
  if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state);

  // This assertion will fail if the visit() function missed any children.
  assert(upb_inttable_count(&state.ref2) == 0);
  upb_inttable_uninit(&state.ref2);
  if (r->vtbl->visit) r->vtbl->visit(r, v, closure);
}

#else

static void track(const upb_refcounted *r, const void *owner, bool ref2) {
  UPB_UNUSED(r);
  UPB_UNUSED(owner);
  UPB_UNUSED(ref2);
}

static void untrack(const upb_refcounted *r, const void *owner, bool ref2) {
  UPB_UNUSED(r);
  UPB_UNUSED(owner);
  UPB_UNUSED(ref2);
}

static void checkref(const upb_refcounted *r, const void *owner, bool ref2) {
  UPB_UNUSED(r);
  UPB_UNUSED(owner);
  UPB_UNUSED(ref2);
}

static void visit(const upb_refcounted *r, upb_refcounted_visit *v,
                  void *closure) {
  if (r->vtbl->visit) r->vtbl->visit(r, v, closure);
}

#endif  // UPB_DEBUG_REFS


/* freeze() *******************************************************************/

// The freeze() operation is by far the most complicated part of this scheme.
// We compute strongly-connected components and then mutate the graph such that
// we preserve the invariants documented at the top of this file.  And we must
// handle out-of-memory errors gracefully (without leaving the graph
// inconsistent), which adds to the fun.

// The state used by the freeze operation (shared across many functions).
typedef struct {
  int depth;
  int maxdepth;
  uint64_t index;
  // Maps upb_refcounted* -> attributes (color, etc).  attr layout varies by
  // color.
  upb_inttable objattr;
  upb_inttable stack;   // stack of upb_refcounted* for Tarjan's algorithm.
  upb_inttable groups;  // array of uint32_t*, malloc'd refcounts for new groups
  upb_status *status;
  jmp_buf err;
} tarjan;

static void release_ref2(const upb_refcounted *obj,
                         const upb_refcounted *subobj,
                         void *closure);

// Node attributes /////////////////////////////////////////////////////////////

// After our analysis phase all nodes will be either GRAY or WHITE.

typedef enum {
  BLACK = 0,  // Object has not been seen.
  GRAY,   // Object has been found via a refgroup but may not be reachable.
  GREEN,  // Object is reachable and is currently on the Tarjan stack.
  WHITE,  // Object is reachable and has been assigned a group (SCC).
} color_t;

UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); }
UPB_NORETURN static void oom(tarjan *t) {
  upb_status_seterrliteral(t->status, "out of memory");
  err(t);
}

uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) {
  upb_value v;
  return upb_inttable_lookupptr(&t->objattr, r, &v) ?
      upb_value_getuint64(v) : 0;
}

uint64_t getattr(const tarjan *t, const upb_refcounted *r) {
  upb_value v;
  bool found = upb_inttable_lookupptr(&t->objattr, r, &v);
  UPB_ASSERT_VAR(found, found);
  return upb_value_getuint64(v);
}

void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) {
  upb_inttable_removeptr(&t->objattr, r, NULL);
  upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr));
}

static color_t color(tarjan *t, const upb_refcounted *r) {
  return trygetattr(t, r) & 0x3;  // Color is always stored in the low 2 bits.
}

static void set_gray(tarjan *t, const upb_refcounted *r) {
  assert(color(t, r) == BLACK);
  setattr(t, r, GRAY);
}

// Pushes an obj onto the Tarjan stack and sets it to GREEN.
static void push(tarjan *t, const upb_refcounted *r) {
  assert(color(t, r) == BLACK || color(t, r) == GRAY);
  // This defines the attr layout for the GREEN state.  "index" and "lowlink"
  // get 31 bits, which is plenty (limit of 2B objects frozen at a time).
  setattr(t, r, GREEN | (t->index << 2) | (t->index << 33));
  if (++t->index == 0x80000000) {
    upb_status_seterrliteral(t->status, "too many objects to freeze");
    err(t);
  }
  upb_inttable_push(&t->stack, upb_value_ptr((void*)r));
}

// Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its
// SCC group.
static upb_refcounted *pop(tarjan *t) {
  upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack));
  assert(color(t, r) == GREEN);
  // This defines the attr layout for nodes in the WHITE state.
  // Top of group stack is [group, NULL]; we point at group.
  setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8);
  return r;
}

static void newgroup(tarjan *t) {
  uint32_t *group = malloc(sizeof(*group));
  if (!group) oom(t);
  // Push group and empty group leader (we'll fill in leader later).
  if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) ||
      !upb_inttable_push(&t->groups, upb_value_ptr(NULL))) {
    free(group);
    oom(t);
  }
  *group = 0;
}

static uint32_t idx(tarjan *t, const upb_refcounted *r) {
  assert(color(t, r) == GREEN);
  return (getattr(t, r) >> 2) & 0x7FFFFFFF;
}

static uint32_t lowlink(tarjan *t, const upb_refcounted *r) {
  if (color(t, r) == GREEN) {
    return getattr(t, r) >> 33;
  } else {
    return UINT32_MAX;
  }
}

static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) {
  assert(color(t, r) == GREEN);
  setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF));
}

uint32_t *group(tarjan *t, upb_refcounted *r) {
  assert(color(t, r) == WHITE);
  uint64_t groupnum = getattr(t, r) >> 8;
  upb_value v;
  bool found = upb_inttable_lookup(&t->groups, groupnum, &v);
  UPB_ASSERT_VAR(found, found);
  return upb_value_getptr(v);
}

// If the group leader for this object's group has not previously been set,
// the given object is assigned to be its leader.
static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) {
  assert(color(t, r) == WHITE);
  uint64_t leader_slot = (getattr(t, r) >> 8) + 1;
  upb_value v;
  bool found = upb_inttable_lookup(&t->groups, leader_slot, &v);
  UPB_ASSERT_VAR(found, found);
  if (upb_value_getptr(v)) {
    return upb_value_getptr(v);
  } else {
    upb_inttable_remove(&t->groups, leader_slot, NULL);
    upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r));
    return r;
  }
}


// Tarjan's algorithm //////////////////////////////////////////////////////////

// See:
//   http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
static void do_tarjan(const upb_refcounted *obj, tarjan *t);

static void tarjan_visit(const upb_refcounted *obj,
                         const upb_refcounted *subobj,
                         void *closure) {
  tarjan *t = closure;
  if (++t->depth > t->maxdepth) {
    upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth);
    err(t);
  } else if (subobj->is_frozen || color(t, subobj) == WHITE) {
    // Do nothing: we don't want to visit or color already-frozen nodes,
    // and WHITE nodes have already been assigned a SCC.
  } else if (color(t, subobj) < GREEN) {
    // Subdef has not yet been visited; recurse on it.
    do_tarjan(subobj, t);
    set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj)));
  } else if (color(t, subobj) == GREEN) {
    // Subdef is in the stack and hence in the current SCC.
    set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj)));
  }
  --t->depth;
}

static void do_tarjan(const upb_refcounted *obj, tarjan *t) {
  if (color(t, obj) == BLACK) {
    // We haven't seen this object's group; mark the whole group GRAY.
    const upb_refcounted *o = obj;
    do { set_gray(t, o); } while ((o = o->next) != obj);
  }

  push(t, obj);
  visit(obj, tarjan_visit, t);
  if (lowlink(t, obj) == idx(t, obj)) {
    newgroup(t);
    while (pop(t) != obj)
      ;
  }
}


// freeze() ////////////////////////////////////////////////////////////////////

static void crossref(const upb_refcounted *r, const upb_refcounted *subobj,
                     void *_t) {
  tarjan *t = _t;
  assert(color(t, r) > BLACK);
  if (color(t, subobj) > BLACK && r->group != subobj->group) {
    // Previously this ref was not reflected in subobj->group because they
    // were in the same group; now that they are split a ref must be taken.
    atomic_inc(subobj->group);
  }
}

static bool freeze(upb_refcounted *const*roots, int n, upb_status *s) {
  volatile bool ret = false;

  // We run in two passes so that we can allocate all memory before performing
  // any mutation of the input -- this allows us to leave the input unchanged
  // in the case of memory allocation failure.
  tarjan t;
  t.index = 0;
  t.depth = 0;
  t.maxdepth = UPB_MAX_TYPE_DEPTH * 2;  // May want to make this a parameter.
  t.status = s;
  if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1;
  if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2;
  if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3;
  if (setjmp(t.err) != 0) goto err4;


  for (int i = 0; i < n; i++) {
    if (color(&t, roots[i]) < GREEN) {
      do_tarjan(roots[i], &t);
    }
  }

  // If we've made it this far, no further errors are possible so it's safe to
  // mutate the objects without risk of leaving them in an inconsistent state.
  ret = true;

  // The transformation that follows requires care.  The preconditions are:
  // - all objects in attr map are WHITE or GRAY, and are in mutable groups
  //   (groups of all mutable objs)
  // - no ref2(to, from) refs have incremented count(to) if both "to" and
  //   "from" are in our attr map (this follows from invariants (2) and (3))

  // Pass 1: we remove WHITE objects from their mutable groups, and add them to
  // new groups  according to the SCC's we computed.  These new groups will
  // consist of only frozen objects.  None will be immediately collectible,
  // because WHITE objects are by definition reachable from one of "roots",
  // which the caller must own refs on.
  upb_inttable_iter i;
  upb_inttable_begin(&i, &t.objattr);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
    // Since removal from a singly-linked list requires access to the object's
    // predecessor, we consider obj->next instead of obj for moving.  With the
    // while() loop we guarantee that we will visit every node's predecessor.
    // Proof:
    //  1. every node's predecessor is in our attr map.
    //  2. though the loop body may change a node's predecessor, it will only
    //     change it to be the node we are currently operating on, so with a
    //     while() loop we guarantee ourselves the chance to remove each node.
    while (color(&t, obj->next) == WHITE &&
           group(&t, obj->next) != obj->next->group) {
      // Remove from old group.
      upb_refcounted *move = obj->next;
      if (obj == move) {
        // Removing the last object from a group.
        assert(*obj->group == obj->individual_count);
        free(obj->group);
      } else {
        obj->next = move->next;
        // This may decrease to zero; we'll collect GRAY objects (if any) that
        // remain in the group in the third pass.
        assert(*move->group >= move->individual_count);
        *move->group -= move->individual_count;
      }

      // Add to new group.
      upb_refcounted *leader = groupleader(&t, move);
      if (move == leader) {
        // First object added to new group is its leader.
        move->group = group(&t, move);
        move->next = move;
        *move->group = move->individual_count;
      } else {
        // Group already has at least one object in it.
        assert(leader->group == group(&t, move));
        move->group = group(&t, move);
        move->next = leader->next;
        leader->next = move;
        *move->group += move->individual_count;
      }

      move->is_frozen = true;
    }
  }

  // Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must
  // increment count(to) if group(obj) != group(to) (which could now be the
  // case if "to" was just frozen).
  upb_inttable_begin(&i, &t.objattr);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
    visit(obj, crossref, &t);
  }

  // Pass 3: GRAY objects are collected if their group's refcount dropped to
  // zero when we removed its white nodes.  This can happen if they had only
  // been kept alive by virtue of sharing a group with an object that was just
  // frozen.
  //
  // It is important that we do this last, since the GRAY object's free()
  // function could call unref2() on just-frozen objects, which will decrement
  // refs that were added in pass 2.
  upb_inttable_begin(&i, &t.objattr);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
    if (obj->group == NULL || *obj->group == 0) {
      if (obj->group) {
        // We eagerly free() the group's count (since we can't easily determine
        // the group's remaining size it's the easiest way to ensure it gets
        // done).
        free(obj->group);

        // Visit to release ref2's (done in a separate pass since release_ref2
        // depends on o->group being unmodified so it can test merged()).
        upb_refcounted *o = obj;
        do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj);

        // Mark "group" fields as NULL so we know to free the objects later in
        // this loop, but also don't try to delete the group twice.
        o = obj;
        do { o->group = NULL; } while ((o = o->next) != obj);
      }
      obj->vtbl->free(obj);
    }
  }

err4:
  if (!ret) {
    upb_inttable_begin(&i, &t.groups);
    for(; !upb_inttable_done(&i); upb_inttable_next(&i))
      free(upb_value_getptr(upb_inttable_iter_value(&i)));
  }
  upb_inttable_uninit(&t.groups);
err3:
  upb_inttable_uninit(&t.stack);
err2:
  upb_inttable_uninit(&t.objattr);
err1:
  return ret;
}


/* Misc internal functions  ***************************************************/

static bool merged(const upb_refcounted *r, const upb_refcounted *r2) {
  return r->group == r2->group;
}

static void merge(upb_refcounted *r, upb_refcounted *from) {
  if (merged(r, from)) return;
  *r->group += *from->group;
  free(from->group);
  upb_refcounted *base = from;

  // Set all refcount pointers in the "from" chain to the merged refcount.
  //
  // TODO(haberman): this linear algorithm can result in an overall O(n^2) bound
  // if the user continuously extends a group by one object.  Prevent this by
  // using one of the techniques in this paper:
  //     ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf
  do { from->group = r->group; } while ((from = from->next) != base);

  // Merge the two circularly linked lists by swapping their next pointers.
  upb_refcounted *tmp = r->next;
  r->next = base->next;
  base->next = tmp;
}

static void unref(const upb_refcounted *r);

static void release_ref2(const upb_refcounted *obj,
                         const upb_refcounted *subobj,
                         void *closure) {
  UPB_UNUSED(closure);
  if (!merged(obj, subobj)) {
    assert(subobj->is_frozen);
    unref(subobj);
  }
  untrack(subobj, obj, true);
}

static void unref(const upb_refcounted *r) {
  if (atomic_dec(r->group)) {
    free(r->group);

    // In two passes, since release_ref2 needs a guarantee that any subobjs
    // are alive.
    const upb_refcounted *o = r;
    do { visit(o, release_ref2, NULL); } while((o = o->next) != r);

    o = r;
    do {
      const upb_refcounted *next = o->next;
      assert(o->is_frozen || o->individual_count == 0);
      o->vtbl->free((upb_refcounted*)o);
      o = next;
    } while(o != r);
  }
}


/* Public interface ***********************************************************/

bool upb_refcounted_init(upb_refcounted *r,
                         const struct upb_refcounted_vtbl *vtbl,
                         const void *owner) {
  r->next = r;
  r->vtbl = vtbl;
  r->individual_count = 0;
  r->is_frozen = false;
  r->group = malloc(sizeof(*r->group));
  if (!r->group) return false;
  *r->group = 0;
  upb_refcounted_ref(r, owner);
  return true;
}

bool upb_refcounted_isfrozen(const upb_refcounted *r) {
  return r->is_frozen;
}

void upb_refcounted_ref(const upb_refcounted *r, const void *owner) {
  if (!r->is_frozen)
    ((upb_refcounted*)r)->individual_count++;
  atomic_inc(r->group);
  track(r, owner, false);
}

void upb_refcounted_unref(const upb_refcounted *r, const void *owner) {
  if (!r->is_frozen)
    ((upb_refcounted*)r)->individual_count--;
  unref(r);
  untrack(r, owner, false);
}

void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) {
  assert(!from->is_frozen);  // Non-const pointer implies this.
  if (r->is_frozen) {
    atomic_inc(r->group);
  } else {
    merge((upb_refcounted*)r, from);
  }
  track(r, from, true);
}

void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) {
  assert(!from->is_frozen);  // Non-const pointer implies this.
  if (r->is_frozen) {
    unref(r);
  } else {
    assert(merged(r, from));
  }
  untrack(r, from, true);
}

void upb_refcounted_donateref(
    const upb_refcounted *r, const void *from, const void *to) {
  assert(from != to);
  assert(to != NULL);
  upb_refcounted_ref(r, to);
  if (from != NULL)
    upb_refcounted_unref(r, from);
}

void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) {
  checkref(r, owner, false);
}

bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s) {
  for (int i = 0; i < n; i++) {
    assert(!roots[i]->is_frozen);
  }
  return freeze(roots, n, s);
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback