summaryrefslogtreecommitdiff
path: root/upb/pb/encoder.c
blob: 1496eba71028efd2885edcc678bf766e274a7cea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*
** upb::Encoder
**
** Since we are implementing pure handlers (ie. without any out-of-band access
** to pre-computed lengths), we have to buffer all submessages before we can
** emit even their first byte.
**
** Not knowing the size of submessages also means we can't write a perfect
** zero-copy implementation, even with buffering.  Lengths are stored as
** varints, which means that we don't know how many bytes to reserve for the
** length until we know what the length is.
**
** This leaves us with three main choices:
**
** 1. buffer all submessage data in a temporary buffer, then copy it exactly
**    once into the output buffer.
**
** 2. attempt to buffer data directly into the output buffer, estimating how
**    many bytes each length will take.  When our guesses are wrong, use
**    memmove() to grow or shrink the allotted space.
**
** 3. buffer directly into the output buffer, allocating a max length
**    ahead-of-time for each submessage length.  If we overallocated, we waste
**    space, but no memcpy() or memmove() is required.  This approach requires
**    defining a maximum size for submessages and rejecting submessages that
**    exceed that size.
**
** (2) and (3) have the potential to have better performance, but they are more
** complicated and subtle to implement:
**
**   (3) requires making an arbitrary choice of the maximum message size; it
**       wastes space when submessages are shorter than this and fails
**       completely when they are longer.  This makes it more finicky and
**       requires configuration based on the input.  It also makes it impossible
**       to perfectly match the output of reference encoders that always use the
**       optimal amount of space for each length.
**
**   (2) requires guessing the the size upfront, and if multiple lengths are
**       guessed wrong the minimum required number of memmove() operations may
**       be complicated to compute correctly.  Implemented properly, it may have
**       a useful amortized or average cost, but more investigation is required
**       to determine this and what the optimal algorithm is to achieve it.
**
**   (1) makes you always pay for exactly one copy, but its implementation is
**       the simplest and its performance is predictable.
**
** So for now, we implement (1) only.  If we wish to optimize later, we should
** be able to do it without affecting users.
**
** The strategy is to buffer the segments of data that do *not* depend on
** unknown lengths in one buffer, and keep a separate buffer of segment pointers
** and lengths.  When the top-level submessage ends, we can go beginning to end,
** alternating the writing of lengths with memcpy() of the rest of the data.
** At the top level though, no buffering is required.
*/

#include "upb/pb/encoder.h"
#include "upb/pb/varint.int.h"


/* The output buffer is divided into segments; a segment is a string of data
 * that is "ready to go" -- it does not need any varint lengths inserted into
 * the middle.  The seams between segments are where varints will be inserted
 * once they are known.
 *
 * We also use the concept of a "run", which is a range of encoded bytes that
 * occur at a single submessage level.  Every segment contains one or more runs.
 *
 * A segment can span messages.  Consider:
 *
 *                  .--Submessage lengths---------.
 *                  |       |                     |
 *                  |       V                     V
 *                  V      | |---------------    | |-----------------
 * Submessages:    | |-----------------------------------------------
 * Top-level msg: ------------------------------------------------------------
 *
 * Segments:          -----   -------------------   -----------------
 * Runs:              *----   *--------------*---   *----------------
 * (* marks the start)
 *
 * Note that the top-level menssage is not in any segment because it does not
 * have any length preceding it.
 *
 * A segment is only interrupted when another length needs to be inserted.  So
 * observe how the second segment spans both the inner submessage and part of
 * the next enclosing message. */
typedef struct {
  uint32_t msglen;  /* The length to varint-encode before this segment. */
  uint32_t seglen;  /* Length of the segment. */
} upb_pb_encoder_segment;

struct upb_pb_encoder {
  upb_env *env;

  /* Our input and output. */
  upb_sink input_;
  upb_bytessink output_;

  /* The "subclosure" -- used as the inner closure as part of the bytessink
   * protocol. */
  void *subc;

  /* The output buffer and limit, and our current write position.  "buf"
   * initially points to "initbuf", but is dynamically allocated if we need to
   * grow beyond the initial size. */
  char *buf, *ptr, *limit;

  /* The beginning of the current run, or undefined if we are at the top
   * level. */
  char *runbegin;

  /* The list of segments we are accumulating. */
  upb_pb_encoder_segment *segbuf, *segptr, *seglimit;

  /* The stack of enclosing submessages.  Each entry in the stack points to the
   * segment where this submessage's length is being accumulated. */
  int *stack, *top, *stacklimit;

  /* Depth of startmsg/endmsg calls. */
  int depth;
};

/* low-level buffering ********************************************************/

/* Low-level functions for interacting with the output buffer. */

/* TODO(haberman): handle pushback */
static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) {
  size_t n = upb_bytessink_putbuf(&e->output_, e->subc, buf, len, NULL);
  UPB_ASSERT(n == len);
}

static upb_pb_encoder_segment *top(upb_pb_encoder *e) {
  return &e->segbuf[*e->top];
}

/* Call to ensure that at least "bytes" bytes are available for writing at
 * e->ptr.  Returns false if the bytes could not be allocated. */
static bool reserve(upb_pb_encoder *e, size_t bytes) {
  if ((size_t)(e->limit - e->ptr) < bytes) {
    /* Grow buffer. */
    char *new_buf;
    size_t needed = bytes + (e->ptr - e->buf);
    size_t old_size = e->limit - e->buf;

    size_t new_size = old_size;

    while (new_size < needed) {
      new_size *= 2;
    }

    new_buf = upb_env_realloc(e->env, e->buf, old_size, new_size);

    if (new_buf == NULL) {
      return false;
    }

    e->ptr = new_buf + (e->ptr - e->buf);
    e->runbegin = new_buf + (e->runbegin - e->buf);
    e->limit = new_buf + new_size;
    e->buf = new_buf;
  }

  return true;
}

/* Call when "bytes" bytes have been writte at e->ptr.  The caller *must* have
 * previously called reserve() with at least this many bytes. */
static void encoder_advance(upb_pb_encoder *e, size_t bytes) {
  UPB_ASSERT((size_t)(e->limit - e->ptr) >= bytes);
  e->ptr += bytes;
}

/* Call when all of the bytes for a handler have been written.  Flushes the
 * bytes if possible and necessary, returning false if this failed. */
static bool commit(upb_pb_encoder *e) {
  if (!e->top) {
    /* We aren't inside a delimited region.  Flush our accumulated bytes to
     * the output.
     *
     * TODO(haberman): in the future we may want to delay flushing for
     * efficiency reasons. */
    putbuf(e, e->buf, e->ptr - e->buf);
    e->ptr = e->buf;
  }

  return true;
}

/* Writes the given bytes to the buffer, handling reserve/advance. */
static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) {
  if (!reserve(e, len)) {
    return false;
  }

  memcpy(e->ptr, data, len);
  encoder_advance(e, len);
  return true;
}

/* Finish the current run by adding the run totals to the segment and message
 * length. */
static void accumulate(upb_pb_encoder *e) {
  size_t run_len;
  UPB_ASSERT(e->ptr >= e->runbegin);
  run_len = e->ptr - e->runbegin;
  e->segptr->seglen += run_len;
  top(e)->msglen += run_len;
  e->runbegin = e->ptr;
}

/* Call to indicate the start of delimited region for which the full length is
 * not yet known.  All data will be buffered until the length is known.
 * Delimited regions may be nested; their lengths will all be tracked properly. */
static bool start_delim(upb_pb_encoder *e) {
  if (e->top) {
    /* We are already buffering, advance to the next segment and push it on the
     * stack. */
    accumulate(e);

    if (++e->top == e->stacklimit) {
      /* TODO(haberman): grow stack? */
      return false;
    }

    if (++e->segptr == e->seglimit) {
      /* Grow segment buffer. */
      size_t old_size =
          (e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment);
      size_t new_size = old_size * 2;
      upb_pb_encoder_segment *new_buf =
          upb_env_realloc(e->env, e->segbuf, old_size, new_size);

      if (new_buf == NULL) {
        return false;
      }

      e->segptr = new_buf + (e->segptr - e->segbuf);
      e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment));
      e->segbuf = new_buf;
    }
  } else {
    /* We were previously at the top level, start buffering. */
    e->segptr = e->segbuf;
    e->top = e->stack;
    e->runbegin = e->ptr;
  }

  *e->top = e->segptr - e->segbuf;
  e->segptr->seglen = 0;
  e->segptr->msglen = 0;

  return true;
}

/* Call to indicate the end of a delimited region.  We now know the length of
 * the delimited region.  If we are not nested inside any other delimited
 * regions, we can now emit all of the buffered data we accumulated. */
static bool end_delim(upb_pb_encoder *e) {
  size_t msglen;
  accumulate(e);
  msglen = top(e)->msglen;

  if (e->top == e->stack) {
    /* All lengths are now available, emit all buffered data. */
    char buf[UPB_PB_VARINT_MAX_LEN];
    upb_pb_encoder_segment *s;
    const char *ptr = e->buf;
    for (s = e->segbuf; s <= e->segptr; s++) {
      size_t lenbytes = upb_vencode64(s->msglen, buf);
      putbuf(e, buf, lenbytes);
      putbuf(e, ptr, s->seglen);
      ptr += s->seglen;
    }

    e->ptr = e->buf;
    e->top = NULL;
  } else {
    /* Need to keep buffering; propagate length info into enclosing
     * submessages. */
    --e->top;
    top(e)->msglen += msglen + upb_varint_size(msglen);
  }

  return true;
}


/* tag_t **********************************************************************/

/* A precomputed (pre-encoded) tag and length. */

typedef struct {
  uint8_t bytes;
  char tag[7];
} tag_t;

/* Allocates a new tag for this field, and sets it in these handlerattr. */
static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt,
                    upb_handlerattr *attr) {
  uint32_t n = upb_fielddef_number(f);

  tag_t *tag = upb_gmalloc(sizeof(tag_t));
  tag->bytes = upb_vencode64((n << 3) | wt, tag->tag);

  attr->handler_data = tag;
  upb_handlers_addcleanup(h, tag, upb_gfree);
}

static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) {
  return encode_bytes(e, tag->tag, tag->bytes);
}


/* encoding of wire types *****************************************************/

static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) {
  /* TODO(haberman): byte-swap for big endian. */
  return encode_bytes(e, &val, sizeof(uint64_t));
}

static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) {
  /* TODO(haberman): byte-swap for big endian. */
  return encode_bytes(e, &val, sizeof(uint32_t));
}

static bool encode_varint(upb_pb_encoder *e, uint64_t val) {
  if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) {
    return false;
  }

  encoder_advance(e, upb_vencode64(val, e->ptr));
  return true;
}

static uint64_t dbl2uint64(double d) {
  uint64_t ret;
  memcpy(&ret, &d, sizeof(uint64_t));
  return ret;
}

static uint32_t flt2uint32(float d) {
  uint32_t ret;
  memcpy(&ret, &d, sizeof(uint32_t));
  return ret;
}


/* encoding of proto types ****************************************************/

static bool startmsg(void *c, const void *hd) {
  upb_pb_encoder *e = c;
  UPB_UNUSED(hd);
  if (e->depth++ == 0) {
    upb_bytessink_start(&e->output_, 0, &e->subc);
  }
  return true;
}

static bool endmsg(void *c, const void *hd, upb_status *status) {
  upb_pb_encoder *e = c;
  UPB_UNUSED(hd);
  UPB_UNUSED(status);
  if (--e->depth == 0) {
    upb_bytessink_end(&e->output_);
  }
  return true;
}

static void *encode_startdelimfield(void *c, const void *hd) {
  bool ok = encode_tag(c, hd) && commit(c) && start_delim(c);
  return ok ? c : UPB_BREAK;
}

static bool encode_unknown(void *c, const void *hd, const char *buf,
                           size_t len) {
  UPB_UNUSED(hd);
  return encode_bytes(c, buf, len) && commit(c);
}

static bool encode_enddelimfield(void *c, const void *hd) {
  UPB_UNUSED(hd);
  return end_delim(c);
}

static void *encode_startgroup(void *c, const void *hd) {
  return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK;
}

static bool encode_endgroup(void *c, const void *hd) {
  return encode_tag(c, hd) && commit(c);
}

static void *encode_startstr(void *c, const void *hd, size_t size_hint) {
  UPB_UNUSED(size_hint);
  return encode_startdelimfield(c, hd);
}

static size_t encode_strbuf(void *c, const void *hd, const char *buf,
                            size_t len, const upb_bufhandle *h) {
  UPB_UNUSED(hd);
  UPB_UNUSED(h);
  return encode_bytes(c, buf, len) ? len : 0;
}

#define T(type, ctype, convert, encode)                                  \
  static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \
    return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e);  \
  }                                                                      \
  static bool encode_packed_##type(void *e, const void *hd, ctype val) { \
    UPB_UNUSED(hd);                                                      \
    return encode(e, (convert)(val));                                    \
  }

T(double,   double,   dbl2uint64,   encode_fixed64)
T(float,    float,    flt2uint32,   encode_fixed32)
T(int64,    int64_t,  uint64_t,     encode_varint)
T(int32,    int32_t,  int64_t,      encode_varint)
T(fixed64,  uint64_t, uint64_t,     encode_fixed64)
T(fixed32,  uint32_t, uint32_t,     encode_fixed32)
T(bool,     bool,     bool,         encode_varint)
T(uint32,   uint32_t, uint32_t,     encode_varint)
T(uint64,   uint64_t, uint64_t,     encode_varint)
T(enum,     int32_t,  uint32_t,     encode_varint)
T(sfixed32, int32_t,  uint32_t,     encode_fixed32)
T(sfixed64, int64_t,  uint64_t,     encode_fixed64)
T(sint32,   int32_t,  upb_zzenc_32, encode_varint)
T(sint64,   int64_t,  upb_zzenc_64, encode_varint)

#undef T


/* code to build the handlers *************************************************/

static void newhandlers_callback(const void *closure, upb_handlers *h) {
  const upb_msgdef *m;
  upb_msg_field_iter i;

  UPB_UNUSED(closure);

  upb_handlers_setstartmsg(h, startmsg, NULL);
  upb_handlers_setendmsg(h, endmsg, NULL);
  upb_handlers_setunknown(h, encode_unknown, NULL);

  m = upb_handlers_msgdef(h);
  for(upb_msg_field_begin(&i, m);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
    const upb_fielddef *f = upb_msg_iter_field(&i);
    bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) &&
                  upb_fielddef_packed(f);
    upb_handlerattr attr = UPB_HANDLERATTR_INIT;
    upb_wiretype_t wt =
        packed ? UPB_WIRE_TYPE_DELIMITED
               : upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];

    /* Pre-encode the tag for this field. */
    new_tag(h, f, wt, &attr);

    if (packed) {
      upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr);
      upb_handlers_setendseq(h, f, encode_enddelimfield, &attr);
    }

#define T(upper, lower, upbtype)                                     \
  case UPB_DESCRIPTOR_TYPE_##upper:                                  \
    if (packed) {                                                    \
      upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \
    } else {                                                         \
      upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \
    }                                                                \
    break;

    switch (upb_fielddef_descriptortype(f)) {
      T(DOUBLE,   double,   double);
      T(FLOAT,    float,    float);
      T(INT64,    int64,    int64);
      T(INT32,    int32,    int32);
      T(FIXED64,  fixed64,  uint64);
      T(FIXED32,  fixed32,  uint32);
      T(BOOL,     bool,     bool);
      T(UINT32,   uint32,   uint32);
      T(UINT64,   uint64,   uint64);
      T(ENUM,     enum,     int32);
      T(SFIXED32, sfixed32, int32);
      T(SFIXED64, sfixed64, int64);
      T(SINT32,   sint32,   int32);
      T(SINT64,   sint64,   int64);
      case UPB_DESCRIPTOR_TYPE_STRING:
      case UPB_DESCRIPTOR_TYPE_BYTES:
        upb_handlers_setstartstr(h, f, encode_startstr, &attr);
        upb_handlers_setendstr(h, f, encode_enddelimfield, &attr);
        upb_handlers_setstring(h, f, encode_strbuf, &attr);
        break;
      case UPB_DESCRIPTOR_TYPE_MESSAGE:
        upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr);
        upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr);
        break;
      case UPB_DESCRIPTOR_TYPE_GROUP: {
        /* Endgroup takes a different tag (wire_type = END_GROUP). */
        upb_handlerattr attr2 = UPB_HANDLERATTR_INIT;
        new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2);

        upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr);
        upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2);

        break;
      }
    }

#undef T
  }
}

void upb_pb_encoder_reset(upb_pb_encoder *e) {
  e->segptr = NULL;
  e->top = NULL;
  e->depth = 0;
}


/* public API *****************************************************************/

upb_handlercache *upb_pb_encoder_newcache() {
  return upb_handlercache_new(newhandlers_callback, NULL);
}

upb_pb_encoder *upb_pb_encoder_create(upb_env *env, const upb_handlers *h,
                                      upb_bytessink output) {
  const size_t initial_bufsize = 256;
  const size_t initial_segbufsize = 16;
  /* TODO(haberman): make this configurable. */
  const size_t stack_size = 64;
#ifndef NDEBUG
  const size_t size_before = upb_env_bytesallocated(env);
#endif

  upb_pb_encoder *e = upb_env_malloc(env, sizeof(upb_pb_encoder));
  if (!e) return NULL;

  e->buf = upb_env_malloc(env, initial_bufsize);
  e->segbuf = upb_env_malloc(env, initial_segbufsize * sizeof(*e->segbuf));
  e->stack = upb_env_malloc(env, stack_size * sizeof(*e->stack));

  if (!e->buf || !e->segbuf || !e->stack) {
    return NULL;
  }

  e->limit = e->buf + initial_bufsize;
  e->seglimit = e->segbuf + initial_segbufsize;
  e->stacklimit = e->stack + stack_size;

  upb_pb_encoder_reset(e);
  upb_sink_reset(&e->input_, h, e);

  e->env = env;
  e->output_ = output;
  e->subc = output.closure;
  e->ptr = e->buf;

  /* If this fails, increase the value in encoder.h. */
  UPB_ASSERT_DEBUGVAR(upb_env_bytesallocated(env) - size_before <=
                      UPB_PB_ENCODER_SIZE);
  return e;
}

upb_sink upb_pb_encoder_input(upb_pb_encoder *e) { return e->input_; }
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback