summaryrefslogtreecommitdiff
path: root/upb/msg.h
blob: 67903d04251a221111d760d091875eff6bb1338e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2010-2011 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * Routines for reading and writing message data to an in-memory structure,
 * similar to a C struct.
 *
 * upb does not define one single message object that everyone must use.
 * Rather it defines an abstract interface for reading and writing members
 * of a message object, and all of the parsers and serializers use this
 * abstract interface.  This allows upb's parsers and serializers to be used
 * regardless of what memory management scheme or synchronization model the
 * application is using.
 *
 * A standard set of accessors is provided for doing simple reads and writes at
 * a known offset into the message.  These accessors should be used when
 * possible, because they are specially optimized -- for example, the JIT can
 * recognize them and emit specialized code instead of having to call the
 * function at all.  The application can substitute its own accessors when the
 * standard accessors are not suitable.
 */

#ifndef UPB_MSG_H
#define UPB_MSG_H

#include <stdlib.h>
#include "upb/def.h"
#include "upb/handlers.h"

#ifdef __cplusplus
extern "C" {
#endif


/* upb_accessor ***************************************************************/

// A upb_accessor is a table of function pointers for doing reads and writes
// for one specific upb_fielddef.  Each field has a separate accessor, which
// lives in the fielddef.

typedef bool upb_has_reader(const void *m, upb_value fval);
typedef upb_value upb_value_reader(const void *m, upb_value fval);

typedef const void *upb_seqbegin_handler(const void *s);
typedef const void *upb_seqnext_handler(const void *s, const void *iter);
typedef upb_value upb_seqget_handler(const void *iter);
INLINE bool upb_seq_done(const void *iter) { return iter == NULL; }

typedef struct _upb_accessor_vtbl {
  // Writers.  These take an fval as a parameter because the callbacks are used
  // as upb_handlers, but the fval is always the fielddef for that field.
  upb_startfield_handler *startsubmsg;     // Non-repeated submsg fields.
  upb_value_handler      *set;             // Non-repeated scalar fields.
  upb_startfield_handler *startseq;        // Repeated fields only.
  upb_startfield_handler *appendsubmsg;    // Repeated submsg fields.
  upb_value_handler      *append;          // Repeated scalar fields.

  // TODO: expect to also need endsubmsg and endseq.

  // Readers.
  upb_has_reader         *has;
  upb_value_reader       *getseq;
  upb_value_reader       *get;
  upb_seqbegin_handler   *seqbegin;
  upb_seqnext_handler    *seqnext;
  upb_seqget_handler     *seqget;
} upb_accessor_vtbl;

// Registers handlers for writing into a message of the given type.
upb_mhandlers *upb_accessors_reghandlers(upb_handlers *h, const upb_msgdef *m);

// Returns an stdmsg accessor for the given fielddef.
upb_accessor_vtbl *upb_stdmsg_accessor(upb_fielddef *f);


/* upb_msg/upb_seq ************************************************************/

// upb_msg and upb_seq allow for generic access to a message through its
// accessor vtable.  Note that these do *not* allow you to create, destroy, or
// take references on the objects -- these operations are specifically outside
// the scope of what the accessors define.

// Clears all hasbits.
// TODO: Add a separate function for setting primitive values back to their
// defaults (but not strings, submessages, or arrays).
void upb_msg_clear(void *msg, const upb_msgdef *md);

INLINE void upb_msg_clearbit(void *msg, const upb_fielddef *f) {
  ((char*)msg)[f->hasbit / 8] &= ~(1 << (f->hasbit % 8));
}

// Could add a method that recursively clears submessages, strings, and
// arrays if desired.  This could be a win if you wanted to merge without
// needing hasbits, because during parsing you would never clear submessages
// or arrays.  Also this could be desired to provide proto2 operations on
// generated messages.

INLINE bool upb_msg_has(const void *m, const upb_fielddef *f) {
  return f->accessor && f->accessor->has(m, f->fval);
}

// May only be called for fields that have accessors.
INLINE upb_value upb_msg_get(const void *m, const upb_fielddef *f) {
  assert(f->accessor && !upb_isseq(f));
  return f->accessor->get(m, f->fval);
}

// May only be called for fields that have accessors.
INLINE upb_value upb_msg_getseq(const void *m, const upb_fielddef *f) {
  assert(f->accessor && upb_isseq(f));
  return f->accessor->getseq(m, f->fval);
}

INLINE void upb_msg_set(void *m, const upb_fielddef *f, upb_value val) {
  assert(f->accessor);
  f->accessor->set(m, f->fval, val);
}

INLINE const void *upb_seq_begin(const void *s, const upb_fielddef *f) {
  assert(f->accessor);
  return f->accessor->seqbegin(s);
}
INLINE const void *upb_seq_next(const void *s, const void *iter,
                                const upb_fielddef *f) {
  assert(f->accessor);
  assert(!upb_seq_done(iter));
  return f->accessor->seqnext(s, iter);
}
INLINE upb_value upb_seq_get(const void *iter, const upb_fielddef *f) {
  assert(f->accessor);
  assert(!upb_seq_done(iter));
  return f->accessor->seqget(iter);
}

INLINE bool upb_msg_has_named(const void *m, const upb_msgdef *md,
                              const char *field_name) {
  const upb_fielddef *f = upb_msgdef_ntof(md, field_name);
  return f && upb_msg_has(m, f);
}

INLINE bool upb_msg_get_named(const void *m, const upb_msgdef *md,
                                   const char *field_name, upb_value *val) {
  const upb_fielddef *f = upb_msgdef_ntof(md, field_name);
  if (!f) return false;
  *val = upb_msg_get(m, f);
  return true;
}


/* upb_msgvisitor *************************************************************/

// A upb_msgvisitor reads data from an in-memory structure using its accessors,
// pushing the results to a given set of upb_handlers.
// TODO: not yet implemented.

typedef struct {
  upb_fhandlers *fh;
  upb_fielddef *f;
  uint16_t msgindex;  // Only when upb_issubmsg(f).
} upb_msgvisitor_field;

typedef struct {
  upb_msgvisitor_field *fields;
  int fields_len;
} upb_msgvisitor_msg;

typedef struct {
  uint16_t msgindex;
  uint16_t fieldindex;
  uint32_t arrayindex;  // UINT32_MAX if not an array frame.
} upb_msgvisitor_frame;

typedef struct {
  upb_msgvisitor_msg *messages;
  int messages_len;
  upb_dispatcher dispatcher;
} upb_msgvisitor;

// Initializes a msgvisitor that will push data from messages of the given
// msgdef to the given set of handlers.
void upb_msgvisitor_init(upb_msgvisitor *v, upb_msgdef *md, upb_handlers *h);
void upb_msgvisitor_uninit(upb_msgvisitor *v);

void upb_msgvisitor_reset(upb_msgvisitor *v, void *m);
void upb_msgvisitor_visit(upb_msgvisitor *v, upb_status *status);


/* Standard writers. **********************************************************/

// Allocates a new stdmsg.
void *upb_stdmsg_new(const upb_msgdef *md);

// Recursively frees any strings or submessages that the message refers to.
void upb_stdmsg_free(void *m, const upb_msgdef *md);

void upb_stdmsg_sethas(void *_m, upb_value fval);

// "hasbit" must be <= UPB_MAX_FIELDS.  If it is <0, this field has no hasbit.
upb_value upb_stdmsg_packfval(int16_t hasbit, uint16_t value_offset);
upb_value upb_stdmsg_packfval_subm(int16_t hasbit, uint16_t value_offset,
                                   uint16_t subm_size, uint8_t subm_setbytes);

// Value writers for every in-memory type: write the data to a known offset
// from the closure "c" and set the hasbit (if any).
// TODO: can we get away with having only one for int64, uint64, double, etc?
// The main thing in the way atm is that the upb_value is strongly typed.
// in debug mode.
upb_flow_t upb_stdmsg_setint64(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setint32(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setuint64(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setuint32(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setdouble(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setfloat(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setbool(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setptr(void *c, upb_value fval, upb_value val);

// Value writers for repeated fields: the closure points to a standard array
// struct, appends the value to the end of the array, resizing with realloc()
// if necessary.
typedef struct {
  char *ptr;
  uint32_t len;   // Number of elements present.
  uint32_t size;  // Number of elements allocated.
} upb_stdarray;

void *upb_stdarray_append(upb_stdarray *a, size_t type_size);

upb_flow_t upb_stdmsg_setint64_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setint32_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setuint64_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setuint32_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setdouble_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setfloat_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setbool_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setptr_r(void *c, upb_value fval, upb_value val);

// Writers for C strings (NULL-terminated): we can find a char* at a known
// offset from the closure "c".  Calls realloc() on the pointer to allocate
// the memory (TODO: investigate whether checking malloc_usable_size() would
// be cheaper than realloc()).  Also sets the hasbit, if any.
//
// Since the string is NULL terminated and does not store an explicit length,
// these are not suitable for binary data that can contain NULLs.
upb_flow_t upb_stdmsg_setcstr(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setcstr_r(void *c, upb_value fval, upb_value val);

// Writers for length-delimited strings: we explicitly store the length, so
// the data can contain NULLs.  Stores the data using upb_stdarray
// which is located at a known offset from the closure "c" (note that it
// is included inline rather than pointed to).  Also sets the hasbit, if any.
upb_flow_t upb_stdmsg_setstr(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setstr_r(void *c, upb_value fval, upb_value val);

// Writers for startseq and startmsg which allocate (or reuse, if possible)
// a sub data structure (upb_stdarray or a submessage, respectively),
// setting the hasbit.  If the hasbit is already set, the existing data
// structure is used verbatim.  If the hasbit is not already set, the pointer
// is checked for NULL.  If it is NULL, a new substructure is allocated,
// cleared, and used.  If it is not NULL, the existing substructure is
// cleared and reused.
//
// If there is no hasbit, we always behave as if the hasbit was not set,
// so any existing data for this array or submessage is cleared.  In most
// cases this will be fine since each array or non-repeated submessage should
// occur at most once in the stream.  But if the client is using "concatenation
// as merging", it will want to make sure hasbits are allocated so merges can
// happen appropriately.
//
// If there was a demand for the behavior that absence of a hasbit acts as if
// the bit was always set, we could provide that also.  But Clear() would need
// to act recursively, which is less efficient since it requires an extra pass
// over the tree.
upb_sflow_t upb_stdmsg_startseq(void *c, upb_value fval);
upb_sflow_t upb_stdmsg_startsubmsg(void *c, upb_value fval);
upb_sflow_t upb_stdmsg_startsubmsg_r(void *c, upb_value fval);


/* Standard readers. **********************************************************/

bool upb_stdmsg_has(const void *c, upb_value fval);
const void *upb_stdmsg_seqbegin(const void *c);

upb_value upb_stdmsg_getint64(const void *c, upb_value fval);
upb_value upb_stdmsg_getint32(const void *c, upb_value fval);
upb_value upb_stdmsg_getuint64(const void *c, upb_value fval);
upb_value upb_stdmsg_getuint32(const void *c, upb_value fval);
upb_value upb_stdmsg_getdouble(const void *c, upb_value fval);
upb_value upb_stdmsg_getfloat(const void *c, upb_value fval);
upb_value upb_stdmsg_getbool(const void *c, upb_value fval);
upb_value upb_stdmsg_getptr(const void *c, upb_value fval);

const void *upb_stdmsg_8byte_seqnext(const void *c, const void *iter);
const void *upb_stdmsg_4byte_seqnext(const void *c, const void *iter);
const void *upb_stdmsg_1byte_seqnext(const void *c, const void *iter);

upb_value upb_stdmsg_seqgetint64(const void *c);
upb_value upb_stdmsg_seqgetint32(const void *c);
upb_value upb_stdmsg_seqgetuint64(const void *c);
upb_value upb_stdmsg_seqgetuint32(const void *c);
upb_value upb_stdmsg_seqgetdouble(const void *c);
upb_value upb_stdmsg_seqgetfloat(const void *c);
upb_value upb_stdmsg_seqgetbool(const void *c);
upb_value upb_stdmsg_seqgetptr(const void *c);

#ifdef __cplusplus
}  /* extern "C" */
#endif

#endif
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback