summaryrefslogtreecommitdiff
path: root/tests/test_decoder.c
blob: 14d0e2db86adc02a6330a5115ba1b7ad8aaf1eb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2011 Google Inc.  See LICENSE for details.
 *
 * An exhaustive set of tests for parsing both valid and invalid protobuf
 * input, with buffer breaks in arbitrary places.
 *
 * Tests to add:
 * - unknown field handler called appropriately
 * - unknown fields can be inserted in random places
 * - fuzzing of valid input
 * - resource limits (max stack depth, max string len)
 * - testing of groups
 * - more throrough testing of sequences
 * - test skipping of submessages
 * - test suspending the decoder
 * - buffers that are close enough to the end of the address space that
 *   pointers overflow (this might be difficult).
 * - a few "kitchen sink" examples (one proto that uses all types, lots
 *   of submsg/sequences, etc.
 */

#include <inttypes.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "upb/handlers.h"
#include "upb/pb/decoder.h"
#include "upb/pb/varint.h"
#include "upb/upb.h"
#include "upb_test.h"

typedef struct {
  char *buf;
  size_t len;
} buffer;

// Mem is initialized to NULL.
buffer *buffer_new(size_t len) {
  buffer *buf = malloc(sizeof(*buf));
  buf->buf = malloc(len);
  buf->len = len;
  memset(buf->buf, 0, buf->len);
  return buf;
}

buffer *buffer_new2(const void *data, size_t len) {
  buffer *buf = buffer_new(len);
  memcpy(buf->buf, data, len);
  return buf;
}

buffer *buffer_new3(const char *data) {
  return buffer_new2(data, strlen(data));
}

buffer *buffer_dup(buffer *buf) { return buffer_new2(buf->buf, buf->len); }

void buffer_free(buffer *buf) {
  free(buf->buf);
  free(buf);
}

void buffer_appendf(buffer *buf, const char *fmt, ...) {
  va_list args;
  va_start(args, fmt);
  size_t size = buf->len;
  buf->len += upb_vrprintf(&buf->buf, &size, buf->len, fmt, args);
  va_end(args);
}

void buffer_cat(buffer *buf, buffer *buf2) {
  size_t newlen = buf->len + buf2->len;
  buf->buf = realloc(buf->buf, newlen);
  memcpy(buf->buf + buf->len, buf2->buf, buf2->len);
  buf->len = newlen;
  buffer_free(buf2);
}

bool buffer_eql(buffer *buf, buffer *buf2) {
  return buf->len == buf2->len && memcmp(buf->buf, buf2->buf, buf->len) == 0;
}


/* Routines for building arbitrary protos *************************************/

buffer *cat(buffer *arg1, ...) {
  va_list ap;
  buffer *arg;
  va_start(ap, arg1);
  while ((arg = va_arg(ap, buffer*)) != NULL) {
    buffer_cat(arg1, arg);
  }
  va_end(ap);
  return arg1;
}

buffer *varint(uint64_t x) {
  buffer *buf = buffer_new(UPB_PB_VARINT_MAX_LEN + 1);
  buf->len = upb_vencode64(x, buf->buf);
  return buf;
}

// TODO: proper byte-swapping for big-endian machines.
buffer *fixed32(void *data) { return buffer_new2(data, 4); }
buffer *fixed64(void *data) { return buffer_new2(data, 8); }

buffer *delim(buffer *buf) { return cat( varint(buf->len), buf, NULL ); }
buffer *uint32(uint32_t u32) { return fixed32(&u32); }
buffer *uint64(uint64_t u64) { return fixed64(&u64); }
buffer *flt(float f) { return fixed32(&f); }
buffer *dbl(double d) { return fixed64(&d); }
buffer *zz32(int32_t x) { return varint(upb_zzenc_32(x)); }
buffer *zz64(int64_t x) { return varint(upb_zzenc_64(x)); }

buffer *tag(uint32_t fieldnum, char wire_type) {
  return varint((fieldnum << 3) | wire_type);
}

buffer *submsg(uint32_t fn, buffer *buf) {
  return cat( tag(fn, UPB_WIRE_TYPE_DELIMITED), delim(buf), NULL );
}


/* A set of handlers that covers all .proto types *****************************/

// The handlers simply append to a string indicating what handlers were called.
// This string is similar to protobuf text format but fields are referred to by
// number instead of name and sequences are explicitly delimited.

#define VALUE_HANDLER(member, fmt) \
  upb_flow_t value_ ## member(void *closure, upb_value fval, upb_value val) { \
    buffer_appendf(closure, "%" PRIu32 ":%" fmt "; ",                         \
                   upb_value_getuint32(fval), upb_value_get ## member(val));  \
    return UPB_CONTINUE;                                                      \
  }

VALUE_HANDLER(uint32, PRIu32)
VALUE_HANDLER(uint64, PRIu64)
VALUE_HANDLER(int32, PRId32)
VALUE_HANDLER(int64, PRId64)
VALUE_HANDLER(float, "g")
VALUE_HANDLER(double, "g")

upb_flow_t value_bool(void *closure, upb_value fval, upb_value val) {
  buffer_appendf(closure, "%" PRIu32 ":%s; ",
                 upb_value_getuint32(fval),
                 upb_value_getbool(val) ? "true" : "false");
  return UPB_CONTINUE;
}

upb_flow_t value_string(void *closure, upb_value fval, upb_value val) {
  // Note: won't work with strings that contain NULL.
  char *str = upb_byteregion_strdup(upb_value_getbyteregion(val));
  buffer_appendf(closure, "%" PRIu32 ":%s; ", upb_value_getuint32(fval), str);
  free(str);
  return UPB_CONTINUE;
}

upb_sflow_t startsubmsg(void *closure, upb_value fval) {
  buffer_appendf(closure, "%" PRIu32 ":{ ", upb_value_getuint32(fval));
  return UPB_CONTINUE_WITH(closure);
}

upb_flow_t endsubmsg(void *closure, upb_value fval) {
  (void)fval;
  buffer_appendf(closure, "} ");
  return UPB_CONTINUE;
}

upb_sflow_t startseq(void *closure, upb_value fval) {
  buffer_appendf(closure, "%" PRIu32 ":[ ", upb_value_getuint32(fval));
  return UPB_CONTINUE_WITH(closure);
}

upb_flow_t endseq(void *closure, upb_value fval) {
  (void)fval;
  buffer_appendf(closure, "] ");
  return UPB_CONTINUE;
}

void doreg(upb_mhandlers *m, uint32_t num, upb_fieldtype_t type, bool repeated,
           upb_value_handler *handler) {
  upb_fhandlers *f = upb_mhandlers_newfhandlers(m, num, type, repeated);
  ASSERT(f);
  upb_fhandlers_setvalue(f, handler);
  upb_fhandlers_setstartseq(f, &startseq);
  upb_fhandlers_setendseq(f, &endseq);
  upb_fhandlers_setfval(f, upb_value_uint32(num));
}

// The repeated field number to correspond to the given non-repeated field
// number.
uint32_t rep_fn(uint32_t fn) {
  return (UPB_MAX_FIELDNUMBER - 1000) + fn;
}

#define NOP_FIELD 40
#define UNKNOWN_FIELD 666

void reg(upb_mhandlers *m, upb_fieldtype_t type, upb_value_handler *handler) {
  // We register both a repeated and a non-repeated field for every type.
  // For the non-repeated field we make the field number the same as the
  // type.  For the repeated field we make it a function of the type.
  doreg(m, type, type, false, handler);
  doreg(m, rep_fn(type), type, true, handler);
}

void reg_subm(upb_mhandlers *m, uint32_t num, upb_fieldtype_t type,
              bool repeated) {
  upb_fhandlers *f =
      upb_mhandlers_newfhandlers_subm(m, num, type, repeated, m);
  ASSERT(f);
  upb_fhandlers_setstartseq(f, &startseq);
  upb_fhandlers_setendseq(f, &endseq);
  upb_fhandlers_setstartsubmsg(f, &startsubmsg);
  upb_fhandlers_setendsubmsg(f, &endsubmsg);
  upb_fhandlers_setfval(f, upb_value_uint32(num));
}

void reghandlers(upb_mhandlers *m) {
  // Register handlers for each type.
  reg(m, UPB_TYPE(DOUBLE),   &value_double);
  reg(m, UPB_TYPE(FLOAT),    &value_float);
  reg(m, UPB_TYPE(INT64),    &value_int64);
  reg(m, UPB_TYPE(UINT64),   &value_uint64);
  reg(m, UPB_TYPE(INT32) ,   &value_int32);
  reg(m, UPB_TYPE(FIXED64),  &value_uint64);
  reg(m, UPB_TYPE(FIXED32),  &value_uint32);
  reg(m, UPB_TYPE(BOOL),     &value_bool);
  reg(m, UPB_TYPE(STRING),   &value_string);
  reg(m, UPB_TYPE(BYTES),    &value_string);
  reg(m, UPB_TYPE(UINT32),   &value_uint32);
  reg(m, UPB_TYPE(ENUM),     &value_int32);
  reg(m, UPB_TYPE(SFIXED32), &value_int32);
  reg(m, UPB_TYPE(SFIXED64), &value_int64);
  reg(m, UPB_TYPE(SINT32),   &value_int32);
  reg(m, UPB_TYPE(SINT64),   &value_int64);

  // Register submessage/group handlers that are self-recursive
  // to this type, eg: message M { optional M m = 1; }
  reg_subm(m, UPB_TYPE(MESSAGE),         UPB_TYPE(MESSAGE), false);
  reg_subm(m, UPB_TYPE(GROUP),           UPB_TYPE(GROUP),   false);
  reg_subm(m, rep_fn(UPB_TYPE(MESSAGE)), UPB_TYPE(MESSAGE), true);
  reg_subm(m, rep_fn(UPB_TYPE(GROUP)),   UPB_TYPE(GROUP),   true);

  // Register a no-op string field so we can pad the proto wherever we want.
  upb_mhandlers_newfhandlers(m, NOP_FIELD, UPB_TYPE(STRING), false);
}


/* Custom bytesrc that can insert buffer seams in arbitrary places ************/

typedef struct {
  upb_bytesrc bytesrc;
  const char *str;
  size_t len, seam1, seam2;
  upb_byteregion byteregion;
} upb_seamsrc;

size_t upb_seamsrc_avail(const upb_seamsrc *src, size_t ofs) {
  if (ofs < src->seam1) return src->seam1 - ofs;
  if (ofs < src->seam2) return src->seam2 - ofs;
  return src->len - ofs;
}

upb_bytesuccess_t upb_seamsrc_fetch(void *_src, uint64_t ofs, size_t *read) {
  upb_seamsrc *src = _src;
  assert(ofs < src->len);
  if (ofs == src->len) {
    upb_status_seteof(&src->bytesrc.status);
    return UPB_BYTE_EOF;
  }
  *read = upb_seamsrc_avail(src, ofs);
  return UPB_BYTE_OK;
}

void upb_seamsrc_copy(const void *_src, uint64_t ofs,
                      size_t len, char *dst) {
  const upb_seamsrc *src = _src;
  assert(ofs + len <= src->len);
  memcpy(dst, src->str + ofs, len);
}

void upb_seamsrc_discard(void *src, uint64_t ofs) {
  (void)src;
  (void)ofs;
}

const char *upb_seamsrc_getptr(const void *_s, uint64_t ofs, size_t *len) {
  const upb_seamsrc *src = _s;
  *len = upb_seamsrc_avail(src, ofs);
  return src->str + ofs;
}

void upb_seamsrc_init(upb_seamsrc *s, const char *str, size_t len) {
  static upb_bytesrc_vtbl vtbl = {
    &upb_seamsrc_fetch,
    &upb_seamsrc_discard,
    &upb_seamsrc_copy,
    &upb_seamsrc_getptr,
  };
  upb_bytesrc_init(&s->bytesrc, &vtbl);
  s->seam1 = 0;
  s->seam2 = 0;
  s->str = str;
  s->len = len;
  s->byteregion.bytesrc = &s->bytesrc;
  s->byteregion.toplevel = true;
  s->byteregion.start = 0;
  s->byteregion.end = len;
}

void upb_seamsrc_resetseams(upb_seamsrc *s, size_t seam1, size_t seam2) {
  ASSERT(seam1 <= seam2);
  s->seam1 = seam1;
  s->seam2 = seam2;
  s->byteregion.discard = 0;
  s->byteregion.fetch = 0;
}

void upb_seamsrc_uninit(upb_seamsrc *s) { (void)s; }

upb_bytesrc *upb_seamsrc_bytesrc(upb_seamsrc *s) {
  return &s->bytesrc;
}

// Returns the top-level upb_byteregion* for this seamsrc.  Invalidated when
// the seamsrc is reset.
upb_byteregion *upb_seamsrc_allbytes(upb_seamsrc *s) {
  return &s->byteregion;
}


/* Running of test cases ******************************************************/

upb_decoderplan *plan;

void run_decoder(buffer *proto, buffer *expected_output) {
  upb_seamsrc src;
  upb_seamsrc_init(&src, proto->buf, proto->len);
  upb_decoder d;
  upb_decoder_init(&d);
  upb_decoder_resetplan(&d, plan, 0);
  for (size_t i = 0; i < proto->len; i++) {
    for (size_t j = i; j < proto->len; j++) {
      upb_seamsrc_resetseams(&src, i, j);
      upb_byteregion *input = upb_seamsrc_allbytes(&src);
      buffer *output = buffer_new(0);
      upb_decoder_resetinput(&d, input, output);
      upb_success_t success = UPB_SUSPENDED;
      while (success == UPB_SUSPENDED)
        success = upb_decoder_decode(&d);
      ASSERT(upb_ok(upb_decoder_status(&d)) == (success == UPB_OK));
      if (expected_output) {
        ASSERT(success == UPB_OK);
        // The input should be fully consumed.
        ASSERT(upb_byteregion_fetchofs(input) == upb_byteregion_endofs(input));
        ASSERT(upb_byteregion_discardofs(input) ==
               upb_byteregion_endofs(input));
        if (!buffer_eql(output, expected_output)) {
          fprintf(stderr, "Text mismatch: '%s' vs '%s'\n",
                  output->buf, expected_output->buf);
        }
        ASSERT(strcmp(output->buf, expected_output->buf) == 0);
      } else {
        ASSERT(success == UPB_ERROR);
      }
      buffer_free(output);
    }
  }
  upb_seamsrc_uninit(&src);
  upb_decoder_uninit(&d);
  buffer_free(proto);
}

void assert_successful_parse_at_eof(buffer *proto, const char *expected_fmt,
                                    va_list args) {
  buffer *expected_text = buffer_new(0);
  size_t size = expected_text->len;
  expected_text->len += upb_vrprintf(&expected_text->buf, &size,
                                     expected_text->len, expected_fmt, args);
  run_decoder(proto, expected_text);
  buffer_free(expected_text);
}

void assert_does_not_parse_at_eof(buffer *proto) {
  run_decoder(proto, NULL);
}

void assert_successful_parse(buffer *proto, const char *expected_fmt, ...) {
  // The JIT is only used for data >=20 bytes from end-of-buffer, so
  // repeat once with no-op padding data at the end of buffer.
  va_list args, args2;
  va_start(args, expected_fmt);
  va_copy(args2, args);
  assert_successful_parse_at_eof(buffer_dup(proto), expected_fmt, args);
  assert_successful_parse_at_eof(
      cat( proto,
           tag(NOP_FIELD, UPB_WIRE_TYPE_DELIMITED), delim(buffer_new(30)),
           NULL ),
      expected_fmt, args2);
  va_end(args);
  va_end(args2);
}

void assert_does_not_parse(buffer *proto) {
  // The JIT is only used for data >=20 bytes from end-of-buffer, so
  // repeat once with no-op padding data at the end of buffer.
  assert_does_not_parse_at_eof(buffer_dup(proto));
  assert_does_not_parse_at_eof(
      cat( proto,
           tag(NOP_FIELD, UPB_WIRE_TYPE_DELIMITED), delim( buffer_new(30)),
           NULL ));
}


/* The actual tests ***********************************************************/

void test_premature_eof_for_type(upb_fieldtype_t type) {
  // Incomplete values for each wire type.
  static const char *incompletes[] = {
    "\x80",    // UPB_WIRE_TYPE_VARINT
    "abcdefg", // UPB_WIRE_TYPE_64BIT
    "\x80",    // UPB_WIRE_TYPE_DELIMITED (partial length)
    NULL,      // UPB_WIRE_TYPE_START_GROUP (no value required)
    NULL,      // UPB_WIRE_TYPE_END_GROUP (no value required)
    "abc"      // UPB_WIRE_TYPE_32BIT
  };

  uint32_t fieldnum = type;
  uint32_t rep_fieldnum = rep_fn(type);
  int wire_type = upb_types[type].native_wire_type;
  const char *incomplete = incompletes[wire_type];

  // EOF before a known non-repeated value.
  assert_does_not_parse_at_eof(tag(fieldnum, wire_type));

  // EOF before a known repeated value.
  assert_does_not_parse_at_eof(tag(rep_fieldnum, wire_type));

  // EOF before an unknown value.
  assert_does_not_parse_at_eof(tag(UNKNOWN_FIELD, wire_type));

  // EOF inside a known non-repeated value.
  assert_does_not_parse_at_eof(
      cat( tag(fieldnum, wire_type), buffer_new3(incomplete), NULL ));

  // EOF inside a known repeated value.
  assert_does_not_parse_at_eof(
      cat( tag(rep_fieldnum, wire_type), buffer_new3(incomplete), NULL ));

  // EOF inside an unknown value.
  assert_does_not_parse_at_eof(
      cat( tag(UNKNOWN_FIELD, wire_type), buffer_new3(incomplete), NULL ));

  if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
    // EOF in the middle of delimited data for known non-repeated value.
    assert_does_not_parse_at_eof(
        cat( tag(fieldnum, wire_type), varint(1), NULL ));

    // EOF in the middle of delimited data for known repeated value.
    assert_does_not_parse_at_eof(
        cat( tag(rep_fieldnum, wire_type), varint(1), NULL ));

    // EOF in the middle of delimited data for unknown value.
    assert_does_not_parse_at_eof(
        cat( tag(UNKNOWN_FIELD, wire_type), varint(1), NULL ));

    if (type == UPB_TYPE(MESSAGE)) {
      // Submessage ends in the middle of a value.
      buffer *incomplete_submsg =
          cat ( tag(UPB_TYPE(INT32), UPB_WIRE_TYPE_VARINT),
                buffer_new3(incompletes[UPB_WIRE_TYPE_VARINT]), NULL );
      assert_does_not_parse(
          cat( tag(fieldnum, UPB_WIRE_TYPE_DELIMITED),
               varint(incomplete_submsg->len),
               incomplete_submsg, NULL ));
    }
  } else {
    // Packed region ends in the middle of a value.
    assert_does_not_parse(
        cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
             varint(strlen(incomplete)),
             buffer_new3(incomplete), NULL ));

    // EOF in the middle of packed region.
    assert_does_not_parse_at_eof(
        cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED), varint(1), NULL ));
  }
}

// "33" and "66" are just two random values that all numeric types can
// represent.
void test_valid_data_for_type(upb_fieldtype_t type,
                              buffer *enc33, buffer *enc66) {
  uint32_t fieldnum = type;
  uint32_t rep_fieldnum = rep_fn(type);
  int wire_type = upb_types[type].native_wire_type;

  // Non-repeated
  assert_successful_parse(
      cat( tag(fieldnum, wire_type), buffer_dup(enc33),
           tag(fieldnum, wire_type), buffer_dup(enc66), NULL ),
      "%u:33; %u:66; ", fieldnum, fieldnum);

  // Non-packed repeated.
  assert_successful_parse(
      cat( tag(rep_fieldnum, wire_type), buffer_dup(enc33),
           tag(rep_fieldnum, wire_type), buffer_dup(enc66), NULL ),
      "%u:[ %u:33; %u:66; ] ", rep_fieldnum, rep_fieldnum, rep_fieldnum);

  // Packed repeated.
  assert_successful_parse(
      cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
           delim(cat( buffer_dup(enc33), buffer_dup(enc66), NULL )), NULL ),
      "%u:[ %u:33; %u:66; ] ", rep_fieldnum, rep_fieldnum, rep_fieldnum);

  buffer_free(enc33);
  buffer_free(enc66);
}

void test_valid_data_for_signed_type(upb_fieldtype_t type,
                                     buffer *enc33, buffer *enc66) {
  uint32_t fieldnum = type;
  uint32_t rep_fieldnum = rep_fn(type);
  int wire_type = upb_types[type].native_wire_type;

  // Non-repeated
  assert_successful_parse(
      cat( tag(fieldnum, wire_type), buffer_dup(enc33),
           tag(fieldnum, wire_type), buffer_dup(enc66), NULL ),
      "%u:33; %u:-66; ", fieldnum, fieldnum);

  // Non-packed repeated.
  assert_successful_parse(
      cat( tag(rep_fieldnum, wire_type), buffer_dup(enc33),
           tag(rep_fieldnum, wire_type), buffer_dup(enc66), NULL ),
      "%u:[ %u:33; %u:-66; ] ", rep_fieldnum, rep_fieldnum, rep_fieldnum);

  // Packed repeated.
  assert_successful_parse(
      cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
           delim(cat( buffer_dup(enc33), buffer_dup(enc66), NULL )), NULL ),
      "%u:[ %u:33; %u:-66; ] ", rep_fieldnum, rep_fieldnum, rep_fieldnum);

  buffer_free(enc33);
  buffer_free(enc66);
}

// Test that invalid protobufs are properly detected (without crashing) and
// have an error reported.  Field numbers match registered handlers above.
void test_invalid() {
  test_premature_eof_for_type(UPB_TYPE(DOUBLE));
  test_premature_eof_for_type(UPB_TYPE(FLOAT));
  test_premature_eof_for_type(UPB_TYPE(INT64));
  test_premature_eof_for_type(UPB_TYPE(UINT64));
  test_premature_eof_for_type(UPB_TYPE(INT32));
  test_premature_eof_for_type(UPB_TYPE(FIXED64));
  test_premature_eof_for_type(UPB_TYPE(FIXED32));
  test_premature_eof_for_type(UPB_TYPE(BOOL));
  test_premature_eof_for_type(UPB_TYPE(STRING));
  test_premature_eof_for_type(UPB_TYPE(BYTES));
  test_premature_eof_for_type(UPB_TYPE(UINT32));
  test_premature_eof_for_type(UPB_TYPE(ENUM));
  test_premature_eof_for_type(UPB_TYPE(SFIXED32));
  test_premature_eof_for_type(UPB_TYPE(SFIXED64));
  test_premature_eof_for_type(UPB_TYPE(SINT32));
  test_premature_eof_for_type(UPB_TYPE(SINT64));

  // EOF inside a tag's varint.
  assert_does_not_parse_at_eof( buffer_new3("\x80") );

  // EOF inside a known group.
  assert_does_not_parse_at_eof( tag(4, UPB_WIRE_TYPE_START_GROUP) );

  // EOF inside an unknown group.
  assert_does_not_parse_at_eof( tag(UNKNOWN_FIELD, UPB_WIRE_TYPE_START_GROUP) );

  // End group that we are not currently in.
  assert_does_not_parse( tag(4, UPB_WIRE_TYPE_END_GROUP) );

  // Field number is 0.
  assert_does_not_parse(
      cat( tag(0, UPB_WIRE_TYPE_DELIMITED), varint(0), NULL ));

  // Field number is too large.
  assert_does_not_parse(
      cat( tag(UPB_MAX_FIELDNUMBER + 1, UPB_WIRE_TYPE_DELIMITED),
           varint(0), NULL ));

  // Test exceeding the resource limit of stack depth.
  buffer *buf = buffer_new3("");
  for (int i = 0; i < UPB_MAX_NESTING; i++) {
    buf = submsg(UPB_TYPE(MESSAGE), buf);
  }
  assert_does_not_parse(buf);

  // Staying within the stack limit should work properly.
  buf = buffer_new3("");
  buffer *textbuf = buffer_new3("");
  int total = UPB_MAX_NESTING - 1;
  for (int i = 0; i < total; i++) {
    buf = submsg(UPB_TYPE(MESSAGE), buf);
    buffer_appendf(textbuf, "%u:{ ", UPB_TYPE(MESSAGE));
  }
  for (int i = 0; i < total; i++) {
    buffer_appendf(textbuf, "} ");
  }
  assert_successful_parse(buf, "%s", textbuf->buf);
  buffer_free(textbuf);
}

void test_valid() {
  test_valid_data_for_signed_type(UPB_TYPE(DOUBLE), dbl(33), dbl(-66));
  test_valid_data_for_signed_type(UPB_TYPE(FLOAT), flt(33), flt(-66));
  test_valid_data_for_signed_type(UPB_TYPE(INT64), varint(33), varint(-66));
  test_valid_data_for_signed_type(UPB_TYPE(INT32), varint(33), varint(-66));
  test_valid_data_for_signed_type(UPB_TYPE(ENUM), varint(33), varint(-66));
  test_valid_data_for_signed_type(UPB_TYPE(SFIXED32), uint32(33), uint32(-66));
  test_valid_data_for_signed_type(UPB_TYPE(SFIXED64), uint64(33), uint64(-66));
  test_valid_data_for_signed_type(UPB_TYPE(SINT32), zz32(33), zz32(-66));
  test_valid_data_for_signed_type(UPB_TYPE(SINT64), zz64(33), zz64(-66));

  test_valid_data_for_type(UPB_TYPE(UINT64), varint(33), varint(66));
  test_valid_data_for_type(UPB_TYPE(UINT32), varint(33), varint(66));
  test_valid_data_for_type(UPB_TYPE(FIXED64), uint64(33), uint64(66));
  test_valid_data_for_type(UPB_TYPE(FIXED32), uint32(33), uint32(66));

  // Submessage tests.
  uint32_t msg_fn = UPB_TYPE(MESSAGE);
  assert_successful_parse(
      submsg(msg_fn, submsg(msg_fn, submsg(msg_fn, buffer_new3("")))),
      "%u:{ %u:{ %u:{ } } } ", msg_fn, msg_fn, msg_fn);

  uint32_t repm_fn = rep_fn(UPB_TYPE(MESSAGE));
  assert_successful_parse(
      submsg(repm_fn, submsg(repm_fn, buffer_new3(""))),
      "%u:[ %u:{ %u:[ %u:{ } ] } ] ", repm_fn, repm_fn, repm_fn, repm_fn);
}

void run_tests() {
  test_invalid();
  test_valid();
}

int main() {
  // Construct decoder plan.
  upb_handlers *h = upb_handlers_new();
  reghandlers(upb_handlers_newmhandlers(h));

  // Test without JIT.
  plan = upb_decoderplan_new(h, false);
  run_tests();
  upb_decoderplan_unref(plan);

  // Test JIT.
  plan = upb_decoderplan_new(h, true);
  run_tests();
  upb_decoderplan_unref(plan);

  plan = NULL;
  printf("All tests passed, %d assertions.\n", num_assertions);
  upb_handlers_unref(h);
  return 0;
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback