summaryrefslogtreecommitdiff
path: root/tests/pb/test_decoder.cc
blob: e44f60c461ec7b53c2b78817f16ccba957321fc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
/*
 *
 * An exhaustive set of tests for parsing both valid and invalid protobuf
 * input, with buffer breaks in arbitrary places.
 *
 * Tests to add:
 * - string/bytes
 * - unknown field handler called appropriately
 * - unknown fields can be inserted in random places
 * - fuzzing of valid input
 * - resource limits (max stack depth, max string len)
 * - testing of groups
 * - more throrough testing of sequences
 * - test skipping of submessages
 * - test suspending the decoder
 * - buffers that are close enough to the end of the address space that
 *   pointers overflow (this might be difficult).
 * - a few "kitchen sink" examples (one proto that uses all types, lots
 *   of submsg/sequences, etc.
 * - test different handlers at every level and whether handlers fire at
 *   the correct field path.
 * - test skips that extend past the end of current buffer (where decoder
 *   returns value greater than the size param).
 */

#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS  // For PRIuS, etc.
#endif

#include <inttypes.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sstream>

#include "tests/test_util.h"
#include "tests/upb_test.h"

#ifdef AMALGAMATED
#include "upb.h"
#else  // AMALGAMATED
#include "upb/handlers.h"
#include "upb/pb/decoder.h"
#include "upb/pb/varint.int.h"
#include "upb/upb.h"
#endif  // !AMALGAMATED

#undef PRINT_FAILURE
#define PRINT_FAILURE(expr)                                           \
  fprintf(stderr, "Assertion failed: %s:%d\n", __FILE__, __LINE__);   \
  fprintf(stderr, "expr: %s\n", #expr);                               \
  if (testhash) {                                                     \
    fprintf(stderr, "assertion failed running test %x.\n", testhash); \
    if (!filter_hash) {                                               \
      fprintf(stderr,                                                 \
              "Run with the arg %x to run only this test. "           \
              "(This will also turn on extra debugging output)\n",    \
              testhash);                                              \
    }                                                                 \
    fprintf(stderr, "Failed at %02.2f%% through tests.\n",            \
            (float)completed * 100 / total);                          \
  }

#define MAX_NESTING 64

#define LINE(x) x "\n"

uint32_t filter_hash = 0;
double completed;
double total;
double *count;

enum TestMode {
  COUNT_ONLY = 1,
  NO_HANDLERS = 2,
  ALL_HANDLERS = 3
} test_mode;

// Copied from decoder.c, since this is not a public interface.
typedef struct {
  uint8_t native_wire_type;
  bool is_numeric;
} upb_decoder_typeinfo;

static const upb_decoder_typeinfo upb_decoder_types[] = {
  {UPB_WIRE_TYPE_END_GROUP,   false},  // ENDGROUP
  {UPB_WIRE_TYPE_64BIT,       true},   // DOUBLE
  {UPB_WIRE_TYPE_32BIT,       true},   // FLOAT
  {UPB_WIRE_TYPE_VARINT,      true},   // INT64
  {UPB_WIRE_TYPE_VARINT,      true},   // UINT64
  {UPB_WIRE_TYPE_VARINT,      true},   // INT32
  {UPB_WIRE_TYPE_64BIT,       true},   // FIXED64
  {UPB_WIRE_TYPE_32BIT,       true},   // FIXED32
  {UPB_WIRE_TYPE_VARINT,      true},   // BOOL
  {UPB_WIRE_TYPE_DELIMITED,   false},  // STRING
  {UPB_WIRE_TYPE_START_GROUP, false},  // GROUP
  {UPB_WIRE_TYPE_DELIMITED,   false},  // MESSAGE
  {UPB_WIRE_TYPE_DELIMITED,   false},  // BYTES
  {UPB_WIRE_TYPE_VARINT,      true},   // UINT32
  {UPB_WIRE_TYPE_VARINT,      true},   // ENUM
  {UPB_WIRE_TYPE_32BIT,       true},   // SFIXED32
  {UPB_WIRE_TYPE_64BIT,       true},   // SFIXED64
  {UPB_WIRE_TYPE_VARINT,      true},   // SINT32
  {UPB_WIRE_TYPE_VARINT,      true},   // SINT64
};

#ifndef USE_GOOGLE
using std::string;
#endif

void vappendf(string* str, const char *format, va_list args) {
  va_list copy;
  _upb_va_copy(copy, args);

  int count = vsnprintf(NULL, 0, format, args);
  if (count >= 0)
  {
    UPB_ASSERT(count < 32768);
    char *buffer = new char[count + 1];
    UPB_ASSERT(buffer);
    count = vsnprintf(buffer, count + 1, format, copy);
    UPB_ASSERT(count >= 0);
    str->append(buffer, count);
    delete [] buffer;
  }
  va_end(copy);
}

void appendf(string* str, const char *fmt, ...) {
  va_list args;
  va_start(args, fmt);
  vappendf(str, fmt, args);
  va_end(args);
}

void PrintBinary(const string& str) {
  for (size_t i = 0; i < str.size(); i++) {
    if (isprint(str[i])) {
      fprintf(stderr, "%c", str[i]);
    } else {
      fprintf(stderr, "\\x%02x", (int)(uint8_t)str[i]);
    }
  }
}

/* Routines for building arbitrary protos *************************************/

const string empty;

string cat(const string& a, const string& b,
           const string& c = empty,
           const string& d = empty,
           const string& e = empty,
           const string& f = empty,
           const string& g = empty,
           const string& h = empty,
           const string& i = empty,
           const string& j = empty,
           const string& k = empty,
           const string& l = empty) {
  string ret;
  ret.reserve(a.size() + b.size() + c.size() + d.size() + e.size() + f.size() +
              g.size() + h.size() + i.size() + j.size() + k.size() + l.size());
  ret.append(a);
  ret.append(b);
  ret.append(c);
  ret.append(d);
  ret.append(e);
  ret.append(f);
  ret.append(g);
  ret.append(h);
  ret.append(i);
  ret.append(j);
  ret.append(k);
  ret.append(l);
  return ret;
}

template <typename T>
string num2string(T num) {
  std::ostringstream ss;
  ss << num;
  return ss.str();
}

string varint(uint64_t x) {
  char buf[UPB_PB_VARINT_MAX_LEN];
  size_t len = upb_vencode64(x, buf);
  return string(buf, len);
}

// TODO: proper byte-swapping for big-endian machines.
string fixed32(void *data) { return string(static_cast<char*>(data), 4); }
string fixed64(void *data) { return string(static_cast<char*>(data), 8); }

string delim(const string& buf) { return cat(varint(buf.size()), buf); }
string uint32(uint32_t u32) { return fixed32(&u32); }
string uint64(uint64_t u64) { return fixed64(&u64); }
string flt(float f) { return fixed32(&f); }
string dbl(double d) { return fixed64(&d); }
string zz32(int32_t x) { return varint(upb_zzenc_32(x)); }
string zz64(int64_t x) { return varint(upb_zzenc_64(x)); }

string tag(uint32_t fieldnum, char wire_type) {
  return varint((fieldnum << 3) | wire_type);
}

string submsg(uint32_t fn, const string& buf) {
  return cat( tag(fn, UPB_WIRE_TYPE_DELIMITED), delim(buf) );
}

string group(uint32_t fn, const string& buf) {
  return cat(tag(fn, UPB_WIRE_TYPE_START_GROUP), buf,
             tag(fn, UPB_WIRE_TYPE_END_GROUP));
}

// Like delim()/submsg(), but intentionally encodes an incorrect length.
// These help test when a delimited boundary doesn't land in the right place.
string badlen_delim(int err, const string& buf) {
  return cat(varint(buf.size() + err), buf);
}

string badlen_submsg(int err, uint32_t fn, const string& buf) {
  return cat( tag(fn, UPB_WIRE_TYPE_DELIMITED), badlen_delim(err, buf) );
}


/* A set of handlers that covers all .proto types *****************************/

// The handlers simply append to a string indicating what handlers were called.
// This string is similar to protobuf text format but fields are referred to by
// number instead of name and sequences are explicitly delimited.  We indent
// using the closure depth to test that the stack of closures is properly
// handled.

int closures[MAX_NESTING];
string output;

void indentbuf(string *buf, int depth) {
  buf->append(2 * depth, ' ');
}

void check_stack_alignment() {
#ifdef UPB_USE_JIT_X64
  void *rsp = __builtin_frame_address(0);
  ASSERT(((uintptr_t)rsp % 16) == 0);
#endif
}

#define NUMERIC_VALUE_HANDLER(member, ctype, fmt)                   \
  bool value_##member(int* depth, const uint32_t* num, ctype val) { \
    check_stack_alignment();                                        \
    indentbuf(&output, *depth);                                     \
    appendf(&output, "%" PRIu32 ":%" fmt "\n", *num, val);          \
    return true;                                                    \
  }

NUMERIC_VALUE_HANDLER(uint32, uint32_t, PRIu32)
NUMERIC_VALUE_HANDLER(uint64, uint64_t, PRIu64)
NUMERIC_VALUE_HANDLER(int32,  int32_t,  PRId32)
NUMERIC_VALUE_HANDLER(int64,  int64_t,  PRId64)
NUMERIC_VALUE_HANDLER(float,  float,    "g")
NUMERIC_VALUE_HANDLER(double, double,   "g")

bool value_bool(int* depth, const uint32_t* num, bool val) {
  check_stack_alignment();
  indentbuf(&output, *depth);
  appendf(&output, "%" PRIu32 ":%s\n", *num, val ? "true" : "false");
  return true;
}

int* startstr(int* depth, const uint32_t* num, size_t size_hint) {
  check_stack_alignment();
  indentbuf(&output, *depth);
  appendf(&output, "%" PRIu32 ":(%zu)\"", *num, size_hint);
  return depth + 1;
}

size_t value_string(int* depth, const uint32_t* num, const char* buf,
                    size_t n, const upb::BufferHandle* handle) {
  UPB_UNUSED(num);
  UPB_UNUSED(depth);
  check_stack_alignment();
  output.append(buf, n);
  ASSERT(handle == &global_handle);
  return n;
}

bool endstr(int* depth, const uint32_t* num) {
  UPB_UNUSED(num);
  check_stack_alignment();
  output.append("\n");
  indentbuf(&output, *depth);
  appendf(&output, "%" PRIu32 ":\"\n", *num);
  return true;
}

int* startsubmsg(int* depth, const uint32_t* num) {
  check_stack_alignment();
  indentbuf(&output, *depth);
  appendf(&output, "%" PRIu32 ":{\n", *num);
  return depth + 1;
}

bool endsubmsg(int* depth, const uint32_t* num) {
  UPB_UNUSED(num);
  check_stack_alignment();
  indentbuf(&output, *depth);
  output.append("}\n");
  return true;
}

int* startseq(int* depth, const uint32_t* num) {
  check_stack_alignment();
  indentbuf(&output, *depth);
  appendf(&output, "%" PRIu32 ":[\n", *num);
  return depth + 1;
}

bool endseq(int* depth, const uint32_t* num) {
  UPB_UNUSED(num);
  check_stack_alignment();
  indentbuf(&output, *depth);
  output.append("]\n");
  return true;
}

bool startmsg(int* depth) {
  check_stack_alignment();
  indentbuf(&output, *depth);
  output.append("<\n");
  return true;
}

bool endmsg(int* depth, upb_status* status) {
  UPB_UNUSED(status);
  check_stack_alignment();
  indentbuf(&output, *depth);
  output.append(">\n");
  return true;
}

void free_uint32(void *val) {
  uint32_t *u32 = static_cast<uint32_t*>(val);
  delete u32;
}

template<class T, bool F(int*, const uint32_t*, T)>
void doreg(upb_handlers *h, uint32_t num) {
  const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
  ASSERT(f);
  ASSERT(h->SetValueHandler<T>(f, UpbBindT(F, new uint32_t(num))));
  if (f->IsSequence()) {
    ASSERT(h->SetStartSequenceHandler(f, UpbBind(startseq, new uint32_t(num))));
    ASSERT(h->SetEndSequenceHandler(f, UpbBind(endseq, new uint32_t(num))));
  }
}

// The repeated field number to correspond to the given non-repeated field
// number.
uint32_t rep_fn(uint32_t fn) {
  return (UPB_MAX_FIELDNUMBER - 1000) + fn;
}

#define NOP_FIELD 40
#define UNKNOWN_FIELD 666

template <class T, bool F(int*, const uint32_t*, T)>
void reg(upb_handlers *h, upb_descriptortype_t type) {
  // We register both a repeated and a non-repeated field for every type.
  // For the non-repeated field we make the field number the same as the
  // type.  For the repeated field we make it a function of the type.
  doreg<T, F>(h, type);
  doreg<T, F>(h, rep_fn(type));
}

void regseq(upb::Handlers* h, const upb::FieldDef* f, uint32_t num) {
  ASSERT(h->SetStartSequenceHandler(f, UpbBind(startseq, new uint32_t(num))));
  ASSERT(h->SetEndSequenceHandler(f, UpbBind(endseq, new uint32_t(num))));
}

void reg_subm(upb_handlers *h, uint32_t num) {
  const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
  ASSERT(f);
  if (f->IsSequence()) regseq(h, f, num);
  ASSERT(
      h->SetStartSubMessageHandler(f, UpbBind(startsubmsg, new uint32_t(num))));
  ASSERT(h->SetEndSubMessageHandler(f, UpbBind(endsubmsg, new uint32_t(num))));
  ASSERT(upb_handlers_setsubhandlers(h, f, h));
}

void reg_str(upb_handlers *h, uint32_t num) {
  const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
  ASSERT(f);
  if (f->IsSequence()) regseq(h, f, num);
  ASSERT(h->SetStartStringHandler(f, UpbBind(startstr, new uint32_t(num))));
  ASSERT(h->SetEndStringHandler(f, UpbBind(endstr, new uint32_t(num))));
  ASSERT(h->SetStringHandler(f, UpbBind(value_string, new uint32_t(num))));
}

void AddField(upb_descriptortype_t descriptor_type, const std::string& name,
              uint32_t fn, bool repeated, upb::MessageDef* md) {
  // TODO: Fluent interface?  ie.
  //   ASSERT(md->AddField(upb::BuildFieldDef()
  //       .SetName("f_message")
  //       .SetNumber(UPB_DESCRIPTOR_TYPE_MESSAGE)
  //       .SetDescriptorType(UPB_DESCRIPTOR_TYPE_MESSAGE)
  //       .SetMessageSubdef(md.get())));
  upb::reffed_ptr<upb::FieldDef> f = upb::FieldDef::New();
  ASSERT(f->set_name(name, NULL));
  ASSERT(f->set_number(fn, NULL));
  f->set_label(repeated ? UPB_LABEL_REPEATED : UPB_LABEL_OPTIONAL);
  f->set_descriptor_type(descriptor_type);
  ASSERT(md->AddField(f.get(), NULL));
}

void AddFieldsForType(upb_descriptortype_t descriptor_type,
                      const char* basename, upb::MessageDef* md) {
  const upb_descriptortype_t t = descriptor_type;
  AddField(t, std::string("f_") + basename, t, false, md);
  AddField(t, std::string("r_") + basename, rep_fn(t), true, md);
}

upb::reffed_ptr<const upb::MessageDef> NewMessageDef() {
  upb::reffed_ptr<upb::MessageDef> md = upb::MessageDef::New();

  md->set_full_name("DecoderTest", NULL);

  AddFieldsForType(UPB_DESCRIPTOR_TYPE_DOUBLE, "double", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_FLOAT, "float", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_INT64, "int64", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_UINT64, "uint64", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_INT32, "int32", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_FIXED64, "fixed64", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_FIXED32, "fixed32", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_BOOL, "bool", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_STRING, "string", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_BYTES, "bytes", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_UINT32, "uint32", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_SFIXED32, "sfixed32", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_SFIXED64, "sfixed64", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_SINT32, "sint32", md.get());
  AddFieldsForType(UPB_DESCRIPTOR_TYPE_SINT64, "sint64", md.get());

  AddField(UPB_DESCRIPTOR_TYPE_STRING, "nop_field", 40, false, md.get());

  upb::reffed_ptr<upb::FieldDef> f = upb::FieldDef::New();
  ASSERT(f->set_name("f_message", NULL));
  ASSERT(f->set_number(UPB_DESCRIPTOR_TYPE_MESSAGE, NULL));
  f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_MESSAGE);
  ASSERT(f->set_message_subdef(md.get(), NULL));
  ASSERT(md->AddField(f.get(), NULL));

  f = upb::FieldDef::New();
  ASSERT(f->set_name("r_message", NULL));
  ASSERT(f->set_number(rep_fn(UPB_DESCRIPTOR_TYPE_MESSAGE), NULL));
  f->set_label(UPB_LABEL_REPEATED);
  f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_MESSAGE);
  ASSERT(f->set_message_subdef(md.get(), NULL));
  ASSERT(md->AddField(f.get(), NULL));

  f = upb::FieldDef::New();
  ASSERT(f->set_name("f_group", NULL));
  ASSERT(f->set_number(UPB_DESCRIPTOR_TYPE_GROUP, NULL));
  f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_GROUP);
  ASSERT(f->set_message_subdef(md.get(), NULL));
  ASSERT(md->AddField(f.get(), NULL));

  f = upb::FieldDef::New();
  ASSERT(f->set_name("r_group", NULL));
  ASSERT(f->set_number(rep_fn(UPB_DESCRIPTOR_TYPE_GROUP), NULL));
  f->set_label(UPB_LABEL_REPEATED);
  f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_GROUP);
  ASSERT(f->set_message_subdef(md.get(), NULL));
  ASSERT(md->AddField(f.get(), NULL));

  upb::reffed_ptr<upb::EnumDef> e = upb::EnumDef::New();
  ASSERT(e->AddValue("FOO", 1, NULL));
  ASSERT(e->Freeze(NULL));

  f = upb::FieldDef::New();
  ASSERT(f->set_name("f_enum", NULL));
  ASSERT(f->set_number(UPB_DESCRIPTOR_TYPE_ENUM, NULL));
  f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_ENUM);
  ASSERT(f->set_enum_subdef(e.get(), NULL));
  ASSERT(md->AddField(f.get(), NULL));

  f = upb::FieldDef::New();
  ASSERT(f->set_name("r_enum", NULL));
  ASSERT(f->set_number(rep_fn(UPB_DESCRIPTOR_TYPE_ENUM), NULL));
  f->set_label(UPB_LABEL_REPEATED);
  f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_ENUM);
  ASSERT(f->set_enum_subdef(e.get(), NULL));
  ASSERT(md->AddField(f.get(), NULL));

  ASSERT(md->Freeze(NULL));

  return md;
}

upb::reffed_ptr<const upb::Handlers> NewHandlers(TestMode mode) {
  upb::reffed_ptr<upb::Handlers> h(upb::Handlers::New(NewMessageDef().get()));

  if (mode == ALL_HANDLERS) {
    h->SetStartMessageHandler(UpbMakeHandler(startmsg));
    h->SetEndMessageHandler(UpbMakeHandler(endmsg));

    // Register handlers for each type.
    reg<double,   value_double>(h.get(), UPB_DESCRIPTOR_TYPE_DOUBLE);
    reg<float,    value_float> (h.get(), UPB_DESCRIPTOR_TYPE_FLOAT);
    reg<int64_t,  value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_INT64);
    reg<uint64_t, value_uint64>(h.get(), UPB_DESCRIPTOR_TYPE_UINT64);
    reg<int32_t,  value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_INT32);
    reg<uint64_t, value_uint64>(h.get(), UPB_DESCRIPTOR_TYPE_FIXED64);
    reg<uint32_t, value_uint32>(h.get(), UPB_DESCRIPTOR_TYPE_FIXED32);
    reg<bool,     value_bool>  (h.get(), UPB_DESCRIPTOR_TYPE_BOOL);
    reg<uint32_t, value_uint32>(h.get(), UPB_DESCRIPTOR_TYPE_UINT32);
    reg<int32_t,  value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_ENUM);
    reg<int32_t,  value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_SFIXED32);
    reg<int64_t,  value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_SFIXED64);
    reg<int32_t,  value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_SINT32);
    reg<int64_t,  value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_SINT64);

    reg_str(h.get(), UPB_DESCRIPTOR_TYPE_STRING);
    reg_str(h.get(), UPB_DESCRIPTOR_TYPE_BYTES);
    reg_str(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_STRING));
    reg_str(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_BYTES));

    // Register submessage/group handlers that are self-recursive
    // to this type, eg: message M { optional M m = 1; }
    reg_subm(h.get(), UPB_DESCRIPTOR_TYPE_MESSAGE);
    reg_subm(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_MESSAGE));
    reg_subm(h.get(), UPB_DESCRIPTOR_TYPE_GROUP);
    reg_subm(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_GROUP));

    // For NOP_FIELD we register no handlers, so we can pad a proto freely without
    // changing the output.
  }

  bool ok = h->Freeze(NULL);
  ASSERT(ok);

  return h;
}


/* Running of test cases ******************************************************/

const upb::Handlers *global_handlers;
const upb::pb::DecoderMethod *global_method;

upb::pb::Decoder* CreateDecoder(upb::Environment* env,
                                const upb::pb::DecoderMethod* method,
                                upb::Sink* sink) {
  upb::pb::Decoder *ret = upb::pb::Decoder::Create(env, method, sink);
  ASSERT(ret != NULL);
  ret->set_max_nesting(MAX_NESTING);
  return ret;
}

uint32_t Hash(const string& proto, const string* expected_output, size_t seam1,
              size_t seam2, bool may_skip) {
  uint32_t hash = MurmurHash2(proto.c_str(), proto.size(), 0);
  if (expected_output)
    hash = MurmurHash2(expected_output->c_str(), expected_output->size(), hash);
  hash = MurmurHash2(&seam1, sizeof(seam1), hash);
  hash = MurmurHash2(&seam2, sizeof(seam2), hash);
  hash = MurmurHash2(&may_skip, sizeof(may_skip), hash);
  return hash;
}

void CheckBytesParsed(const upb::pb::Decoder& decoder, size_t ofs) {
  // We can't have parsed more data than the decoder callback is telling us it
  // parsed.
  ASSERT(decoder.BytesParsed() <= ofs);

  // The difference between what we've decoded and what the decoder has accepted
  // represents the internally buffered amount.  This amount should not exceed
  // this value which comes from decoder.int.h.
  ASSERT(ofs <= (decoder.BytesParsed() + UPB_DECODER_MAX_RESIDUAL_BYTES));
}

static bool parse(VerboseParserEnvironment* env,
                  const upb::pb::Decoder& decoder, int bytes) {
  CheckBytesParsed(decoder, env->ofs());
  bool ret = env->ParseBuffer(bytes);
  if (ret) {
    CheckBytesParsed(decoder, env->ofs());
  }

  return ret;
}

void do_run_decoder(VerboseParserEnvironment* env, upb::pb::Decoder* decoder,
                    const string& proto, const string* expected_output,
                    size_t i, size_t j, bool may_skip) {
  env->Reset(proto.c_str(), proto.size(), may_skip, expected_output == NULL);
  decoder->Reset();

  testhash = Hash(proto, expected_output, i, j, may_skip);
  if (filter_hash && testhash != filter_hash) return;
  if (test_mode != COUNT_ONLY) {
    output.clear();

    if (filter_hash) {
      fprintf(stderr, "RUNNING TEST CASE, hash=%x\n", testhash);
      fprintf(stderr, "JIT on: %s\n",
              global_method->is_native() ? "true" : "false");
      fprintf(stderr, "Input (len=%u): ", (unsigned)proto.size());
      PrintBinary(proto);
      fprintf(stderr, "\n");
      if (expected_output) {
        if (test_mode == ALL_HANDLERS) {
          fprintf(stderr, "Expected output: %s\n", expected_output->c_str());
        } else if (test_mode == NO_HANDLERS) {
          fprintf(stderr,
                  "No handlers are registered, BUT if they were "
                  "the expected output would be: %s\n",
                  expected_output->c_str());
        }
      } else {
        fprintf(stderr, "Expected to FAIL\n");
      }
    }

    bool ok = env->Start() &&
              parse(env, *decoder, i) &&
              parse(env, *decoder, j - i) &&
              parse(env, *decoder, -1) &&
              env->End();

    ASSERT(env->CheckConsistency());

    if (test_mode == ALL_HANDLERS) {
      if (expected_output) {
        if (output != *expected_output) {
          fprintf(stderr, "Text mismatch: '%s' vs '%s'\n",
                  output.c_str(), expected_output->c_str());
        }
        ASSERT(ok);
        ASSERT(output == *expected_output);
      } else {
        if (ok) {
          fprintf(stderr, "Didn't expect ok result, but got output: '%s'\n",
                  output.c_str());
        }
        ASSERT(!ok);
      }
    }
  }
  (*count)++;
}

void run_decoder(const string& proto, const string* expected_output) {
  VerboseParserEnvironment env(filter_hash != 0);
  upb::Sink sink(global_handlers, &closures[0]);
  upb::pb::Decoder *decoder = CreateDecoder(env.env(), global_method, &sink);
  env.ResetBytesSink(decoder->input());
  for (size_t i = 0; i < proto.size(); i++) {
    for (size_t j = i; j < UPB_MIN(proto.size(), i + 5); j++) {
      do_run_decoder(&env, decoder, proto, expected_output, i, j, true);
      if (env.SkippedWithNull()) {
        do_run_decoder(&env, decoder, proto, expected_output, i, j, false);
      }
    }
  }
  testhash = 0;
}

const static string thirty_byte_nop = cat(
    tag(NOP_FIELD, UPB_WIRE_TYPE_DELIMITED), delim(string(30, 'X')) );

// Indents and wraps text as if it were a submessage with this field number
string wrap_text(int32_t fn, const string& text) {
  string wrapped_text = text;
  size_t pos = 0;
  string replace_with = "\n  ";
  while ((pos = wrapped_text.find("\n", pos)) != string::npos &&
         pos != wrapped_text.size() - 1) {
    wrapped_text.replace(pos, 1, replace_with);
    pos += replace_with.size();
  }
  wrapped_text = cat(
      LINE("<"),
      num2string(fn), LINE(":{")
      "  ", wrapped_text,
      LINE("}")
      LINE(">"));
  return wrapped_text;
}

void assert_successful_parse(const string& proto,
                             const char *expected_fmt, ...) {
  string expected_text;
  va_list args;
  va_start(args, expected_fmt);
  vappendf(&expected_text, expected_fmt, args);
  va_end(args);
  // To test both middle-of-buffer and end-of-buffer code paths,
  // repeat once with no-op padding data at the end of buffer.
  run_decoder(proto, &expected_text);
  run_decoder(cat( proto, thirty_byte_nop ), &expected_text);

  // Test that this also works when wrapped in a submessage or group.
  // Indent the expected text one level and wrap it.
  string wrapped_text1 = wrap_text(UPB_DESCRIPTOR_TYPE_MESSAGE, expected_text);
  string wrapped_text2 = wrap_text(UPB_DESCRIPTOR_TYPE_GROUP, expected_text);

  run_decoder(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, proto), &wrapped_text1);
  run_decoder(group(UPB_DESCRIPTOR_TYPE_GROUP, proto), &wrapped_text2);
}

void assert_does_not_parse_at_eof(const string& proto) {
  run_decoder(proto, NULL);

  // Also test that we fail to parse at end-of-submessage, not just
  // end-of-message.  But skip this if we have no handlers, because in that
  // case we won't descend into the submessage.
  if (test_mode != NO_HANDLERS) {
    run_decoder(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, proto), NULL);
    run_decoder(cat(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, proto),
                    thirty_byte_nop), NULL);
  }
}

void assert_does_not_parse(const string& proto) {
  // Test that the error is caught both at end-of-buffer and middle-of-buffer.
  assert_does_not_parse_at_eof(proto);
  assert_does_not_parse_at_eof(cat( proto, thirty_byte_nop ));
}


/* The actual tests ***********************************************************/

void test_premature_eof_for_type(upb_descriptortype_t type) {
  // Incomplete values for each wire type.
  static const string incompletes[6] = {
    string("\x80"),     // UPB_WIRE_TYPE_VARINT
    string("abcdefg"),  // UPB_WIRE_TYPE_64BIT
    string("\x80"),     // UPB_WIRE_TYPE_DELIMITED (partial length)
    string(),           // UPB_WIRE_TYPE_START_GROUP (no value required)
    string(),           // UPB_WIRE_TYPE_END_GROUP (no value required)
    string("abc")       // UPB_WIRE_TYPE_32BIT
  };

  uint32_t fieldnum = type;
  uint32_t rep_fieldnum = rep_fn(type);
  int wire_type = upb_decoder_types[type].native_wire_type;
  const string& incomplete = incompletes[wire_type];

  // EOF before a known non-repeated value.
  assert_does_not_parse_at_eof(tag(fieldnum, wire_type));

  // EOF before a known repeated value.
  assert_does_not_parse_at_eof(tag(rep_fieldnum, wire_type));

  // EOF before an unknown value.
  assert_does_not_parse_at_eof(tag(UNKNOWN_FIELD, wire_type));

  // EOF inside a known non-repeated value.
  assert_does_not_parse_at_eof(
      cat( tag(fieldnum, wire_type), incomplete ));

  // EOF inside a known repeated value.
  assert_does_not_parse_at_eof(
      cat( tag(rep_fieldnum, wire_type), incomplete ));

  // EOF inside an unknown value.
  assert_does_not_parse_at_eof(
      cat( tag(UNKNOWN_FIELD, wire_type), incomplete ));

  if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
    // EOF in the middle of delimited data for known non-repeated value.
    assert_does_not_parse_at_eof(
        cat( tag(fieldnum, wire_type), varint(1) ));

    // EOF in the middle of delimited data for known repeated value.
    assert_does_not_parse_at_eof(
        cat( tag(rep_fieldnum, wire_type), varint(1) ));

    // EOF in the middle of delimited data for unknown value.
    assert_does_not_parse_at_eof(
        cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ));

    if (type == UPB_DESCRIPTOR_TYPE_MESSAGE) {
      // Submessage ends in the middle of a value.
      string incomplete_submsg =
          cat ( tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT),
                incompletes[UPB_WIRE_TYPE_VARINT] );
      assert_does_not_parse(
          cat( tag(fieldnum, UPB_WIRE_TYPE_DELIMITED),
               varint(incomplete_submsg.size()),
               incomplete_submsg ));
    }
  } else {
    // Packed region ends in the middle of a value.
    assert_does_not_parse(
        cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
             varint(incomplete.size()),
             incomplete ));

    // EOF in the middle of packed region.
    assert_does_not_parse_at_eof(
        cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED), varint(1) ));
  }
}

// "33" and "66" are just two random values that all numeric types can
// represent.
void test_valid_data_for_type(upb_descriptortype_t type,
                              const string& enc33, const string& enc66) {
  uint32_t fieldnum = type;
  uint32_t rep_fieldnum = rep_fn(type);
  int wire_type = upb_decoder_types[type].native_wire_type;

  // Non-repeated
  assert_successful_parse(
      cat( tag(fieldnum, wire_type), enc33,
           tag(fieldnum, wire_type), enc66 ),
      LINE("<")
      LINE("%u:33")
      LINE("%u:66")
      LINE(">"), fieldnum, fieldnum);

  // Non-packed repeated.
  assert_successful_parse(
      cat( tag(rep_fieldnum, wire_type), enc33,
           tag(rep_fieldnum, wire_type), enc66 ),
      LINE("<")
      LINE("%u:[")
      LINE("  %u:33")
      LINE("  %u:66")
      LINE("]")
      LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);

  // Packed repeated.
  assert_successful_parse(
      cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
           delim(cat( enc33, enc66 )) ),
      LINE("<")
      LINE("%u:[")
      LINE("  %u:33")
      LINE("  %u:66")
      LINE("]")
      LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
}

void test_valid_data_for_signed_type(upb_descriptortype_t type,
                                     const string& enc33, const string& enc66) {
  uint32_t fieldnum = type;
  uint32_t rep_fieldnum = rep_fn(type);
  int wire_type = upb_decoder_types[type].native_wire_type;

  // Non-repeated
  assert_successful_parse(
      cat( tag(fieldnum, wire_type), enc33,
           tag(fieldnum, wire_type), enc66 ),
      LINE("<")
      LINE("%u:33")
      LINE("%u:-66")
      LINE(">"), fieldnum, fieldnum);

  // Non-packed repeated.
  assert_successful_parse(
      cat( tag(rep_fieldnum, wire_type), enc33,
           tag(rep_fieldnum, wire_type), enc66 ),
      LINE("<")
      LINE("%u:[")
      LINE("  %u:33")
      LINE("  %u:-66")
      LINE("]")
      LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);

  // Packed repeated.
  assert_successful_parse(
      cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
           delim(cat( enc33, enc66 )) ),
      LINE("<")
      LINE("%u:[")
      LINE("  %u:33")
      LINE("  %u:-66")
      LINE("]")
      LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
}

// Test that invalid protobufs are properly detected (without crashing) and
// have an error reported.  Field numbers match registered handlers above.
void test_invalid() {
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_DOUBLE);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FLOAT);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_INT64);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_UINT64);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_INT32);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FIXED64);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FIXED32);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_BOOL);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_STRING);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_BYTES);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_UINT32);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_ENUM);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SFIXED32);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SFIXED64);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SINT32);
  test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SINT64);

  // EOF inside a tag's varint.
  assert_does_not_parse_at_eof( string("\x80") );

  // EOF inside a known group.
  // TODO(haberman): add group to decoder test schema.
  //assert_does_not_parse_at_eof( tag(4, UPB_WIRE_TYPE_START_GROUP) );

  // EOF inside an unknown group.
  assert_does_not_parse_at_eof( tag(UNKNOWN_FIELD, UPB_WIRE_TYPE_START_GROUP) );

  // End group that we are not currently in.
  assert_does_not_parse( tag(4, UPB_WIRE_TYPE_END_GROUP) );

  // Field number is 0.
  assert_does_not_parse(
      cat( tag(0, UPB_WIRE_TYPE_DELIMITED), varint(0) ));
  // The previous test alone did not catch this particular pattern which could
  // corrupt the internal state.
  assert_does_not_parse(
      cat( tag(0, UPB_WIRE_TYPE_64BIT), uint64(0) ));

  // Field number is too large.
  assert_does_not_parse(
      cat( tag(UPB_MAX_FIELDNUMBER + 1, UPB_WIRE_TYPE_DELIMITED),
           varint(0) ));

  // Known group inside a submessage has ENDGROUP tag AFTER submessage end.
  assert_does_not_parse(
      cat ( submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
                   tag(UPB_DESCRIPTOR_TYPE_GROUP, UPB_WIRE_TYPE_START_GROUP)),
            tag(UPB_DESCRIPTOR_TYPE_GROUP, UPB_WIRE_TYPE_END_GROUP)));

  // Unknown string extends past enclosing submessage.
  assert_does_not_parse(
      cat (badlen_submsg(-1, UPB_DESCRIPTOR_TYPE_MESSAGE,
                         submsg(12345, string("   "))),
           submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, string("     "))));

  // Unknown fixed-length field extends past enclosing submessage.
  assert_does_not_parse(
      cat (badlen_submsg(-1, UPB_DESCRIPTOR_TYPE_MESSAGE,
                         cat( tag(12345, UPB_WIRE_TYPE_64BIT), uint64(0))),
           submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, string("     "))));

  // Test exceeding the resource limit of stack depth.
  if (test_mode != NO_HANDLERS) {
    string buf;
    for (int i = 0; i <= MAX_NESTING; i++) {
      buf.assign(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, buf));
    }
    assert_does_not_parse(buf);
  }
}

void test_valid() {
  // Empty protobuf.
  assert_successful_parse(string(""), "<\n>\n");

  // Empty protobuf where we never call PutString between
  // StartString/EndString.

  // Randomly generated hash for this test, hope it doesn't conflict with others
  // by chance.
  const uint32_t emptyhash = 0x5709be8e;
  if (!filter_hash || filter_hash == testhash) {
    testhash = emptyhash;
    upb::Status status;
    upb::Environment env;
    env.ReportErrorsTo(&status);
    upb::Sink sink(global_handlers, &closures[0]);
    upb::pb::Decoder* decoder = CreateDecoder(&env, global_method, &sink);
    output.clear();
    bool ok = upb::BufferSource::PutBuffer("", 0, decoder->input());
    ASSERT(ok);
    ASSERT(status.ok());
    if (test_mode == ALL_HANDLERS) {
      ASSERT(output == string("<\n>\n"));
    }
  }

  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_DOUBLE,
                                  dbl(33),
                                  dbl(-66));
  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_FLOAT, flt(33), flt(-66));
  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_INT64,
                                  varint(33),
                                  varint(-66));
  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_INT32,
                                  varint(33),
                                  varint(-66));
  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_ENUM,
                                  varint(33),
                                  varint(-66));
  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SFIXED32,
                                  uint32(33),
                                  uint32(-66));
  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SFIXED64,
                                  uint64(33),
                                  uint64(-66));
  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SINT32,
                                  zz32(33),
                                  zz32(-66));
  test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SINT64,
                                  zz64(33),
                                  zz64(-66));

  test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_UINT64, varint(33), varint(66));
  test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_UINT32, varint(33), varint(66));
  test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_FIXED64, uint64(33), uint64(66));
  test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_FIXED32, uint32(33), uint32(66));

  // Unknown fields.
  int int32_type = UPB_DESCRIPTOR_TYPE_INT32;
  int msg_type = UPB_DESCRIPTOR_TYPE_MESSAGE;
  assert_successful_parse(
      cat( tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ),
      "<\n>\n");
  assert_successful_parse(
      cat( tag(12345, UPB_WIRE_TYPE_32BIT), uint32(2345678) ),
      "<\n>\n");
  assert_successful_parse(
      cat( tag(12345, UPB_WIRE_TYPE_64BIT), uint64(2345678) ),
      "<\n>\n");
  assert_successful_parse(
      submsg(12345, string("                ")),
      "<\n>\n");

  // Unknown field inside a known submessage.
  assert_successful_parse(
      submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, submsg(12345, string("   "))),
      LINE("<")
      LINE("%u:{")
      LINE("  <")
      LINE("  >")
      LINE("}")
      LINE(">"), UPB_DESCRIPTOR_TYPE_MESSAGE);

  assert_successful_parse(
      cat (submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, submsg(12345, string("   "))),
           tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT),
           varint(5)),
      LINE("<")
      LINE("%u:{")
      LINE("  <")
      LINE("  >")
      LINE("}")
      LINE("%u:5")
      LINE(">"), UPB_DESCRIPTOR_TYPE_MESSAGE, UPB_DESCRIPTOR_TYPE_INT32);

  // This triggered a previous bug in the decoder.
  assert_successful_parse(
      cat( tag(UPB_DESCRIPTOR_TYPE_SFIXED32, UPB_WIRE_TYPE_VARINT),
           varint(0) ),
      "<\n>\n");

  assert_successful_parse(
      cat(
        submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
          submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
            cat( tag(int32_type, UPB_WIRE_TYPE_VARINT), varint(2345678),
                 tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ))),
        tag(int32_type, UPB_WIRE_TYPE_VARINT), varint(22222)),
      LINE("<")
      LINE("%u:{")
      LINE("  <")
      LINE("  %u:{")
      LINE("    <")
      LINE("    %u:2345678")
      LINE("    >")
      LINE("  }")
      LINE("  >")
      LINE("}")
      LINE("%u:22222")
      LINE(">"), msg_type, msg_type, int32_type, int32_type);

  assert_successful_parse(
      cat( tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT), varint(1),
           tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ),
      LINE("<")
      LINE("%u:1")
      LINE(">"), UPB_DESCRIPTOR_TYPE_INT32);

  // String inside submsg.
  uint32_t msg_fn = UPB_DESCRIPTOR_TYPE_MESSAGE;
  assert_successful_parse(
      submsg(msg_fn,
             cat ( tag(UPB_DESCRIPTOR_TYPE_STRING, UPB_WIRE_TYPE_DELIMITED),
                   delim(string("abcde"))
                 )
             ),
      LINE("<")
      LINE("%u:{")
      LINE("  <")
      LINE("  %u:(5)\"abcde")
      LINE("    %u:\"")
      LINE("  >")
      LINE("}")
      LINE(">"), msg_fn, UPB_DESCRIPTOR_TYPE_STRING,
                 UPB_DESCRIPTOR_TYPE_STRING);

  // Test implicit startseq/endseq.
  uint32_t repfl_fn = rep_fn(UPB_DESCRIPTOR_TYPE_FLOAT);
  uint32_t repdb_fn = rep_fn(UPB_DESCRIPTOR_TYPE_DOUBLE);
  assert_successful_parse(
      cat( tag(repfl_fn, UPB_WIRE_TYPE_32BIT), flt(33),
           tag(repdb_fn, UPB_WIRE_TYPE_64BIT), dbl(66) ),
      LINE("<")
      LINE("%u:[")
      LINE("  %u:33")
      LINE("]")
      LINE("%u:[")
      LINE("  %u:66")
      LINE("]")
      LINE(">"), repfl_fn, repfl_fn, repdb_fn, repdb_fn);

  // Submessage tests.
  assert_successful_parse(
      submsg(msg_fn, submsg(msg_fn, submsg(msg_fn, string()))),
      LINE("<")
      LINE("%u:{")
      LINE("  <")
      LINE("  %u:{")
      LINE("    <")
      LINE("    %u:{")
      LINE("      <")
      LINE("      >")
      LINE("    }")
      LINE("    >")
      LINE("  }")
      LINE("  >")
      LINE("}")
      LINE(">"), msg_fn, msg_fn, msg_fn);

  uint32_t repm_fn = rep_fn(UPB_DESCRIPTOR_TYPE_MESSAGE);
  assert_successful_parse(
      submsg(repm_fn, submsg(repm_fn, string())),
      LINE("<")
      LINE("%u:[")
      LINE("  %u:{")
      LINE("    <")
      LINE("    %u:[")
      LINE("      %u:{")
      LINE("        <")
      LINE("        >")
      LINE("      }")
      LINE("    ]")
      LINE("    >")
      LINE("  }")
      LINE("]")
      LINE(">"), repm_fn, repm_fn, repm_fn, repm_fn);

  // Test unknown group.
  uint32_t unknown_group_fn = 12321;
  assert_successful_parse(
      cat( tag(unknown_group_fn, UPB_WIRE_TYPE_START_GROUP),
           tag(unknown_group_fn, UPB_WIRE_TYPE_END_GROUP) ),
      LINE("<")
      LINE(">")
  );

  // Test some unknown fields inside an unknown group.
  const string unknown_group_with_data =
      cat(
          tag(unknown_group_fn, UPB_WIRE_TYPE_START_GROUP),
          tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678),
          tag(123456789, UPB_WIRE_TYPE_32BIT), uint32(2345678),
          tag(123477, UPB_WIRE_TYPE_64BIT), uint64(2345678),
          tag(123, UPB_WIRE_TYPE_DELIMITED), varint(0),
          tag(unknown_group_fn, UPB_WIRE_TYPE_END_GROUP)
         );

  // Nested unknown group with data.
  assert_successful_parse(
      cat(
           tag(unknown_group_fn, UPB_WIRE_TYPE_START_GROUP),
           unknown_group_with_data,
           tag(unknown_group_fn, UPB_WIRE_TYPE_END_GROUP),
           tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT), varint(1)
         ),
      LINE("<")
      LINE("%u:1")
      LINE(">"),
      UPB_DESCRIPTOR_TYPE_INT32
  );

  assert_successful_parse(
      cat( tag(unknown_group_fn, UPB_WIRE_TYPE_START_GROUP),
           tag(unknown_group_fn + 1, UPB_WIRE_TYPE_START_GROUP),
           tag(unknown_group_fn + 1, UPB_WIRE_TYPE_END_GROUP),
           tag(unknown_group_fn, UPB_WIRE_TYPE_END_GROUP) ),
      LINE("<")
      LINE(">")
  );

  // Staying within the stack limit should work properly.
  string buf;
  string textbuf;
  int total = MAX_NESTING - 1;
  for (int i = 0; i < total; i++) {
    buf.assign(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, buf));
    indentbuf(&textbuf, i);
    textbuf.append("<\n");
    indentbuf(&textbuf, i);
    appendf(&textbuf, "%u:{\n", UPB_DESCRIPTOR_TYPE_MESSAGE);
  }
  indentbuf(&textbuf, total);
  textbuf.append("<\n");
  indentbuf(&textbuf, total);
  textbuf.append(">\n");
  for (int i = 0; i < total; i++) {
    indentbuf(&textbuf, total - i - 1);
    textbuf.append("}\n");
    indentbuf(&textbuf, total - i - 1);
    textbuf.append(">\n");
  }
  // Have to use run_decoder directly, because we are at max nesting and can't
  // afford the extra nesting that assert_successful_parse() will do.
  run_decoder(buf, &textbuf);
}

upb::reffed_ptr<const upb::pb::DecoderMethod> NewMethod(
    const upb::Handlers* dest_handlers, bool allow_jit) {
  upb::pb::CodeCache cache;
  cache.set_allow_jit(allow_jit);
  return cache.GetDecoderMethod(upb::pb::DecoderMethodOptions(dest_handlers));
}

void test_emptyhandlers(bool allowjit) {
  // Create an empty handlers to make sure that the decoder can handle empty
  // messages.
  upb::reffed_ptr<upb::MessageDef> md = upb::MessageDef::New();
  ASSERT(md->set_full_name("Empty", NULL));
  ASSERT(md->Freeze(NULL));

  upb::reffed_ptr<upb::Handlers> h(upb::Handlers::New(md.get()));
  bool ok = h->Freeze(NULL);
  ASSERT(ok);
upb::reffed_ptr<const upb::pb::DecoderMethod> method =
      NewMethod(h.get(), allowjit);
  ASSERT(method.get());

  // TODO: also test the case where a message has fields, but the fields are
  // submessage fields and have no handlers. This also results in a decoder
  // method with no field-handling code.

  // Ensure that the method can run with empty and non-empty input.
  string test_unknown_field_msg =
    cat(tag(1, UPB_WIRE_TYPE_VARINT), varint(42),
        tag(2, UPB_WIRE_TYPE_DELIMITED), delim("My test data"));
  const struct {
    const char* data;
    size_t length;
  } testdata[] = {
    { "", 0 },
    { test_unknown_field_msg.data(), test_unknown_field_msg.size() },
    { NULL, 0 },
  };
  for (int i = 0; testdata[i].data; i++) {
    VerboseParserEnvironment env(filter_hash != 0);
    upb::Sink sink(method->dest_handlers(), &closures[0]);
    upb::pb::Decoder* decoder = CreateDecoder(env.env(), method.get(), &sink);
    env.ResetBytesSink(decoder->input());
    env.Reset(testdata[i].data, testdata[i].length, true, false);
    ASSERT(env.Start());
    ASSERT(env.ParseBuffer(-1));
    ASSERT(env.End());
    ASSERT(env.CheckConsistency());
  }
}

void run_tests(bool use_jit) {
  upb::reffed_ptr<const upb::pb::DecoderMethod> method;
  upb::reffed_ptr<const upb::Handlers> handlers;

  handlers = NewHandlers(test_mode);
  global_handlers = handlers.get();

  method = NewMethod(handlers.get(), use_jit);
  global_method = method.get();
  ASSERT(use_jit == global_method->is_native());
  completed = 0;

  test_invalid();
  test_valid();

  test_emptyhandlers(use_jit);
}

void run_test_suite() {
  // Test without/with JIT.
  run_tests(false);
#ifdef UPB_USE_JIT_X64
  run_tests(true);
#endif
}

extern "C" {

int run_tests(int argc, char *argv[]) {
  if (argc > 1)
    filter_hash = strtol(argv[1], NULL, 16);
  for (int i = 0; i < MAX_NESTING; i++) {
    closures[i] = i;
  }

  upb::reffed_ptr<const upb::pb::DecoderMethod> method;
  upb::reffed_ptr<const upb::Handlers> handlers;

  // Count tests.
  count = &total;
  total = 0;
  test_mode = COUNT_ONLY;
  run_test_suite();
  count = &completed;

  total *= 2;  // NO_HANDLERS, ALL_HANDLERS.

  test_mode = NO_HANDLERS;
  run_test_suite();

  test_mode = ALL_HANDLERS;
  run_test_suite();

  printf("All tests passed, %d assertions.\n", num_assertions);
  return 0;
}

}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback