summaryrefslogtreecommitdiff
path: root/magic_buddy.c
blob: f87ae35234000901f5f09cb23a65a7692662f251 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "buddy.h"

struct free_block {
    struct free_block *next;
    struct free_block **pprev;
    uint8_t magic[MAGIC_COOKIE_BYTES];
    uint8_t logsize;
};

// log2 of size rounded up (ceil) or down (!ceil) to the nearest power of 2
static size_t size2log(size_t size, int ceil) {
    int bitcnt = 0;
    for (int i = 0; size; i++) {
        bitcnt += size & 1;
        size >>= 1;
        if (size) continue;
        if (ceil) return (bitcnt > 1) ? (i + 1) : i;
        return i;
    }
    return ceil ? 1 : 0;
}

void init_buddy(uint8_t *base, size_t size, uint8_t magic[MAGIC_COOKIE_BYTES],
                struct buddy *state) {
    memset(state, 0, sizeof(*state));
    state->base = base;

    size_t logsize = size2log(size, 0);
    state->root_logsize = logsize;

    state->avail[logsize] = (struct free_block *)base;
    state->avail[logsize]->next = 0;
    state->avail[logsize]->pprev = &(state->avail[logsize]);
    memcpy(state->magic, magic, sizeof(state->magic));
}

static struct free_block *buddy_of(struct free_block *block, size_t logsize,
                                   struct buddy *state) {
    size_t virt_block = (size_t)block - (size_t)state->base;
    size_t virt_buddy = virt_block ^ (1 << logsize);
    return (void*)((uint8_t*)state->base + virt_buddy);
}

// interpret @block as a block at depth @logsize. is it free?
static int isfree(struct free_block *block, size_t logsize,
                  struct buddy *state) {
    return !memcmp(block->magic, state->magic, sizeof(state->magic))
        && block->logsize == logsize;
}

static void makefree(struct free_block *block, struct buddy *state) {
    memcpy(block->magic, state->magic, sizeof(state->magic));
}

static struct free_block *pop(struct free_block *block) {
    *(block->pprev) = block->next;
    if (block->next) block->next->pprev = block->pprev;
    return block;
}

static void push(struct free_block *block, size_t logsize,
                 struct buddy *state) {
    block->next = state->avail[logsize];
    if (block->next) block->next->pprev = &(block->next);
    state->avail[logsize] = block;
    block->pprev = &(state->avail[logsize]);
    block->logsize = logsize;
}

static void *_allocate(size_t logsize, struct buddy *state) {
    if (logsize > state->root_logsize) return 0;
    if (state->avail[logsize]) {
        struct free_block *block = pop(state->avail[logsize]);
        memset(block, 0, sizeof(struct free_block));
        return block;
    }

    struct free_block *parent = _allocate(logsize + 1, state);
    struct free_block *buddy = buddy_of(parent, logsize, state);
    // split @parent in half and place the buddy on the avail list.
    memcpy(buddy->magic, state->magic, sizeof(state->magic));
    push(buddy, logsize, state);
    return parent;
}
void *allocate(size_t size, struct buddy *state) {
    size = (size < sizeof(struct free_block)) ? sizeof(struct free_block) : size;
    return _allocate(size2log(size, 1), state);
}

static void _liberate(struct free_block *block, size_t logsize,
                      struct buddy *state) {
    push(block, logsize, state);
    if (logsize == state->root_logsize) return;

    struct free_block *buddy = buddy_of(block, logsize, state);
    if (!isfree(buddy, logsize, state)) return;

    // coalesce up!
    struct free_block *smaller = (buddy < block) ? buddy : block;
    struct free_block *bigger = (buddy < block) ? block : buddy;
    pop(bigger);
    memset(bigger, 0, sizeof(*bigger));

    pop(smaller);

    _liberate(smaller, logsize + 1, state);
}

void liberate(void *base, size_t size, struct buddy *state) {
    struct free_block *block = base;
    memset(block, 0, sizeof(*block));
    makefree(block, state);

    _liberate(block, size2log(size, 1), state);
}

void debug_buddy(struct buddy *state) {
    for (size_t i = 0; i <= state->root_logsize; i++) {
        printf("Free blocks at size 2^%lu = %lu:\n", i, 1ul << i);
        for (struct free_block *block = state->avail[i];
                block; block = block->next)
            printf("\t%p\n", block);
    }
}

///////// "advanced features"
static struct free_block *rhs_child_of(struct free_block *block, size_t logsize,
                                       struct buddy *state) {
    size_t virt_block = (size_t)block - (size_t)state->base;
    size_t virt_child = virt_block | (1 << (logsize - 1));
    return (void*)((uint8_t*)state->base + virt_child);
}

// NOTE: this method is perhaps more complicated than it needs to be because we
// take great pains to avoid writing to the region that is being reserved
// (e.g., in case it is device MMIO).
int reserve(void *start, size_t size, struct buddy *state) {
    assert(size);
    void *end = (void*)((uint8_t*)start + size);

    // (1) iterate down to find the first free node to the left of @start
    struct free_block *parent = (void*)state->base;
    size_t parent_logsize = state->root_logsize;
    while (!isfree(parent, parent_logsize, state)) {
        // pick the proper child and recurse
        struct free_block *rhs_child
            = rhs_child_of(parent, parent_logsize, state);
        if ((void*)rhs_child <= start) parent = rhs_child;
        if (!parent_logsize--) return 0;
    }
    // parent is free!
    void *parent_end = (void*)((uint8_t*)parent + (1 << parent_logsize));
    // if the size has no chance of fitting, return 0.
    if (parent_end < end) return 0;
    // otherwise, split this parent
    pop(parent);
    while (1) {
        // check whether the child could fit it.
        struct free_block *rhs_child
            = rhs_child_of(parent, parent_logsize, state);
        struct free_block *next_child
            = ((void*)rhs_child <= start) ? parent : rhs_child;
        void *child_end
            = (void*)((uint8_t*)next_child + (1 << (parent_logsize - 1)));

        // if the child *cannot* fit it, stop by leaving this parent allocated.
        if (child_end < end) return 1;

        // if the child *can* fit it, split this parent into two children.
        struct free_block *lhs_child = parent;
        if ((void*)rhs_child <= start) {
            // the lhs child will be free
            makefree(lhs_child, state);
            push(lhs_child, parent_logsize - 1, state);
            parent = rhs_child;
        } else {
            // the rhs child will be free
            makefree(rhs_child, state);
            push(rhs_child, parent_logsize - 1, state);
            parent = lhs_child;
        }
        parent_logsize--;
    }
    return 0;
}

static void *_naive_reallocate(void *old, size_t old_size, size_t new_size,
                               struct buddy *state) {
    assert(old_size < new_size);
    void *new = allocate(new_size, state);
    if (!new) return 0;
    memcpy(new, old, old_size);
    liberate(old, old_size, state);
    return new;
}

void *reallocate(void *old, size_t old_size, size_t new_size,
                 struct buddy *state) {
    if (new_size == 0) return liberate(old, old_size, state), (void*)0;

    size_t old_logsize = size2log(old_size, 1);
    size_t new_logsize = size2log(new_size, 1);

    if (new_logsize == old_logsize) return old;

    if (new_logsize < old_logsize) {
        // repeatedly split, keeping lhs.
        struct free_block *block = old;
        while (new_logsize < old_logsize) {
            old_logsize--;
            struct free_block *right_half
                = buddy_of(block, old_logsize, state);
            makefree(right_half, state);
            push(right_half, old_logsize, state);
        }
        return old;
    }

    // otherwise, we must iterate up the tree and ensure that at each level:
    // (1) we are the left-buddy, and
    // (2) our buddy is free.
    // up until we reach an ancestor of the proper size.

    // First, just verify this claim.
    size_t pos_logsize = old_logsize;
    if (new_logsize > state->root_logsize) return 0;
    struct free_block *pos = old;
    while (pos_logsize != new_logsize) {
        struct free_block *buddy = buddy_of(pos, pos_logsize, state);
        if (pos > buddy) {
            // oh no, we're the right buddy!
            return _naive_reallocate(old, old_size, new_size, state);
        } else if (!isfree(buddy, pos_logsize, state)) {
            // oh no, our buddy at this level isn't free!
            return _naive_reallocate(old, old_size, new_size, state);
        }
        pos_logsize++;
    }

    // Then, revisit the path and coalesce on the way up.
    pos_logsize = old_logsize;
    pos = old;
    while (pos_logsize != new_logsize) {
        struct free_block *buddy = buddy_of(pos, pos_logsize, state);
        pop(buddy);
        memset(buddy, 0, sizeof(struct free_block));
        pos_logsize++;
    }
    return old;
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback