summaryrefslogtreecommitdiff
path: root/src/theory/uf/ho_extension.cpp
blob: aec223d66b8f66ed16de00870d335774d0d7d4ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Gereon Kremer, Mathias Preiner
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Implementation of the higher-order extension of TheoryUF.
 */

#include "theory/uf/ho_extension.h"

#include "expr/node_algorithm.h"
#include "expr/skolem_manager.h"
#include "options/uf_options.h"
#include "theory/theory_model.h"
#include "theory/uf/lambda_lift.h"
#include "theory/uf/theory_uf_rewriter.h"

using namespace std;
using namespace cvc5::kind;

namespace cvc5 {
namespace theory {
namespace uf {

HoExtension::HoExtension(Env& env,
                         TheoryState& state,
                         TheoryInferenceManager& im,
                         LambdaLift& ll)
    : EnvObj(env),
      d_state(state),
      d_im(im),
      d_ll(ll),
      d_extensionality(userContext()),
      d_cachedLemmas(userContext()),
      d_uf_std_skolem(userContext())
{
  d_true = NodeManager::currentNM()->mkConst(true);
}

TrustNode HoExtension::ppRewrite(Node node, std::vector<SkolemLemma>& lems)
{
  Kind k = node.getKind();
  if (k == HO_APPLY)
  {
    // convert HO_APPLY to APPLY_UF if fully applied
    if (node[0].getType().getNumChildren() == 2)
    {
      Trace("uf-ho") << "uf-ho : expanding definition : " << node << std::endl;
      Node ret = getApplyUfForHoApply(node);
      Trace("uf-ho") << "uf-ho : ppRewrite : " << node << " to " << ret
                     << std::endl;
      return TrustNode::mkTrustRewrite(node, ret);
    }
    // partial beta reduction
    // f ---> (lambda ((x Int) (y Int)) s[x, y]) then (@ f t) is preprocessed
    // to (lambda ((y Int)) s[t, y]).
    if (options().uf.ufHoLazyLambdaLift)
    {
      Node op = node[0];
      Node opl = d_ll.getLambdaFor(op);
      if (!opl.isNull())
      {
        NodeManager* nm = NodeManager::currentNM();
        Node app = nm->mkNode(HO_APPLY, opl, node[1]);
        app = rewrite(app);
        Trace("uf-lazy-ll")
            << "Partial beta reduce: " << node << " -> " << app << std::endl;
        return TrustNode::mkTrustRewrite(node, app, nullptr);
      }
    }
  }
  else if (k == APPLY_UF)
  {
    // Say (lambda ((x Int)) t[x]) occurs in the input. We replace this
    // by k during ppRewrite. In the following, if we see (k s), we replace
    // it by t[s]. This maintains the invariant that the *only* occurences
    // of k are as arguments to other functions; k is not applied
    // in any preprocessed constraints.
    if (options().uf.ufHoLazyLambdaLift)
    {
      // if an application of the lambda lifted function, do beta reduction
      // immediately
      Node op = node.getOperator();
      Node opl = d_ll.getLambdaFor(op);
      if (!opl.isNull())
      {
        Assert(opl.getKind() == LAMBDA);
        std::vector<Node> args(node.begin(), node.end());
        Node app = d_ll.betaReduce(opl, args);
        Trace("uf-lazy-ll")
            << "Beta reduce: " << node << " -> " << app << std::endl;
        return TrustNode::mkTrustRewrite(node, app, nullptr);
      }
    }
  }
  else if (k == kind::LAMBDA)
  {
    Trace("uf-lazy-ll") << "Preprocess lambda: " << node << std::endl;
    TrustNode skTrn = d_ll.ppRewrite(node, lems);
    Trace("uf-lazy-ll") << "...return " << skTrn.getNode() << std::endl;
    return skTrn;
  }
  return TrustNode::null();
}

Node HoExtension::getExtensionalityDeq(TNode deq, bool isCached)
{
  Assert(deq.getKind() == NOT && deq[0].getKind() == EQUAL);
  Assert(deq[0][0].getType().isFunction());
  if (isCached)
  {
    std::map<Node, Node>::iterator it = d_extensionality_deq.find(deq);
    if (it != d_extensionality_deq.end())
    {
      return it->second;
    }
  }
  TypeNode tn = deq[0][0].getType();
  std::vector<TypeNode> argTypes = tn.getArgTypes();
  std::vector<Node> skolems;
  NodeManager* nm = NodeManager::currentNM();
  SkolemManager* sm = nm->getSkolemManager();
  for (unsigned i = 0, nargs = argTypes.size(); i < nargs; i++)
  {
    Node k = sm->mkDummySkolem(
        "k", argTypes[i], "skolem created for extensionality.");
    skolems.push_back(k);
  }
  Node t[2];
  for (unsigned i = 0; i < 2; i++)
  {
    std::vector<Node> children;
    Node curr = deq[0][i];
    while (curr.getKind() == HO_APPLY)
    {
      children.push_back(curr[1]);
      curr = curr[0];
    }
    children.push_back(curr);
    std::reverse(children.begin(), children.end());
    children.insert(children.end(), skolems.begin(), skolems.end());
    t[i] = nm->mkNode(APPLY_UF, children);
  }
  Node conc = t[0].eqNode(t[1]).negate();
  if (isCached)
  {
    d_extensionality_deq[deq] = conc;
  }
  return conc;
}

unsigned HoExtension::applyExtensionality(TNode deq)
{
  Assert(deq.getKind() == NOT && deq[0].getKind() == EQUAL);
  Assert(deq[0][0].getType().isFunction());
  // apply extensionality
  if (d_extensionality.find(deq) == d_extensionality.end())
  {
    d_extensionality.insert(deq);
    Node conc = getExtensionalityDeq(deq);
    Node lem = NodeManager::currentNM()->mkNode(OR, deq[0], conc);
    Trace("uf-ho-lemma") << "uf-ho-lemma : extensionality : " << lem
                         << std::endl;
    d_im.lemma(lem, InferenceId::UF_HO_EXTENSIONALITY);
    return 1;
  }
  return 0;
}

Node HoExtension::getApplyUfForHoApply(Node node)
{
  Assert(node[0].getType().getNumChildren() == 2);
  std::vector<TNode> args;
  Node f = TheoryUfRewriter::decomposeHoApply(node, args, true);
  Node new_f = f;
  NodeManager* nm = NodeManager::currentNM();
  SkolemManager* sm = nm->getSkolemManager();
  if (!TheoryUfRewriter::canUseAsApplyUfOperator(f))
  {
    NodeNodeMap::const_iterator itus = d_uf_std_skolem.find(f);
    if (itus == d_uf_std_skolem.end())
    {
      std::unordered_set<Node> fvs;
      expr::getFreeVariables(f, fvs);
      Node lem;
      if (!fvs.empty())
      {
        std::vector<TypeNode> newTypes;
        std::vector<Node> vs;
        std::vector<Node> nvs;
        for (const Node& v : fvs)
        {
          TypeNode vt = v.getType();
          newTypes.push_back(vt);
          Node nv = nm->mkBoundVar(vt);
          vs.push_back(v);
          nvs.push_back(nv);
        }
        TypeNode ft = f.getType();
        std::vector<TypeNode> argTypes = ft.getArgTypes();
        TypeNode rangeType = ft.getRangeType();

        newTypes.insert(newTypes.end(), argTypes.begin(), argTypes.end());
        TypeNode nft = nm->mkFunctionType(newTypes, rangeType);
        new_f = sm->mkDummySkolem("app_uf", nft);
        for (const Node& v : vs)
        {
          new_f = nm->mkNode(HO_APPLY, new_f, v);
        }
        Assert(new_f.getType() == f.getType());
        Node eq = new_f.eqNode(f);
        Node seq = eq.substitute(vs.begin(), vs.end(), nvs.begin(), nvs.end());
        lem = nm->mkNode(
            FORALL, nm->mkNode(BOUND_VAR_LIST, nvs), seq);
      }
      else
      {
        // introduce skolem to make a standard APPLY_UF
        new_f = sm->mkDummySkolem("app_uf", f.getType());
        lem = new_f.eqNode(f);
      }
      Trace("uf-ho-lemma")
          << "uf-ho-lemma : Skolem definition for apply-conversion : " << lem
          << std::endl;
      d_im.lemma(lem, InferenceId::UF_HO_APP_CONV_SKOLEM);
      d_uf_std_skolem[f] = new_f;
    }
    else
    {
      new_f = (*itus).second;
    }
    // unroll the HO_APPLY, adding to the first argument position
    // Note arguments in the vector args begin at position 1.
    while (new_f.getKind() == HO_APPLY)
    {
      args.insert(args.begin() + 1, new_f[1]);
      new_f = new_f[0];
    }
  }
  Assert(TheoryUfRewriter::canUseAsApplyUfOperator(new_f));
  args[0] = new_f;
  Node ret = nm->mkNode(APPLY_UF, args);
  Assert(ret.getType() == node.getType());
  return ret;
}

unsigned HoExtension::checkExtensionality(TheoryModel* m)
{
  // if we are in collect model info, we require looking at the model's
  // equality engine, so that we only consider "relevant" (see
  // Theory::computeRelevantTerms) function terms.
  eq::EqualityEngine* ee =
      m != nullptr ? m->getEqualityEngine() : d_state.getEqualityEngine();
  NodeManager* nm = NodeManager::currentNM();
  unsigned num_lemmas = 0;
  bool isCollectModel = (m != nullptr);
  Trace("uf-ho") << "HoExtension::checkExtensionality, collectModel="
                 << isCollectModel << "..." << std::endl;
  std::map<TypeNode, std::vector<Node> > func_eqcs;
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
  bool hasFunctions = false;
  while (!eqcs_i.isFinished())
  {
    Node eqc = (*eqcs_i);
    TypeNode tn = eqc.getType();
    if (tn.isFunction() && d_lambdaEqc.find(eqc) == d_lambdaEqc.end())
    {
      hasFunctions = true;
      // if during collect model, must have an infinite type
      // if not during collect model, must have a finite type
      if (d_env.isFiniteType(tn) != isCollectModel)
      {
        func_eqcs[tn].push_back(eqc);
        Trace("uf-ho-debug")
            << "  func eqc : " << tn << " : " << eqc << std::endl;
      }
    }
    ++eqcs_i;
  }
  if (!options().uf.ufHoExt)
  {
    // we are not applying extensionality, thus we are incomplete if functions
    // are present
    if (hasFunctions)
    {
      d_im.setIncomplete(IncompleteId::UF_HO_EXT_DISABLED);
    }
    return 0;
  }

  for (std::map<TypeNode, std::vector<Node> >::iterator itf = func_eqcs.begin();
       itf != func_eqcs.end();
       ++itf)
  {
    for (unsigned j = 0, sizej = itf->second.size(); j < sizej; j++)
    {
      for (unsigned k = (j + 1), sizek = itf->second.size(); k < sizek; k++)
      {
        // if these equivalence classes are not explicitly disequal, do
        // extensionality to ensure distinctness. Notice that we always use
        // the (local) equality engine for this check via the state, since the
        // model's equality engine does not store any disequalities. This is
        // an optimization to introduce fewer equalities during model
        // construction, since we know such disequalities have already been
        // witness via assertions.
        if (!d_state.areDisequal(itf->second[j], itf->second[k]))
        {
          Node deq = rewrite(itf->second[j].eqNode(itf->second[k]).negate());
          // either add to model, or add lemma
          if (isCollectModel)
          {
            // Add extentionality disequality to the model.
            // It is important that we construct new (unconstrained) variables
            // k here, so that we do not generate any inconsistencies.
            Node edeq = getExtensionalityDeq(deq, false);
            Assert(edeq.getKind() == NOT && edeq[0].getKind() == EQUAL);
            // introducing terms, must add required constraints, e.g. to
            // force equalities between APPLY_UF and HO_APPLY terms
            for (unsigned r = 0; r < 2; r++)
            {
              if (!collectModelInfoHoTerm(edeq[0][r], m))
              {
                return 1;
              }
            }
            Trace("uf-ho-debug")
                << "Add extensionality deq to model : " << edeq << std::endl;
            if (!m->assertEquality(edeq[0][0], edeq[0][1], false))
            {
              Node eq = edeq[0][0].eqNode(edeq[0][1]);
              Node lem = nm->mkNode(OR, deq.negate(), eq);
              Trace("uf-ho") << "HoExtension: cmi extensionality lemma " << lem
                             << std::endl;
              d_im.lemma(lem, InferenceId::UF_HO_MODEL_EXTENSIONALITY);
              return 1;
            }
          }
          else
          {
            // apply extensionality lemma
            num_lemmas += applyExtensionality(deq);
          }
        }
      }
    }
  }
  return num_lemmas;
}

unsigned HoExtension::applyAppCompletion(TNode n)
{
  Assert(n.getKind() == APPLY_UF);

  eq::EqualityEngine* ee = d_state.getEqualityEngine();
  // must expand into APPLY_HO version if not there already
  Node ret = TheoryUfRewriter::getHoApplyForApplyUf(n);
  if (!ee->hasTerm(ret) || !ee->areEqual(ret, n))
  {
    Node eq = n.eqNode(ret);
    Trace("uf-ho-lemma") << "uf-ho-lemma : infer, by apply-expand : " << eq
                         << std::endl;
    d_im.assertInternalFact(eq,
                            true,
                            InferenceId::UF_HO_APP_ENCODE,
                            PfRule::HO_APP_ENCODE,
                            {},
                            {n});
    return 1;
  }
  Trace("uf-ho-debug") << "    ...already have " << ret << " == " << n << "."
                       << std::endl;
  return 0;
}

unsigned HoExtension::checkAppCompletion()
{
  Trace("uf-ho") << "HoExtension::checkApplyCompletion..." << std::endl;
  // compute the operators that are relevant (those for which an HO_APPLY exist)
  std::set<TNode> rlvOp;
  eq::EqualityEngine* ee = d_state.getEqualityEngine();
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
  std::map<TNode, std::vector<Node> > apply_uf;
  while (!eqcs_i.isFinished())
  {
    Node eqc = (*eqcs_i);
    Trace("uf-ho-debug") << "  apply completion : visit eqc " << eqc
                         << std::endl;
    eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, ee);
    while (!eqc_i.isFinished())
    {
      Node n = *eqc_i;
      if (n.getKind() == APPLY_UF || n.getKind() == HO_APPLY)
      {
        int curr_sum = 0;
        std::map<TNode, bool> curr_rops;
        if (n.getKind() == APPLY_UF)
        {
          TNode rop = ee->getRepresentative(n.getOperator());
          if (rlvOp.find(rop) != rlvOp.end())
          {
            // try if its operator is relevant
            curr_sum = applyAppCompletion(n);
            if (curr_sum > 0)
            {
              return curr_sum;
            }
          }
          else
          {
            // add to pending list
            apply_uf[rop].push_back(n);
          }
          // Arguments are also relevant operators.
          // It might be possible include fewer terms here, see #1115.
          for (unsigned k = 0; k < n.getNumChildren(); k++)
          {
            if (n[k].getType().isFunction())
            {
              TNode rop2 = ee->getRepresentative(n[k]);
              curr_rops[rop2] = true;
            }
          }
        }
        else
        {
          Assert(n.getKind() == HO_APPLY);
          TNode rop = ee->getRepresentative(n[0]);
          curr_rops[rop] = true;
        }
        for (std::map<TNode, bool>::iterator itc = curr_rops.begin();
             itc != curr_rops.end();
             ++itc)
        {
          TNode rop = itc->first;
          if (rlvOp.find(rop) == rlvOp.end())
          {
            rlvOp.insert(rop);
            // now, try each pending APPLY_UF for this operator
            std::map<TNode, std::vector<Node> >::iterator itu =
                apply_uf.find(rop);
            if (itu != apply_uf.end())
            {
              for (unsigned j = 0, size = itu->second.size(); j < size; j++)
              {
                curr_sum = applyAppCompletion(itu->second[j]);
                if (curr_sum > 0)
                {
                  return curr_sum;
                }
              }
            }
          }
        }
      }
      ++eqc_i;
    }
    ++eqcs_i;
  }
  return 0;
}

unsigned HoExtension::checkLazyLambda()
{
  if (!options().uf.ufHoLazyLambdaLift)
  {
    // no lambdas are lazily lifted
    return 0;
  }
  Trace("uf-ho") << "HoExtension::checkLazyLambda..." << std::endl;
  NodeManager* nm = NodeManager::currentNM();
  unsigned numLemmas = 0;
  d_lambdaEqc.clear();
  eq::EqualityEngine* ee = d_state.getEqualityEngine();
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
  // normal functions equated to lambda functions
  std::unordered_set<Node> normalEqFuns;
  // mapping from functions to terms
  while (!eqcs_i.isFinished())
  {
    Node eqc = (*eqcs_i);
    ++eqcs_i;
    if (!eqc.getType().isFunction())
    {
      continue;
    }
    eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, ee);
    Node lamRep;  // the first lambda function we encounter in the equivalence
                  // class
    Node lamRepLam;
    std::unordered_set<Node> normalEqFunWait;
    while (!eqc_i.isFinished())
    {
      Node n = *eqc_i;
      ++eqc_i;
      Node lam = d_ll.getLambdaFor(n);
      if (lam.isNull())
      {
        if (!lamRep.isNull())
        {
          // if we are equal to a lambda function, we must beta-reduce
          // applications of this
          normalEqFuns.insert(n);
        }
        else
        {
          // waiting to see if there is a lambda function in this equivalence
          // class
          normalEqFunWait.insert(n);
        }
      }
      else if (lamRep.isNull())
      {
        // there is a lambda function in this equivalence class
        lamRep = n;
        lamRepLam = lam;
        // must consider all normal functions we've seen so far
        normalEqFuns.insert(normalEqFunWait.begin(), normalEqFunWait.end());
        normalEqFunWait.clear();
      }
      else
      {
        // two lambda functions are in same equivalence class
        Node f = lamRep < n ? lamRep : n;
        Node g = lamRep < n ? n : lamRep;
        Trace("uf-ho-debug") << "  found equivalent lambda functions " << f
                             << " and " << g << std::endl;
        Node flam = lamRep < n ? lamRepLam : lam;
        Assert(!flam.isNull() && flam.getKind() == LAMBDA);
        Node lhs = flam[1];
        Node glam = lamRep < n ? lam : lamRepLam;
        Trace("uf-ho-debug")
            << "  lambda are " << flam << " and " << glam << std::endl;
        std::vector<Node> args(flam[0].begin(), flam[0].end());
        Node rhs = d_ll.betaReduce(glam, args);
        Node univ = nm->mkNode(FORALL, flam[0], lhs.eqNode(rhs));
        // f = g => forall x. reduce(lambda(f)(x)) = reduce(lambda(g)(x))
        //
        // For example, if f -> lambda z. z+1, g -> lambda y. y+3, this
        // will infer: f = g => forall x. x+1 = x+3, which simplifies to
        // f != g.
        Node lem = nm->mkNode(IMPLIES, f.eqNode(g), univ);
        if (cacheLemma(lem))
        {
          d_im.lemma(lem, InferenceId::UF_HO_LAMBDA_UNIV_EQ);
          numLemmas++;
        }
      }
    }
    if (!lamRep.isNull())
    {
      d_lambdaEqc[eqc] = lamRep;
    }
  }
  Trace("uf-ho-debug")
      << "  found " << normalEqFuns.size()
      << " ordinary functions that are equal to lambda functions" << std::endl;
  if (normalEqFuns.empty())
  {
    return numLemmas;
  }
  // if we have normal functions that are equal to lambda functions, go back
  // and ensure they are mapped properly
  // mapping from functions to terms
  eq::EqClassesIterator eqcs_i2 = eq::EqClassesIterator(ee);
  while (!eqcs_i2.isFinished())
  {
    Node eqc = (*eqcs_i2);
    ++eqcs_i2;
    Trace("uf-ho-debug") << "Check equivalence class " << eqc << std::endl;
    eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, ee);
    while (!eqc_i.isFinished())
    {
      Node n = *eqc_i;
      ++eqc_i;
      Trace("uf-ho-debug") << "Check term " << n << std::endl;
      Node op;
      Kind k = n.getKind();
      std::vector<Node> args;
      if (k == APPLY_UF)
      {
        op = n.getOperator();
        args.insert(args.end(), n.begin(), n.end());
      }
      else if (k == HO_APPLY)
      {
        op = n[0];
        args.push_back(n[1]);
      }
      else
      {
        continue;
      }
      if (normalEqFuns.find(op) == normalEqFuns.end())
      {
        continue;
      }
      Trace("uf-ho-debug") << "  found relevant ordinary application " << n
                           << std::endl;
      Assert(ee->hasTerm(op));
      Node r = ee->getRepresentative(op);
      Assert(d_lambdaEqc.find(r) != d_lambdaEqc.end());
      Node lf = d_lambdaEqc[r];
      Node lam = d_ll.getLambdaFor(lf);
      Assert(!lam.isNull() && lam.getKind() == LAMBDA);
      // a normal function g equal to a lambda, say f --> lambda(f)
      // need to infer f = g => g(t) = f(t) for all terms g(t)
      // that occur in the equality engine.
      Node premise = op.eqNode(lf);
      args.insert(args.begin(), lam);
      Node rhs = nm->mkNode(n.getKind(), args);
      rhs = rewrite(rhs);
      Node conc = n.eqNode(rhs);
      Node lem = nm->mkNode(IMPLIES, premise, conc);
      if (cacheLemma(lem))
      {
        d_im.lemma(lem, InferenceId::UF_HO_LAMBDA_APP_REDUCE);
        numLemmas++;
      }
    }
  }
  return numLemmas;
}

unsigned HoExtension::check()
{
  Trace("uf-ho") << "HoExtension::checkHigherOrder..." << std::endl;

  // infer new facts based on apply completion until fixed point
  unsigned num_facts;
  do
  {
    num_facts = checkAppCompletion();
    if (d_state.isInConflict())
    {
      Trace("uf-ho") << "...conflict during app-completion." << std::endl;
      return 1;
    }
  } while (num_facts > 0);

  // Apply extensionality, lazy lambda schemas in order. We make lazy lambda
  // handling come last as it may introduce quantifiers.
  for (size_t i = 0; i < 2; i++)
  {
    unsigned num_lemmas = 0;
    // apply the schema
    switch (i)
    {
      case 0: num_lemmas = checkExtensionality(); break;
      case 1: num_lemmas = checkLazyLambda(); break;
      default: break;
    }
    // finish if we added lemmas
    if (num_lemmas > 0)
    {
      Trace("uf-ho") << "...returned " << num_lemmas << " lemmas." << std::endl;
      return num_lemmas;
    }
  }

  Trace("uf-ho") << "...finished check higher order." << std::endl;

  return 0;
}

bool HoExtension::collectModelInfoHo(TheoryModel* m,
                                     const std::set<Node>& termSet)
{
  for (std::set<Node>::iterator it = termSet.begin(); it != termSet.end(); ++it)
  {
    Node n = *it;
    // For model-building with higher-order, we require that APPLY_UF is always
    // expanded to HO_APPLY. That is, we always expand to a fully applicative
    // encoding during model construction.
    if (!collectModelInfoHoTerm(n, m))
    {
      return false;
    }
  }
  // We apply an explicit extensionality technique for asserting
  // disequalities to the model to ensure that function values are distinct
  // in the curried HO_APPLY version of model construction. This is a
  // non-standard alternative to using a type enumerator over function
  // values to assign unique values.
  int addedLemmas = checkExtensionality(m);
  // for equivalence classes that we know to assign a lambda directly
  for (const std::pair<const Node, Node>& p : d_lambdaEqc)
  {
    Node lam = d_ll.getLambdaFor(p.second);
    Assert(!lam.isNull());
    m->assertEquality(p.second, lam, true);
    m->assertSkeleton(lam);
    // assign it as the function definition for all variables in this class
    m->assignFunctionDefinition(p.second, lam);
  }
  return addedLemmas == 0;
}

bool HoExtension::collectModelInfoHoTerm(Node n, TheoryModel* m)
{
  if (n.getKind() == APPLY_UF)
  {
    Node hn = TheoryUfRewriter::getHoApplyForApplyUf(n);
    if (!m->assertEquality(n, hn, true))
    {
      Node eq = n.eqNode(hn);
      Trace("uf-ho") << "HoExtension: cmi app completion lemma " << eq
                     << std::endl;
      d_im.lemma(eq, InferenceId::UF_HO_MODEL_APP_ENCODE);
      return false;
    }
  }
  return true;
}

bool HoExtension::cacheLemma(TNode lem)
{
  Node rewritten = rewrite(lem);
  if (d_cachedLemmas.find(rewritten) != d_cachedLemmas.end())
  {
    return false;
  }
  d_cachedLemmas.insert(rewritten);
  return true;
}

}  // namespace uf
}  // namespace theory
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback