summaryrefslogtreecommitdiff
path: root/src/theory/strings/theory_strings_preprocess.cpp
blob: 4c2319b4e4eb58f9d7cb6ccc5227de6c4d4150f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Andres Noetzli, Tianyi Liang
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Strings Preprocess.
 */

#include "theory/strings/theory_strings_preprocess.h"

#include "expr/kind.h"
#include "expr/skolem_manager.h"
#include "options/smt_options.h"
#include "options/strings_options.h"
#include "smt/logic_exception.h"
#include "theory/strings/arith_entail.h"
#include "theory/strings/sequences_rewriter.h"
#include "theory/strings/theory_strings_utils.h"
#include "theory/strings/word.h"
#include "util/rational.h"
#include "util/statistics_registry.h"
#include "util/string.h"

using namespace cvc5;
using namespace cvc5::kind;

namespace cvc5 {
namespace theory {
namespace strings {

StringsPreprocess::StringsPreprocess(SkolemCache* sc,
                                     HistogramStat<Kind>* statReductions)
    : d_sc(sc), d_statReductions(statReductions)
{
}

StringsPreprocess::~StringsPreprocess(){

}

Node StringsPreprocess::reduce(Node t,
                               std::vector<Node>& asserts,
                               SkolemCache* sc)
{
  Trace("strings-preprocess-debug")
      << "StringsPreprocess::reduce: " << t << std::endl;
  Node retNode = t;
  NodeManager* nm = NodeManager::currentNM();
  Node zero = nm->mkConstInt(Rational(0));
  Node one = nm->mkConstInt(Rational(1));
  Node negOne = nm->mkConstInt(Rational(-1));

  if( t.getKind() == kind::STRING_SUBSTR ) {
    // processing term:  substr( s, n, m )
    Node s = t[0];
    Node n = t[1];
    Node m = t[2];
    Node skt = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "sst");
    Node t12 = nm->mkNode(PLUS, n, m);
    Node lt0 = nm->mkNode(STRING_LENGTH, s);
    //start point is greater than or equal zero
    Node c1 = nm->mkNode(GEQ, n, zero);
    //start point is less than end of string
    Node c2 = nm->mkNode(GT, lt0, n);
    //length is positive
    Node c3 = nm->mkNode(GT, m, zero);
    Node cond = nm->mkNode(AND, c1, c2, c3);

    Node emp = Word::mkEmptyWord(t.getType());

    Node sk1 = sc->mkSkolemCached(s, n, SkolemCache::SK_PREFIX, "sspre");
    Node sk2 = sc->mkSkolemCached(s, t12, SkolemCache::SK_SUFFIX_REM, "sssufr");
    Node b11 = s.eqNode(nm->mkNode(STRING_CONCAT, sk1, skt, sk2));
    //length of first skolem is second argument
    Node b12 = nm->mkNode(STRING_LENGTH, sk1).eqNode(n);
    Node lsk2 = nm->mkNode(STRING_LENGTH, sk2);
    // Length of the suffix is either 0 (in the case where m + n > len(s)) or
    // len(s) - n -m
    Node b13 = nm->mkNode(
        OR,
        nm->mkNode(EQUAL, lsk2, nm->mkNode(MINUS, lt0, nm->mkNode(PLUS, n, m))),
        nm->mkNode(EQUAL, lsk2, zero));
    // Length of the result is at most m
    Node b14 = nm->mkNode(LEQ, nm->mkNode(STRING_LENGTH, skt), m);

    Node b1 = nm->mkNode(AND, {b11, b12, b13, b14});
    Node b2 = skt.eqNode(emp);
    Node lemma = nm->mkNode(ITE, cond, b1, b2);

    // assert:
    // IF    n >=0 AND len( s ) > n AND m > 0
    // THEN: s = sk1 ++ skt ++ sk2 AND
    //       len( sk1 ) = n AND
    //       ( len( sk2 ) = len( s )-(n+m) OR len( sk2 ) = 0 ) AND
    //       len( skt ) <= m
    // ELSE: skt = ""
    //
    // Note: The length of sk2 is either 0 (if the n + m is greater or equal to
    // the length of s) or len(s) - (n + m) otherwise. If n + m is greater or
    // equal to the length of s, then len(s) - (n + m) is negative and in
    // conflict with lengths always being positive, so only len(sk2) = 0 may be
    // satisfied. If n + m is less than the length of s, then len(sk2) = 0
    // cannot be satisfied because we have the constraint that len(skt) <= m,
    // so sk2 must be greater than 0.
    asserts.push_back(lemma);

    // Thus, substr( s, n, m ) = skt
    retNode = skt;
  }
  else if (t.getKind() == kind::STRING_UPDATE)
  {
    // processing term:  update( s, n, r )
    Node s = t[0];
    Node n = t[1];
    Node r = t[2];
    Node skt = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "sst");
    Node ls = nm->mkNode(STRING_LENGTH, s);
    // start point is greater than or equal zero
    Node c1 = nm->mkNode(GEQ, n, zero);
    // start point is less than end of string
    Node c2 = nm->mkNode(GT, ls, n);
    Node cond = nm->mkNode(AND, c1, c2);

    // substr(r,0,|s|-n)
    Node lens = nm->mkNode(STRING_LENGTH, s);
    Node rs;
    if (r.isConst() && Word::getLength(r) == 1)
    {
      // optimization: don't need to take substring for single characters, due
      // to guard on where it is used in the reduction below.
      rs = r;
    }
    else
    {
      rs = nm->mkNode(STRING_SUBSTR, r, zero, nm->mkNode(MINUS, lens, n));
    }
    Node rslen = nm->mkNode(STRING_LENGTH, rs);
    Node nsuf = nm->mkNode(PLUS, n, rslen);
    // substr(s, n, len(substr(r,0,|s|-n))), which is used for formalizing the
    // purification variable sk3 below.
    Node ssubstr = nm->mkNode(STRING_SUBSTR, s, n, rslen);

    Node sk1 = sc->mkSkolemCached(s, n, SkolemCache::SK_PREFIX, "sspre");
    Node sk2 =
        sc->mkSkolemCached(s, nsuf, SkolemCache::SK_SUFFIX_REM, "sssufr");
    Node sk3 = sc->mkSkolemCached(ssubstr, SkolemCache::SK_PURIFY, "ssubstr");
    Node a1 = skt.eqNode(nm->mkNode(STRING_CONCAT, sk1, rs, sk2));
    Node a2 = s.eqNode(nm->mkNode(STRING_CONCAT, sk1, sk3, sk2));
    // length of first skolem is second argument
    Node a3 = nm->mkNode(STRING_LENGTH, sk1).eqNode(n);
    Node a4 = nm->mkNode(STRING_LENGTH, rs).eqNode(nm->mkNode(STRING_LENGTH, sk3));

    Node b1 = nm->mkNode(AND, {a1, a2, a3, a4});
    Node b2 = skt.eqNode(s);
    Node lemma = nm->mkNode(ITE, cond, b1, b2);

    // assert:
    // IF    n >=0 AND n < len( s )
    // THEN: skt = sk1 ++ substr(r,0,len(s)-n) ++ sk2 AND
    //       s = sk1 ++ sk3 ++ sk2 AND
    //       len( sk1 ) = n AND
    //       len( substr(r,0,len(s)-n) ) = len( sk3 )
    // ELSE: skt = s
    // We use an optimization where r is used instead of substr(r,0,len(s)-n)
    // if r is a constant of length one.
    asserts.push_back(lemma);

    // Thus, str.update( s, n, r ) = skt
    retNode = skt;
  }
  else if (t.getKind() == kind::STRING_INDEXOF)
  {
    // processing term:  indexof( x, y, n )
    Node x = t[0];
    Node y = t[1];
    Node n = t[2];
    Node skk = sc->mkTypedSkolemCached(
        nm->integerType(), t, SkolemCache::SK_PURIFY, "iok");

    Node negone = nm->mkConstInt(Rational(-1));

    // substr( x, n, len( x ) - n )
    Node st = nm->mkNode(STRING_SUBSTR,
                         x,
                         n,
                         nm->mkNode(MINUS, nm->mkNode(STRING_LENGTH, x), n));
    Node io2 =
        sc->mkSkolemCached(st, y, SkolemCache::SK_FIRST_CTN_PRE, "iopre");
    Node io4 =
        sc->mkSkolemCached(st, y, SkolemCache::SK_FIRST_CTN_POST, "iopost");

    // ~contains( substr( x, n, len( x ) - n ), y )
    Node c11 = nm->mkNode(STRING_CONTAINS, st, y).negate();
    // n > len( x )
    Node c12 = nm->mkNode(GT, n, nm->mkNode(STRING_LENGTH, x));
    // 0 > n
    Node c13 = nm->mkNode(GT, zero, n);
    Node cond1 = nm->mkNode(OR, c11, c12, c13);
    // skk = -1
    Node cc1 = skk.eqNode(negone);

    // y = ""
    Node emp = Word::mkEmptyWord(x.getType());
    Node cond2 = y.eqNode(emp);
    // skk = n
    Node cc2 = skk.eqNode(t[2]);

    // substr( x, n, len( x ) - n ) = str.++( io2, y, io4 )
    Node c31 = st.eqNode(nm->mkNode(STRING_CONCAT, io2, y, io4));
    // ~contains( str.++( io2, substr( y, 0, len( y ) - 1) ), y )
    Node c32 =
        nm->mkNode(
              STRING_CONTAINS,
              nm->mkNode(
                  STRING_CONCAT,
                  io2,
                  nm->mkNode(
                      STRING_SUBSTR,
                      y,
                      zero,
                      nm->mkNode(MINUS, nm->mkNode(STRING_LENGTH, y), one))),
              y)
            .negate();
    // skk = n + len( io2 )
    Node c33 = skk.eqNode(nm->mkNode(PLUS, n, nm->mkNode(STRING_LENGTH, io2)));
    Node cc3 = nm->mkNode(AND, c31, c32, c33);

    // assert:
    // IF:   ~contains( substr( x, n, len( x ) - n ), y ) OR n > len(x) OR 0 > n
    // THEN: skk = -1
    // ELIF: y = ""
    // THEN: skk = n
    // ELSE: substr( x, n, len( x ) - n ) = str.++( io2, y, io4 ) ^
    //       ~contains( str.++( io2, substr( y, 0, len( y ) - 1) ), y ) ^
    //       skk = n + len( io2 )
    // for fresh io2, io4.
    Node rr = nm->mkNode(ITE, cond1, cc1, nm->mkNode(ITE, cond2, cc2, cc3));
    asserts.push_back(rr);

    // Thus, indexof( x, y, n ) = skk.
    retNode = skk;
  }
  else if (t.getKind() == kind::STRING_INDEXOF_RE)
  {
    // processing term:  indexof_re(s, r, n)
    Node s = t[0];
    Node r = t[1];
    Node n = t[2];
    Node skk = sc->mkTypedSkolemCached(
        nm->integerType(), t, SkolemCache::SK_PURIFY, "iork");
    Node sLen = nm->mkNode(STRING_LENGTH, s);

    // n > len(x)
    Node ub = nm->mkNode(GT, n, sLen);
    // 0 > n
    Node lb = nm->mkNode(GT, zero, n);
    // n > len(x) OR 0 > n
    Node condNegOne = nm->mkNode(OR, ub, lb);
    // skk = -1
    Node retNegOne = skk.eqNode(negOne);

    Node emp = Word::mkEmptyWord(s.getType());
    // in_re("", r)
    Node matchEmptyStr = nm->mkNode(STRING_IN_REGEXP, emp, r);
    // skk = n
    Node retN = skk.eqNode(n);

    Node i = SkolemCache::mkIndexVar(t);
    Node l = SkolemCache::mkLengthVar(t);
    Node bvl = nm->mkNode(BOUND_VAR_LIST, i, l);
    Node bound =
        nm->mkNode(AND,
                   {
                       nm->mkNode(GEQ, i, n),
                       nm->mkNode(LT, i, nm->mkNode(ITE, retNegOne, sLen, skk)),
                       nm->mkNode(GT, l, zero),
                       nm->mkNode(LEQ, l, nm->mkNode(MINUS, sLen, i)),
                   });
    Node body = nm->mkNode(
        OR,
        bound.negate(),
        nm->mkNode(STRING_IN_REGEXP, nm->mkNode(STRING_SUBSTR, s, i, l), r)
            .negate());
    // forall il.
    //   n <= i < ite(skk = -1, len(s), skk) ^ 0 < l <= len(s) - i =>
    //     ~in_re(substr(s, i, l), r)
    Node firstMatch = utils::mkForallInternal(bvl, body);
    Node bvll = nm->mkNode(BOUND_VAR_LIST, l);
    Node validLen =
        nm->mkNode(AND,
                   nm->mkNode(GEQ, l, zero),
                   nm->mkNode(LEQ, l, nm->mkNode(MINUS, sLen, skk)));
    Node matchBody = nm->mkNode(
        AND,
        validLen,
        nm->mkNode(STRING_IN_REGEXP, nm->mkNode(STRING_SUBSTR, s, skk, l), r));
    // skk != -1 =>
    //   exists l. (0 <= l < len(s) - skk) ^ in_re(substr(s, skk, l), r))
    Node match =
        nm->mkNode(OR,
                   retNegOne,
                   utils::mkForallInternal(bvll, matchBody.negate()).negate());

    // assert:
    // IF:   n > len(s) OR 0 > n
    // THEN: skk = -1
    // ELIF: in_re("", r)
    // THEN: skk = n
    // ELSE: (forall il.
    //         n <= i < ite(skk = -1, len(s), skk) ^ 0 < l <= len(s) - i =>
    //           ~in_re(substr(s, i, l), r)) ^
    //       (skk != -1 =>
    //          exists l. 0 <= l <= len(s) - skk ^ in_re(substr(s, skk, l), r))
    //
    // Note that this reduction relies on eager reduction lemmas being sent to
    // properly limit the range of skk.
    Node rr = nm->mkNode(
        ITE,
        condNegOne,
        retNegOne,
        nm->mkNode(
            ITE, matchEmptyStr, retN, nm->mkNode(AND, firstMatch, match)));
    asserts.push_back(rr);

    // Thus, indexof_re(s, r, n) = skk.
    retNode = skk;
  }
  else if (t.getKind() == STRING_ITOS)
  {
    // processing term:  int.to.str( n )
    Node n = t[0];
    Node itost = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "itost");
    Node leni = nm->mkNode(STRING_LENGTH, itost);

    std::vector<Node> conc;
    std::vector< TypeNode > argTypes;
    argTypes.push_back(nm->integerType());
    TypeNode itosResType = nm->mkFunctionType(argTypes, nm->integerType());
    Node u = sc->mkSkolemFun(SkolemFunId::STRINGS_ITOS_RESULT, itosResType, t);

    Node lem = nm->mkNode(GEQ, leni, one);
    conc.push_back(lem);

    lem = n.eqNode(nm->mkNode(APPLY_UF, u, leni));
    conc.push_back(lem);

    lem = zero.eqNode(nm->mkNode(APPLY_UF, u, zero));
    conc.push_back(lem);

    Node x = SkolemCache::mkIndexVar(t);
    Node xPlusOne = nm->mkNode(PLUS, x, one);
    Node xbv = nm->mkNode(BOUND_VAR_LIST, x);
    Node g = nm->mkNode(AND, nm->mkNode(GEQ, x, zero), nm->mkNode(LT, x, leni));
    Node sx = nm->mkNode(STRING_SUBSTR, itost, x, one);
    Node ux = nm->mkNode(APPLY_UF, u, x);
    Node ux1 = nm->mkNode(APPLY_UF, u, xPlusOne);
    Node c0 = nm->mkNode(STRING_TO_CODE, nm->mkConst(String("0")));
    Node c = nm->mkNode(MINUS, nm->mkNode(STRING_TO_CODE, sx), c0);

    Node ten = nm->mkConstInt(Rational(10));
    Node eq = ux1.eqNode(nm->mkNode(PLUS, c, nm->mkNode(MULT, ten, ux)));
    Node leadingZeroPos =
        nm->mkNode(AND, x.eqNode(zero), nm->mkNode(GT, leni, one));
    Node cb = nm->mkNode(
        AND,
        nm->mkNode(GEQ, c, nm->mkNode(ITE, leadingZeroPos, one, zero)),
        nm->mkNode(LT, c, ten));

    Node ux1lem = nm->mkNode(GEQ, n, ux1);

    lem = nm->mkNode(OR, g.negate(), nm->mkNode(AND, eq, cb, ux1lem));
    lem = utils::mkForallInternal(xbv, lem);
    conc.push_back(lem);

    Node nonneg = nm->mkNode(GEQ, n, zero);

    Node emp = Word::mkEmptyWord(t.getType());
    lem = nm->mkNode(ITE, nonneg, nm->mkNode(AND, conc), itost.eqNode(emp));
    asserts.push_back(lem);
    // assert:
    // IF n>=0
    // THEN:
    //   len( itost ) >= 1 ^
    //   n = U( len( itost ) ) ^ U( 0 ) = 0 ^
    //   forall x. (x>=0 ^ x < str.len(itost)) =>
    //     U( x+1 ) = (str.code( str.at(itost, x) )-48) + 10*U( x ) ^
    //     ite( x=0 AND str.len(itost)>1, 49, 48 ) <=
    //       str.code( str.at(itost, x) ) < 58 ^
    //     n >= U(x + 1)
    // ELSE
    //   itost = ""
    // thus:
    //   int.to.str( n ) = itost
    //
    // Note: The conjunct `n >= U(x + 1)` is not needed for correctness but is
    // just an optimization.

    // The function U is an accumulator, where U( x ) for x>0 is the value of
    // str.to.int( str.substr( int.to.str( n ), 0, x ) ). For example, for
    // n=345, we have that U(1), U(2), U(3) = 3, 34, 345.
    // Above, we use str.code to map characters to their integer value, where
    // note that str.code( "0" ) = 48. Further notice that
    //   ite( x=0 AND str.len(itost)>1, 49, 48 )
    // enforces that int.to.str( n ) has no leading zeroes.
    retNode = itost;
  } else if( t.getKind() == kind::STRING_STOI ) {
    Node s = t[0];
    Node stoit = sc->mkTypedSkolemCached(
        nm->integerType(), t, SkolemCache::SK_PURIFY, "stoit");
    Node lens = nm->mkNode(STRING_LENGTH, s);

    std::vector<Node> conc1;
    Node lem = stoit.eqNode(negOne);
    conc1.push_back(lem);

    Node emp = Word::mkEmptyWord(s.getType());
    Node sEmpty = s.eqNode(emp);
    Node k = sc->mkSkolemFun(
        SkolemFunId::STRINGS_STOI_NON_DIGIT, nm->integerType(), t);
    Node kc1 = nm->mkNode(GEQ, k, zero);
    Node kc2 = nm->mkNode(LT, k, lens);
    Node c0 = nm->mkNode(STRING_TO_CODE, nm->mkConst(String("0")));
    Node codeSk = nm->mkNode(
        MINUS,
        nm->mkNode(STRING_TO_CODE, nm->mkNode(STRING_SUBSTR, s, k, one)),
        c0);
    Node ten = nm->mkConstInt(Rational(10));
    Node kc3 = nm->mkNode(
        OR, nm->mkNode(LT, codeSk, zero), nm->mkNode(GEQ, codeSk, ten));
    conc1.push_back(nm->mkNode(OR, sEmpty, nm->mkNode(AND, kc1, kc2, kc3)));

    std::vector<Node> conc2;
    std::vector< TypeNode > argTypes;
    argTypes.push_back(nm->integerType());
    TypeNode stoiResultType = nm->mkFunctionType(argTypes, nm->integerType());
    Node u =
        sc->mkSkolemFun(SkolemFunId::STRINGS_STOI_RESULT, stoiResultType, t);

    lem = stoit.eqNode(nm->mkNode(APPLY_UF, u, lens));
    conc2.push_back(lem);

    lem = zero.eqNode(nm->mkNode(APPLY_UF, u, zero));
    conc2.push_back(lem);

    lem = nm->mkNode(GT, lens, zero);
    conc2.push_back(lem);

    Node x = SkolemCache::mkIndexVar(t);
    Node xbv = nm->mkNode(BOUND_VAR_LIST, x);
    Node g = nm->mkNode(AND, nm->mkNode(GEQ, x, zero), nm->mkNode(LT, x, lens));
    Node sx = nm->mkNode(STRING_SUBSTR, s, x, one);
    Node ux = nm->mkNode(APPLY_UF, u, x);
    Node ux1 = nm->mkNode(APPLY_UF, u, nm->mkNode(PLUS, x, one));
    Node c = nm->mkNode(MINUS, nm->mkNode(STRING_TO_CODE, sx), c0);

    Node eq = ux1.eqNode(nm->mkNode(PLUS, c, nm->mkNode(MULT, ten, ux)));
    Node cb = nm->mkNode(AND, nm->mkNode(GEQ, c, zero), nm->mkNode(LT, c, ten));

    Node ux1lem = nm->mkNode(GEQ, stoit, ux1);

    lem = nm->mkNode(OR, g.negate(), nm->mkNode(AND, eq, cb, ux1lem));
    lem = utils::mkForallInternal(xbv, lem);
    conc2.push_back(lem);

    Node sneg = nm->mkNode(LT, stoit, zero);
    lem = nm->mkNode(ITE, sneg, nm->mkNode(AND, conc1), nm->mkNode(AND, conc2));
    asserts.push_back(lem);

    // assert:
    // IF stoit < 0
    // THEN:
    //   stoit = -1 ^
    //   ( s = "" OR
    //     ( k>=0 ^ k<len( s ) ^ ( str.code( str.at(s, k) ) < 48 OR
    //                             str.code( str.at(s, k) ) >= 58 )))
    // ELSE:
    //   stoit = U( len( s ) ) ^ U( 0 ) = 0 ^
    //   str.len( s ) > 0 ^
    //   forall x. (x>=0 ^ x < str.len(s)) =>
    //     U( x+1 ) = ( str.code( str.at(s, x) ) - 48 ) + 10*U( x ) ^
    //     48 <= str.code( str.at(s, x) ) < 58 ^
    //     stoit >= U( x+1 )
    // Thus, str.to.int( s ) = stoit
    //
    // Note: The conjunct `stoit >= U( x+1 )` is not needed for correctness but
    // is just an optimization.

    retNode = stoit;
  }
  else if (t.getKind() == kind::SEQ_NTH)
  {
    // processing term:  str.nth( s, n)
    // similar to substr.
    Node s = t[0];
    Node n = t[1];
    Node skt = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "sst");
    Node t12 = nm->mkNode(PLUS, n, one);
    Node lt0 = nm->mkNode(STRING_LENGTH, s);
    // start point is greater than or equal zero
    Node c1 = nm->mkNode(GEQ, n, zero);
    // start point is less than end of string
    Node c2 = nm->mkNode(GT, lt0, n);
    // check whether this application of seq.nth is defined.
    Node cond = nm->mkNode(AND, c1, c2);

    // nodes for the case where `seq.nth` is defined.
    Node sk1 = sc->mkSkolemCached(s, n, SkolemCache::SK_PREFIX, "sspre");
    Node sk2 = sc->mkSkolemCached(s, t12, SkolemCache::SK_SUFFIX_REM, "sssufr");
    Node unit = nm->mkNode(SEQ_UNIT, skt);
    Node b11 = s.eqNode(nm->mkNode(STRING_CONCAT, sk1, unit, sk2));
    // length of first skolem is second argument
    Node b12 = nm->mkNode(STRING_LENGTH, sk1).eqNode(n);
    Node lsk2 = nm->mkNode(STRING_LENGTH, sk2);
    Node b13 = nm->mkNode(EQUAL, lsk2, nm->mkNode(MINUS, lt0, t12));
    Node b1 = nm->mkNode(AND, b11, b12, b13);

    // nodes for the case where `seq.nth` is undefined.
    Node uf = SkolemCache::mkSkolemSeqNth(s.getType(), "Uf");
    Node b2 = nm->mkNode(EQUAL, skt, nm->mkNode(APPLY_UF, uf, s, n));

    // the full ite, split on definedness of `seq.nth`
    Node lemma = nm->mkNode(ITE, cond, b1, b2);

    // assert:
    // IF    n >=0 AND n < len( s )
    // THEN: s = sk1 ++ unit(skt) ++ sk2 AND
    //       len( sk1 ) = n AND
    //       ( len( sk2 ) = len( s )- (n+1)
    // ELSE: skt = Uf(s, n), where Uf is a cached skolem function.
    asserts.push_back(lemma);
    retNode = skt;
  }
  else if (t.getKind() == kind::STRING_REPLACE)
  {
    // processing term: replace( x, y, z )
    Node x = t[0];
    Node y = t[1];
    Node z = t[2];
    TypeNode tn = t[0].getType();
    Node rp1 =
        sc->mkSkolemCached(x, y, SkolemCache::SK_FIRST_CTN_PRE, "rfcpre");
    Node rp2 =
        sc->mkSkolemCached(x, y, SkolemCache::SK_FIRST_CTN_POST, "rfcpost");
    Node rpw = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "rpw");

    // y = ""
    Node emp = Word::mkEmptyWord(tn);
    Node cond1 = y.eqNode(emp);
    // rpw = str.++( z, x )
    Node c1 = rpw.eqNode(nm->mkNode(kind::STRING_CONCAT, z, x));

    // contains( x, y )
    Node cond2 = nm->mkNode(kind::STRING_CONTAINS, x, y);
    // x = str.++( rp1, y, rp2 )
    Node c21 = x.eqNode(nm->mkNode(kind::STRING_CONCAT, rp1, y, rp2));
    // rpw = str.++( rp1, z, rp2 )
    Node c22 = rpw.eqNode(nm->mkNode(kind::STRING_CONCAT, rp1, z, rp2));
    // ~contains( str.++( rp1, substr( y, 0, len(y)-1 ) ), y )
    Node c23 =
        nm->mkNode(kind::STRING_CONTAINS,
                   nm->mkNode(
                       kind::STRING_CONCAT,
                       rp1,
                       nm->mkNode(kind::STRING_SUBSTR,
                                  y,
                                  zero,
                                  nm->mkNode(kind::MINUS,
                                             nm->mkNode(kind::STRING_LENGTH, y),
                                             one))),
                   y)
            .negate();

    // assert:
    //   IF    y=""
    //   THEN: rpw = str.++( z, x )
    //   ELIF: contains( x, y )
    //   THEN: x = str.++( rp1, y, rp2 ) ^
    //         rpw = str.++( rp1, z, rp2 ) ^
    //         ~contains( str.++( rp1, substr( y, 0, len(y)-1 ) ), y ),
    //   ELSE: rpw = x
    // for fresh rp1, rp2, rpw
    Node rr = nm->mkNode(kind::ITE,
                         cond1,
                         c1,
                         nm->mkNode(kind::ITE,
                                    cond2,
                                    nm->mkNode(kind::AND, c21, c22, c23),
                                    rpw.eqNode(x)));
    asserts.push_back(rr);

    // Thus, replace( x, y, z ) = rpw.
    retNode = rpw;
  }
  else if (t.getKind() == kind::STRING_REPLACE_ALL)
  {
    // processing term: replaceall( x, y, z )
    Node x = t[0];
    Node y = t[1];
    Node z = t[2];
    Node rpaw = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "rpaw");

    Node numOcc = sc->mkSkolemFun(
        SkolemFunId::STRINGS_NUM_OCCUR, nm->integerType(), x, y);
    std::vector<TypeNode> argTypes;
    argTypes.push_back(nm->integerType());
    TypeNode raResultType = nm->mkFunctionType(argTypes, t.getType());
    Node us = sc->mkSkolemFun(
        SkolemFunId::STRINGS_REPLACE_ALL_RESULT, raResultType, t);
    TypeNode ufType = nm->mkFunctionType(argTypes, nm->integerType());
    Node uf = sc->mkSkolemFun(SkolemFunId::STRINGS_OCCUR_INDEX, ufType, x, y);

    Node ufno = nm->mkNode(APPLY_UF, uf, numOcc);
    Node usno = nm->mkNode(APPLY_UF, us, numOcc);
    Node rem = nm->mkNode(STRING_SUBSTR, x, ufno, nm->mkNode(STRING_LENGTH, x));

    std::vector<Node> lem;
    lem.push_back(nm->mkNode(GEQ, numOcc, zero));
    lem.push_back(rpaw.eqNode(nm->mkNode(APPLY_UF, us, zero)));
    lem.push_back(usno.eqNode(rem));
    lem.push_back(nm->mkNode(APPLY_UF, uf, zero).eqNode(zero));
    lem.push_back(nm->mkNode(STRING_INDEXOF, x, y, ufno).eqNode(negOne));

    Node i = SkolemCache::mkIndexVar(t);
    Node bvli = nm->mkNode(BOUND_VAR_LIST, i);
    Node bound =
        nm->mkNode(AND, nm->mkNode(GEQ, i, zero), nm->mkNode(LT, i, numOcc));
    Node ufi = nm->mkNode(APPLY_UF, uf, i);
    Node ufip1 = nm->mkNode(APPLY_UF, uf, nm->mkNode(PLUS, i, one));
    Node ii = nm->mkNode(STRING_INDEXOF, x, y, ufi);
    Node cc = nm->mkNode(
        STRING_CONCAT,
        nm->mkNode(STRING_SUBSTR, x, ufi, nm->mkNode(MINUS, ii, ufi)),
        z,
        nm->mkNode(APPLY_UF, us, nm->mkNode(PLUS, i, one)));

    std::vector<Node> flem;
    flem.push_back(ii.eqNode(negOne).negate());
    flem.push_back(nm->mkNode(APPLY_UF, us, i).eqNode(cc));
    flem.push_back(
        ufip1.eqNode(nm->mkNode(PLUS, ii, nm->mkNode(STRING_LENGTH, y))));

    Node body = nm->mkNode(OR, bound.negate(), nm->mkNode(AND, flem));
    Node q = utils::mkForallInternal(bvli, body);
    lem.push_back(q);

    // assert:
    //   IF y=""
    //   THEN: rpaw = x
    //   ELSE:
    //     numOcc >= 0 ^
    //     rpaw = Us(0) ^ Us(numOcc) = substr(x, Uf(numOcc), len(x)) ^
    //     Uf(0) = 0 ^ indexof( x, y, Uf(numOcc) ) = -1 ^
    //     forall i. 0 <= i < numOcc =>
    //        ii != -1 ^
    //        Us( i ) = str.substr( x, Uf(i), ii - Uf(i) ) ++ z ++ Us(i+1) ^
    //        Uf( i+1 ) = ii + len(y)
    //        where ii == indexof( x, y, Uf(i) )

    // Conceptually, numOcc is the number of occurrences of y in x, Uf( i ) is
    // the index to begin searching in x for y after the i^th occurrence of y in
    // x, and Us( i ) is the result of processing the remainder after processing
    // the i^th occurrence of y in x.
    Node emp = Word::mkEmptyWord(t.getType());
    Node assert =
        nm->mkNode(ITE, y.eqNode(emp), rpaw.eqNode(x), nm->mkNode(AND, lem));
    asserts.push_back(assert);

    // Thus, replaceall( x, y, z ) = rpaw
    retNode = rpaw;
  }
  else if (t.getKind() == STRING_REPLACE_RE)
  {
    // processing term: replace_re( x, y, z )
    Node x = t[0];
    Node y = t[1];
    Node z = t[2];
    Node k = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "k");

    // indexof_re(x, y, 0)
    Node idx = nm->mkNode(STRING_INDEXOF_RE, x, y, zero);

    // in_re("", y)
    Node matchesEmpty =
        nm->mkNode(STRING_IN_REGEXP, nm->mkConst(String("")), y);
    // k = z ++ x
    Node res1 = k.eqNode(nm->mkNode(STRING_CONCAT, z, x));

    TypeNode ktype = t.getType();
    Node k1 = sc->mkSkolemFun(SkolemFunId::SK_FIRST_MATCH_PRE, ktype, x, y);
    Node k2 = sc->mkSkolemFun(SkolemFunId::SK_FIRST_MATCH, ktype, x, y);
    Node k3 = sc->mkSkolemFun(SkolemFunId::SK_FIRST_MATCH_POST, ktype, x, y);
    Node k2Len = nm->mkNode(STRING_LENGTH, k2);
    // x = k1 ++ k2 ++ k3
    Node split = x.eqNode(nm->mkNode(STRING_CONCAT, k1, k2, k3));
    // len(k1) = indexof_re(x, y, 0)
    Node k1Len = nm->mkNode(STRING_LENGTH, k1).eqNode(idx);
    Node l = SkolemCache::mkLengthVar(t);
    Node bvll = nm->mkNode(BOUND_VAR_LIST, l);
    Node bound =
        nm->mkNode(AND, nm->mkNode(LEQ, zero, l), nm->mkNode(LT, l, k2Len));
    Node body = nm->mkNode(
        OR,
        bound.negate(),
        nm->mkNode(STRING_IN_REGEXP, nm->mkNode(STRING_SUBSTR, k2, zero, l), y)
            .negate());
    // forall l. 0 <= l < len(k2) => ~in_re(substr(k2, 0, l), r)
    Node shortestMatch = utils::mkForallInternal(bvll, body);
    // in_re(k2, y)
    Node match = nm->mkNode(STRING_IN_REGEXP, k2, y);
    // k = k1 ++ z ++ k3
    Node res = k.eqNode(nm->mkNode(STRING_CONCAT, k1, z, k3));

    // IF: indexof_re(x, y, 0) = -1
    // THEN: k = x
    // ELSE:
    //   x = k1 ++ k2 ++ k3 ^
    //   len(k1) = indexof_re(x, y, 0) ^
    //   (forall l. 0 <= l < len(k2) => ~in_re(substr(k2, 0, l), r)) ^
    //   in_re(k2, y) ^
    //   k = k1 ++ z ++ k3
    asserts.push_back(
        nm->mkNode(ITE,
                   idx.eqNode(negOne),
                   k.eqNode(x),
                   nm->mkNode(AND, {split, k1Len, shortestMatch, match, res})));
    retNode = k;
  }
  else if (t.getKind() == STRING_REPLACE_RE_ALL)
  {
    Node x = t[0];
    Node y = t[1];
    Node z = t[2];
    Node k = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "k");

    Node numOcc = sc->mkSkolemFun(
        SkolemFunId::STRINGS_NUM_OCCUR, nm->integerType(), x, y);
    std::vector<TypeNode> argTypes;
    argTypes.push_back(nm->integerType());
    TypeNode raResultType = nm->mkFunctionType(argTypes, t.getType());
    Node us = sc->mkSkolemFun(
        SkolemFunId::STRINGS_REPLACE_ALL_RESULT, raResultType, t);
    TypeNode ufType = nm->mkFunctionType(argTypes, nm->integerType());
    Node uf = sc->mkSkolemFun(SkolemFunId::STRINGS_OCCUR_INDEX, ufType, x, y);
    Node ul = sc->mkSkolemFun(SkolemFunId::STRINGS_OCCUR_LEN, ufType, x, y);

    Node emp = Word::mkEmptyWord(t.getType());

    Node yp = nm->mkNode(REGEXP_DIFF, y, nm->mkNode(STRING_TO_REGEXP, emp));
    // indexof_re(x, y', 0) = -1
    Node noMatch = nm->mkNode(STRING_INDEXOF_RE, x, yp, zero).eqNode(negOne);

    Node ufno = nm->mkNode(APPLY_UF, uf, numOcc);
    Node usno = nm->mkNode(APPLY_UF, us, numOcc);
    Node rem = nm->mkNode(STRING_SUBSTR, x, ufno, nm->mkNode(STRING_LENGTH, x));

    std::vector<Node> lemmas;
    // numOcc > 0
    lemmas.push_back(nm->mkNode(GT, numOcc, zero));
    // k = Us(0)
    lemmas.push_back(k.eqNode(nm->mkNode(APPLY_UF, us, zero)));
    // Us(numOcc) = substr(x, Uf(numOcc))
    lemmas.push_back(usno.eqNode(rem));
    // Uf(0) = 0
    lemmas.push_back(nm->mkNode(APPLY_UF, uf, zero).eqNode(zero));
    // indexof_re(substr(x, Uf(numOcc)), y', 0) = -1
    lemmas.push_back(
        nm->mkNode(STRING_INDEXOF_RE, rem, yp, zero).eqNode(negOne));

    Node i = SkolemCache::mkIndexVar(t);
    Node bvli = nm->mkNode(BOUND_VAR_LIST, i);
    Node bound =
        nm->mkNode(AND, nm->mkNode(GEQ, i, zero), nm->mkNode(LT, i, numOcc));
    Node ip1 = nm->mkNode(PLUS, i, one);
    Node ufi = nm->mkNode(APPLY_UF, uf, i);
    Node ufip1 = nm->mkNode(APPLY_UF, uf, ip1);
    Node ulip1 = nm->mkNode(APPLY_UF, ul, ip1);
    // ii = Uf(i + 1) - Ul(i + 1)
    Node ii = nm->mkNode(MINUS, ufip1, ulip1);

    std::vector<Node> flem;
    // Ul(i + 1) > 0
    flem.push_back(nm->mkNode(GT, ulip1, zero));
    // Uf(i + 1) = indexof_re(x, yp, Uf(i)) + Ul(i + 1)
    flem.push_back(ufip1.eqNode(
        nm->mkNode(PLUS, nm->mkNode(STRING_INDEXOF_RE, x, yp, ufi), ulip1)));
    // in_re(substr(x, ii, Ul(i + 1)), y')
    flem.push_back(nm->mkNode(
        STRING_IN_REGEXP, nm->mkNode(STRING_SUBSTR, x, ii, ulip1), yp));
    Node l = SkolemCache::mkLengthVar(t);
    Node bvll = nm->mkNode(BOUND_VAR_LIST, l);
    Node lenBound =
        nm->mkNode(AND, nm->mkNode(LT, zero, l), nm->mkNode(LT, l, ulip1));
    Node shortestMatchBody = nm->mkNode(
        OR,
        lenBound.negate(),
        nm->mkNode(STRING_IN_REGEXP, nm->mkNode(STRING_SUBSTR, x, ii, l), y)
            .negate());
    // forall l. 0 < l < Ul(i + 1) =>
    //   ~in_re(substr(x, Uf(i + 1) - Ul(i + 1), l), y')
    flem.push_back(utils::mkForallInternal(bvll, shortestMatchBody));
    Node pfxMatch =
        nm->mkNode(STRING_SUBSTR, x, ufi, nm->mkNode(MINUS, ii, ufi));
    // Us(i) = substr(x, Uf(i), ii - Uf(i)) ++ z ++ Us(i + 1)
    flem.push_back(
        nm->mkNode(APPLY_UF, us, i)
            .eqNode(nm->mkNode(
                STRING_CONCAT, pfxMatch, z, nm->mkNode(APPLY_UF, us, ip1))));
    Node body = nm->mkNode(OR, bound.negate(), nm->mkNode(AND, flem));
    Node forall = utils::mkForallInternal(bvli, body);
    lemmas.push_back(forall);

    // IF indexof(x, y', 0) = -1
    // THEN: k = x
    // ELSE:
    //   numOcc > 0 ^
    //   k = Us(0) ^ Us(numOcc) = substr(x, Uf(numOcc)) ^
    //   Uf(0) = 0 ^ indexof_re(substr(x, Uf(numOcc)), y', 0) = -1 ^
    //   forall i. 0 <= i < nummOcc =>
    //     Ul(i + 1) > 0 ^
    //     Uf(i + 1) = indexof_re(x, yp, Uf(i)) + Ul(i + 1) ^
    //     in_re(substr(x, ii, Ul(i + 1)), y') ^
    //     forall l. 0 < l < Ul(i + 1) =>
    //       ~in_re(substr(x, ii, l), y')
    //     Us(i) = substr(x, Uf(i), ii - Uf(i)) ++ z ++ Us(i + 1)
    //     where ii = Uf(i + 1) - Ul(i + 1)
    // where y' = re.diff(y, "")
    //
    // Conceptually, y' is the regex y but excluding the empty string (because
    // we do not want to match empty strings), numOcc is the number of shortest
    // matches of y' in x, Uf(i) is the end position of the i-th match, Ul(i)
    // is the length of the i^th match, and Us(i) is the result of processing
    // the remainder after processing the i^th occurrence of y in x.
    //
    // Visualization of Uf(i) and Ul(i):
    //
    // x = |------------| match 1 |-----------| match 2   |---|
    //     |                      |                       |
    //     Uf(0)                  Uf(1)                   Uf(2)
    //
    //                  |---------|           |-----------|
    //                    Ul(1)                 Ul(2)
    asserts.push_back(
        nm->mkNode(ITE, noMatch, k.eqNode(x), nm->mkNode(AND, lemmas)));
    retNode = k;
  }
  else if (t.getKind() == STRING_TOLOWER || t.getKind() == STRING_TOUPPER)
  {
    Node x = t[0];
    Node r = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "r");

    Node lenx = nm->mkNode(STRING_LENGTH, x);
    Node lenr = nm->mkNode(STRING_LENGTH, r);
    Node eqLenA = lenx.eqNode(lenr);

    Node i = SkolemCache::mkIndexVar(t);
    Node bvi = nm->mkNode(BOUND_VAR_LIST, i);

    Node ci = nm->mkNode(STRING_TO_CODE, nm->mkNode(STRING_SUBSTR, x, i, one));
    Node ri = nm->mkNode(STRING_TO_CODE, nm->mkNode(STRING_SUBSTR, r, i, one));

    Node lb = nm->mkConstInt(Rational(t.getKind() == STRING_TOUPPER ? 97 : 65));
    Node ub =
        nm->mkConstInt(Rational(t.getKind() == STRING_TOUPPER ? 122 : 90));
    Node offset =
        nm->mkConstInt(Rational(t.getKind() == STRING_TOUPPER ? -32 : 32));

    Node res = nm->mkNode(
        ITE,
        nm->mkNode(AND, nm->mkNode(LEQ, lb, ci), nm->mkNode(LEQ, ci, ub)),
        nm->mkNode(PLUS, ci, offset),
        ci);

    Node bound =
        nm->mkNode(AND, nm->mkNode(LEQ, zero, i), nm->mkNode(LT, i, lenr));
    Node body = nm->mkNode(OR, bound.negate(), ri.eqNode(res));
    Node rangeA = utils::mkForallInternal(bvi, body);

    // upper 65 ... 90
    // lower 97 ... 122
    // assert:
    //   len(r) = len(x) ^
    //   forall i. 0 <= i < len(r) =>
    //     str.code( str.substr(r,i,1) ) = ite( 97 <= ci <= 122, ci-32, ci)
    // where ci = str.code( str.substr(x,i,1) )
    Node assert = nm->mkNode(AND, eqLenA, rangeA);
    asserts.push_back(assert);

    // Thus, toLower( x ) = r
    retNode = r;
  }
  else if (t.getKind() == STRING_REV)
  {
    Node x = t[0];
    Node r = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "r");

    Node lenx = nm->mkNode(STRING_LENGTH, x);
    Node lenr = nm->mkNode(STRING_LENGTH, r);
    Node eqLenA = lenx.eqNode(lenr);

    Node i = SkolemCache::mkIndexVar(t);
    Node bvi = nm->mkNode(BOUND_VAR_LIST, i);

    Node revi = nm->mkNode(
        MINUS, nm->mkNode(STRING_LENGTH, x), nm->mkNode(PLUS, i, one));
    Node ssr = nm->mkNode(STRING_SUBSTR, r, i, one);
    Node ssx = nm->mkNode(STRING_SUBSTR, x, revi, one);

    Node bound =
        nm->mkNode(AND, nm->mkNode(LEQ, zero, i), nm->mkNode(LT, i, lenr));
    Node body = nm->mkNode(OR, bound.negate(), ssr.eqNode(ssx));
    Node rangeA = utils::mkForallInternal(bvi, body);
    // assert:
    //   len(r) = len(x) ^
    //   forall i. 0 <= i < len(r) =>
    //     substr(r,i,1) = substr(x,len(x)-(i+1),1)
    Node assert = nm->mkNode(AND, eqLenA, rangeA);
    asserts.push_back(assert);

    // Thus, (str.rev x) = r
    retNode = r;
  }
  else if (t.getKind() == kind::STRING_CONTAINS)
  {
    Node x = t[0];
    Node s = t[1];
    //negative contains reduces to existential
    Node lenx = NodeManager::currentNM()->mkNode(kind::STRING_LENGTH, x);
    Node lens = NodeManager::currentNM()->mkNode(kind::STRING_LENGTH, s);
    Node b1 = SkolemCache::mkIndexVar(t);
    Node b1v = NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST, b1);
    Node body = NodeManager::currentNM()->mkNode(
        kind::AND,
        NodeManager::currentNM()->mkNode(kind::LEQ, zero, b1),
        NodeManager::currentNM()->mkNode(
            kind::LEQ,
            b1,
            NodeManager::currentNM()->mkNode(kind::MINUS, lenx, lens)),
        NodeManager::currentNM()->mkNode(
            kind::EQUAL,
            NodeManager::currentNM()->mkNode(kind::STRING_SUBSTR, x, b1, lens),
            s));
    retNode = utils::mkForallInternal(b1v, body.negate()).negate();
  }
  else if (t.getKind() == kind::STRING_LEQ)
  {
    Node ltp = sc->mkTypedSkolemCached(
        nm->booleanType(), t, SkolemCache::SK_PURIFY, "ltp");
    Node k = SkolemCache::mkIndexVar(t);

    std::vector<Node> conj;
    conj.push_back(nm->mkNode(GEQ, k, zero));
    Node substr[2];
    Node code[2];
    for (unsigned r = 0; r < 2; r++)
    {
      Node ta = t[r];
      Node tb = t[1 - r];
      substr[r] = nm->mkNode(STRING_SUBSTR, ta, zero, k);
      code[r] =
          nm->mkNode(STRING_TO_CODE, nm->mkNode(STRING_SUBSTR, ta, k, one));
      conj.push_back(nm->mkNode(LEQ, k, nm->mkNode(STRING_LENGTH, ta)));
    }
    conj.push_back(substr[0].eqNode(substr[1]));
    std::vector<Node> ite_ch;
    ite_ch.push_back(ltp);
    for (unsigned r = 0; r < 2; r++)
    {
      ite_ch.push_back(nm->mkNode(LT, code[r], code[1 - r]));
    }
    conj.push_back(nm->mkNode(ITE, ite_ch));

    Node conjn = utils::mkForallInternal(nm->mkNode(BOUND_VAR_LIST, k),
                                         nm->mkNode(AND, conj).negate())
                     .negate();
    // Intuitively, the reduction says either x and y are equal, or they have
    // some (maximal) common prefix after which their characters at position k
    // are distinct, and the comparison of their code matches the return value
    // of the overall term.
    // Notice the below reduction relies on the semantics of str.code being -1
    // for the empty string. In particular, say x = "a" and y = "ab", then the
    // reduction below is satisfied for k = 1, since
    //   str.code(substr( "a", 1, 1 )) = str.code( "" ) = -1 <
    //   str.code(substr( "ab", 1, 1 )) = str.code( "b" ) = 66

    // assert:
    //  IF x=y
    //  THEN: ltp
    //  ELSE: exists k.
    //        k >= 0 AND k <= len( x ) AND k <= len( y ) AND
    //        substr( x, 0, k ) = substr( y, 0, k ) AND
    //        IF    ltp
    //        THEN: str.code(substr( x, k, 1 )) < str.code(substr( y, k, 1 ))
    //        ELSE: str.code(substr( x, k, 1 )) > str.code(substr( y, k, 1 ))
    Node assert = nm->mkNode(ITE, t[0].eqNode(t[1]), ltp, conjn);
    asserts.push_back(assert);

    // Thus, str.<=( x, y ) = ltp
    retNode = ltp;
  }
  return retNode;
}

Node StringsPreprocess::simplify(Node t, std::vector<Node>& asserts)
{
  size_t prev_asserts = asserts.size();
  // call the static reduce routine
  Node retNode = reduce(t, asserts, d_sc);
  if( t!=retNode ){
    Trace("strings-preprocess") << "StringsPreprocess::simplify: " << t << " -> " << retNode << std::endl;
    if (!asserts.empty())
    {
      Trace("strings-preprocess")
          << " ... new nodes (" << (asserts.size() - prev_asserts)
          << "):" << std::endl;
      for (size_t i = prev_asserts; i < asserts.size(); ++i)
      {
        Trace("strings-preprocess") << "   " << asserts[i] << std::endl;
      }
    }
    if (d_statReductions != nullptr)
    {
      (*d_statReductions) << t.getKind();
    }
  }
  else
  {
    Trace("strings-preprocess-debug")
        << "Return " << retNode << " unchanged" << std::endl;
  }
  return retNode;
}

Node StringsPreprocess::simplifyRec(Node t, std::vector<Node>& asserts)
{
  std::map<Node, Node>::iterator it = d_visited.find(t);
  if (it != d_visited.end())
  {
    return it->second;
  }else{
    Node retNode = t;
    if( t.getNumChildren()==0 ){
      retNode = simplify(t, asserts);
    }
    else if (!t.isClosure())
    {
      bool changed = false;
      std::vector< Node > cc;
      if( t.getMetaKind() == kind::metakind::PARAMETERIZED ){
        cc.push_back( t.getOperator() );
      }
      for(unsigned i=0; i<t.getNumChildren(); i++) {
        Node s = simplifyRec(t[i], asserts);
        cc.push_back( s );
        if( s!=t[i] ) {
          changed = true;
        }
      }
      Node tmp = t;
      if( changed ){
        tmp = NodeManager::currentNM()->mkNode( t.getKind(), cc );
      }
      retNode = simplify(tmp, asserts);
    }
    d_visited[t] = retNode;
    return retNode;
  }
}

Node StringsPreprocess::processAssertion(Node n, std::vector<Node>& asserts)
{
  std::vector<Node> asserts_curr;
  Node ret = simplifyRec(n, asserts_curr);
  while (!asserts_curr.empty())
  {
    Node curr = asserts_curr.back();
    asserts_curr.pop_back();
    std::vector<Node> asserts_tmp;
    curr = simplifyRec(curr, asserts_tmp);
    asserts_curr.insert(
        asserts_curr.end(), asserts_tmp.begin(), asserts_tmp.end());
    asserts.push_back(curr);
  }
  return ret;
}

}  // namespace strings
}  // namespace theory
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback