summaryrefslogtreecommitdiff
path: root/src/theory/sort_inference.cpp
blob: d444922597bfc35da501574bae81a4b8f5425627 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Paul Meng, Mathias Preiner
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Sort inference module.
 *
 * This class implements sort inference, based on a simple algorithm:
 * First, we assume all functions and predicates have distinct uninterpreted
 * types.
 * One pass is made through the input assertions, while a union-find data
 * structure maintains necessary information regarding constraints on these
 * types.
 */

#include "theory/sort_inference.h"

#include <sstream>
#include <vector>

#include "expr/skolem_manager.h"
#include "options/quantifiers_options.h"
#include "options/smt_options.h"
#include "options/uf_options.h"
#include "smt/env.h"
#include "theory/quantifiers/quant_util.h"
#include "theory/rewriter.h"

using namespace cvc5;
using namespace cvc5::kind;
using namespace std;

namespace cvc5 {
namespace theory {

void SortInference::UnionFind::print(const char * c){
  for( std::map< int, int >::iterator it = d_eqc.begin(); it != d_eqc.end(); ++it ){
    Trace(c) << "s_" << it->first << " = s_" << it->second << ", ";
  }
  for( unsigned i=0; i<d_deq.size(); i++ ){
    Trace(c) << "s_" << d_deq[i].first << " != s_" << d_deq[i].second << ", ";
  }
  Trace(c) << std::endl;
}
void SortInference::UnionFind::set( UnionFind& c ) {
  clear();
  for( std::map< int, int >::iterator it = c.d_eqc.begin(); it != c.d_eqc.end(); ++it ){
    d_eqc[ it->first ] = it->second;
  }
  d_deq.insert( d_deq.end(), c.d_deq.begin(), c.d_deq.end() );
}
int SortInference::UnionFind::getRepresentative( int t ){
  std::map< int, int >::iterator it = d_eqc.find( t );
  if( it==d_eqc.end() || it->second==t ){
    return t;
  }else{
    int rt = getRepresentative( it->second );
    d_eqc[t] = rt;
    return rt;
  }
}
void SortInference::UnionFind::setEqual( int t1, int t2 ){
  if( t1!=t2 ){
    int rt1 = getRepresentative( t1 );
    int rt2 = getRepresentative( t2 );
    if( rt1>rt2 ){
      d_eqc[rt1] = rt2;
    }else{
      d_eqc[rt2] = rt1;
    }
  }
}
bool SortInference::UnionFind::isValid() {
  for( unsigned i=0; i<d_deq.size(); i++ ){
    if( areEqual( d_deq[i].first, d_deq[i].second ) ){
      return false;
    }
  }
  return true;
}


void SortInference::recordSubsort( TypeNode tn, int s ){
  s = d_type_union_find.getRepresentative( s );
  if( std::find( d_sub_sorts.begin(), d_sub_sorts.end(), s )==d_sub_sorts.end() ){
    d_sub_sorts.push_back( s );
    d_type_sub_sorts[tn].push_back( s );
  }
}

void SortInference::printSort( const char* c, int t ){
  int rt = d_type_union_find.getRepresentative( t );
  if( d_type_types.find( rt )!=d_type_types.end() ){
    Trace(c) << d_type_types[rt];
  }else{
    Trace(c) << "s_" << rt;
  }
}

void SortInference::reset() {
  d_sub_sorts.clear();
  d_non_monotonic_sorts.clear();
  d_type_sub_sorts.clear();
  //reset info
  d_sortCount = 1;
  d_type_union_find.clear();
  d_type_types.clear();
  d_id_for_types.clear();
  d_op_return_types.clear();
  d_op_arg_types.clear();
  d_var_types.clear();
  //for rewriting
  d_symbol_map.clear();
  d_const_map.clear();
}

void SortInference::initialize(const std::vector<Node>& assertions)
{
  Trace("sort-inference-proc") << "Calculating sort inference..." << std::endl;
  // process all assertions
  std::map<Node, int> visited;
  NodeManager * nm = NodeManager::currentNM();
  int btId = getIdForType( nm->booleanType() );
  for (const Node& a : assertions)
  {
    Trace("sort-inference-debug") << "Process " << a << std::endl;
    std::map<Node, Node> var_bound;
    int pid = process(a, var_bound, visited);
    // the type of the topmost term must be Boolean
    setEqual( pid, btId );
  }
  Trace("sort-inference-proc") << "...done" << std::endl;
  for (const std::pair<const Node, int>& rt : d_op_return_types)
  {
    Trace("sort-inference") << rt.first << " : ";
    TypeNode retTn = rt.first.getType();
    if (!d_op_arg_types[rt.first].empty())
    {
      Trace("sort-inference") << "( ";
      for (size_t i = 0; i < d_op_arg_types[rt.first].size(); i++)
      {
        recordSubsort(retTn[i], d_op_arg_types[rt.first][i]);
        printSort("sort-inference", d_op_arg_types[rt.first][i]);
        Trace("sort-inference") << " ";
      }
      Trace("sort-inference") << ") -> ";
      retTn = retTn[(int)retTn.getNumChildren() - 1];
    }
    recordSubsort(retTn, rt.second);
    printSort("sort-inference", rt.second);
    Trace("sort-inference") << std::endl;
  }
  for (std::pair<const Node, std::map<Node, int> >& vt : d_var_types)
  {
    Trace("sort-inference")
        << "Quantified formula : " << vt.first << " : " << std::endl;
    for (const Node& v : vt.first[0])
    {
      recordSubsort(v.getType(), vt.second[v]);
      printSort("sort-inference", vt.second[v]);
      Trace("sort-inference") << std::endl;
    }
    Trace("sort-inference") << std::endl;
  }

  // determine monotonicity of sorts
  Trace("sort-inference-proc")
      << "Calculating monotonicty for subsorts..." << std::endl;
  std::map<Node, std::map<int, bool> > visitedm;
  for (const Node& a : assertions)
  {
    Trace("sort-inference-debug")
        << "Process monotonicity for " << a << std::endl;
    std::map<Node, Node> var_bound;
    processMonotonic(a, true, true, var_bound, visitedm);
  }
  Trace("sort-inference-proc") << "...done" << std::endl;

  Trace("sort-inference") << "We have " << d_sub_sorts.size()
                          << " sub-sorts : " << std::endl;
  for (unsigned i = 0, size = d_sub_sorts.size(); i < size; i++)
  {
    printSort("sort-inference", d_sub_sorts[i]);
    if (d_type_types.find(d_sub_sorts[i]) != d_type_types.end())
    {
      Trace("sort-inference") << " is interpreted." << std::endl;
    }
    else if (d_non_monotonic_sorts.find(d_sub_sorts[i])
             == d_non_monotonic_sorts.end())
    {
      Trace("sort-inference") << " is monotonic." << std::endl;
    }
    else
    {
      Trace("sort-inference") << " is not monotonic." << std::endl;
    }
  }
}

Node SortInference::simplify(Node n,
                             std::map<Node, Node>& model_replace_f,
                             std::map<Node, std::map<TypeNode, Node> >& visited)
{
  Trace("sort-inference-debug") << "Simplify " << n << std::endl;
  std::map<Node, Node> var_bound;
  TypeNode tnn;
  Node ret = simplifyNode(n, var_bound, tnn, model_replace_f, visited);
  ret = rewrite(ret);
  return ret;
}

void SortInference::getNewAssertions(std::vector<Node>& new_asserts)
{
  NodeManager* nm = NodeManager::currentNM();
  // now, ensure constants are distinct
  for (const std::pair<const TypeNode, std::map<Node, Node> >& cm : d_const_map)
  {
    std::vector<Node> consts;
    for (const std::pair<const Node, Node>& c : cm.second)
    {
      Assert(c.first.isConst());
      consts.push_back(c.second);
    }
    // add lemma enforcing introduced constants to be distinct
    if (consts.size() > 1)
    {
      Node distinct_const = nm->mkNode(kind::DISTINCT, consts);
      Trace("sort-inference-rewrite")
          << "Add the constant distinctness lemma: " << std::endl;
      Trace("sort-inference-rewrite") << "  " << distinct_const << std::endl;
      new_asserts.push_back(distinct_const);
    }
  }

  // enforce constraints based on monotonicity
  Trace("sort-inference-proc") << "Enforce monotonicity..." << std::endl;

  for (const std::pair<const TypeNode, std::vector<int> >& tss :
       d_type_sub_sorts)
  {
    int nmonSort = -1;
    unsigned nsorts = tss.second.size();
    for (unsigned i = 0; i < nsorts; i++)
    {
      if (d_non_monotonic_sorts.find(tss.second[i])
          != d_non_monotonic_sorts.end())
      {
        nmonSort = tss.second[i];
        break;
      }
    }
    if (nmonSort != -1)
    {
      std::vector<Node> injections;
      TypeNode base_tn = getOrCreateTypeForId(nmonSort, tss.first);
      for (unsigned i = 0; i < nsorts; i++)
      {
        if (tss.second[i] != nmonSort)
        {
          TypeNode new_tn = getOrCreateTypeForId(tss.second[i], tss.first);
          // make injection to nmonSort
          Node a1 = mkInjection(new_tn, base_tn);
          injections.push_back(a1);
          if (d_non_monotonic_sorts.find(tss.second[i])
              != d_non_monotonic_sorts.end())
          {
            // also must make injection from nmonSort to this
            Node a2 = mkInjection(base_tn, new_tn);
            injections.push_back(a2);
          }
        }
      }
      if (Trace.isOn("sort-inference-rewrite"))
      {
        Trace("sort-inference-rewrite")
            << "Add the following injections for " << tss.first
            << " to ensure consistency wrt non-monotonic sorts : " << std::endl;
        for (const Node& i : injections)
        {
          Trace("sort-inference-rewrite") << "   " << i << std::endl;
        }
      }
      new_asserts.insert(
          new_asserts.end(), injections.begin(), injections.end());
    }
  }
  Trace("sort-inference-proc") << "...done" << std::endl;
  // no sub-sort information is stored
  reset();
  Trace("sort-inference-debug") << "Finished sort inference" << std::endl;
}

void SortInference::computeMonotonicity(const std::vector<Node>& assertions)
{
  std::map<Node, std::map<int, bool> > visitedmt;
  Trace("sort-inference-proc")
      << "Calculating monotonicty for types..." << std::endl;
  for (const Node& a : assertions)
  {
    Trace("sort-inference-debug")
        << "Process type monotonicity for " << a << std::endl;
    std::map<Node, Node> var_bound;
    processMonotonic(a, true, true, var_bound, visitedmt, true);
  }
  Trace("sort-inference-proc") << "...done" << std::endl;
}

void SortInference::setEqual( int t1, int t2 ){
  if( t1!=t2 ){
    int rt1 = d_type_union_find.getRepresentative( t1 );
    int rt2 = d_type_union_find.getRepresentative( t2 );
    if( rt1!=rt2 ){
      Trace("sort-inference-debug") << "Set equal : ";
      printSort( "sort-inference-debug", rt1 );
      Trace("sort-inference-debug") << " ";
      printSort( "sort-inference-debug", rt2 );
      Trace("sort-inference-debug") << std::endl;
      /*
      d_type_eq_class[rt1].insert( d_type_eq_class[rt1].end(), d_type_eq_class[rt2].begin(), d_type_eq_class[rt2].end() );
      d_type_eq_class[rt2].clear();
      Trace("sort-inference-debug") << "EqClass : { ";
      for( int i=0; i<(int)d_type_eq_class[rt1].size(); i++ ){
        Trace("sort-inference-debug") << d_type_eq_class[rt1][i] << ", ";
      }
      Trace("sort-inference-debug") << "}" << std::endl;
      */
      if( rt2>rt1 ){
        //swap
        int swap = rt1;
        rt1 = rt2;
        rt2 = swap;
      }
      std::map< int, TypeNode >::iterator it1 = d_type_types.find( rt1 );
      if( it1!=d_type_types.end() ){
        if( d_type_types.find( rt2 )==d_type_types.end() ){
          d_type_types[rt2] = it1->second;
          d_type_types.erase( rt1 );
        }else{
          Trace("sort-inference-debug") << "...fail : associated with types " << d_type_types[rt1] << " and " << d_type_types[rt2] << std::endl;
          return;
        }
      }
      d_type_union_find.d_eqc[rt1] = rt2;
    }
  }
}

int SortInference::getIdForType( TypeNode tn ){
  //register the return type
  std::map< TypeNode, int >::iterator it = d_id_for_types.find( tn );
  if( it==d_id_for_types.end() ){
    int sc = d_sortCount;
    d_type_types[d_sortCount] = tn;
    d_id_for_types[tn] = d_sortCount;
    d_sortCount++;
    return sc;
  }else{
    return it->second;
  }
}

int SortInference::process( Node n, std::map< Node, Node >& var_bound, std::map< Node, int >& visited ){
  std::map< Node, int >::iterator itv = visited.find( n );
  if( itv!=visited.end() ){
    return itv->second;
  }else{
    //add to variable bindings
    bool use_new_visited = false;
    std::map< Node, int > new_visited;
    if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
      if( d_var_types.find( n )!=d_var_types.end() ){
        return getIdForType( n.getType() );
      }else{
        //apply sort inference to quantified variables
        for( size_t i=0; i<n[0].getNumChildren(); i++ ){
          TypeNode nitn = n[0][i].getType();
          if( !nitn.isSort() )
          {
            // If the variable is of an interpreted sort, we assume the
            // the sort of the variable will stay the same sort.
            d_var_types[n][n[0][i]] = getIdForType( nitn );
          }
          else
          {
            // If it is of an uninterpreted sort, infer subsorts.
            d_var_types[n][n[0][i]] = d_sortCount;
            d_sortCount++;
          }
          var_bound[ n[0][i] ] = n;
        }
      }
      use_new_visited = true;
    }

    //process children
    std::vector< Node > children;
    std::vector< int > child_types;
    for( size_t i=0; i<n.getNumChildren(); i++ ){
      bool processChild = true;
      if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
        processChild = options().quantifiers.userPatternsQuant
                               == options::UserPatMode::IGNORE
                           ? i == 1
                           : i >= 1;
      }
      if( processChild ){
        children.push_back( n[i] );
        child_types.push_back( process( n[i], var_bound, use_new_visited ? new_visited : visited ) );
      }
    }

    //remove from variable bindings
    if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
      //erase from variable bound
      for( size_t i=0; i<n[0].getNumChildren(); i++ ){
        var_bound.erase( n[0][i] );
      }
    }
    Trace("sort-inference-debug") << "...Process " << n << std::endl;

    int retType;
    if( n.getKind()==kind::EQUAL && !n[0].getType().isBoolean() ){
      Trace("sort-inference-debug") << "For equality " << n << ", set equal types from : " << n[0].getType() << " " << n[1].getType() << std::endl;
      //if original types are mixed (e.g. Int/Real), don't commit type equality in either direction
      if( n[0].getType()!=n[1].getType() ){
        //for now, assume the original types
        for( unsigned i=0; i<2; i++ ){
          int ct = getIdForType( n[i].getType() );
          setEqual( child_types[i], ct );
        }
      }else{
        //we only require that the left and right hand side must be equal
        setEqual( child_types[0], child_types[1] );
      }
      d_equality_types[n] = child_types[0];
      retType = getIdForType( n.getType() );
    }
    else if (isHandledApplyUf(n.getKind()))
    {
      Node op = n.getOperator();
      TypeNode tn_op = op.getType();
      if( d_op_return_types.find( op )==d_op_return_types.end() ){
        if( n.getType().isBoolean() ){
          //use booleans
          d_op_return_types[op] = getIdForType( n.getType() );
        }else{
          //assign arbitrary sort for return type
          d_op_return_types[op] = d_sortCount;
          d_sortCount++;
        }
        // d_type_eq_class[d_sortCount].push_back( op );
        // assign arbitrary sort for argument types
        for( size_t i=0; i<n.getNumChildren(); i++ ){
          d_op_arg_types[op].push_back(d_sortCount);
          d_sortCount++;
        }
      }
      for( size_t i=0; i<n.getNumChildren(); i++ ){
        //the argument of the operator must match the return type of the subterm
        if( n[i].getType()!=tn_op[i] ){
          //if type mismatch, assume original types
          Trace("sort-inference-debug") << "Argument " << i << " of " << op << " " << n[i] << " has type " << n[i].getType();
          Trace("sort-inference-debug") << ", while operator arg has type " << tn_op[i] << std::endl;
          int ct1 = getIdForType( n[i].getType() );
          setEqual( child_types[i], ct1 );
          int ct2 = getIdForType( tn_op[i] );
          setEqual( d_op_arg_types[op][i], ct2 );
        }else{
          setEqual( child_types[i], d_op_arg_types[op][i] );
        }
      }
      //return type is the return type
      retType = d_op_return_types[op];
    }else{
      std::map< Node, Node >::iterator it = var_bound.find( n );
      if( it!=var_bound.end() ){
        Trace("sort-inference-debug") << n << " is a bound variable." << std::endl;
        //the return type was specified while binding
        retType = d_var_types[it->second][n];
      }else if( n.isVar() ){
        Trace("sort-inference-debug") << n << " is a variable." << std::endl;
        if( d_op_return_types.find( n )==d_op_return_types.end() ){
          //assign arbitrary sort
          d_op_return_types[n] = d_sortCount;
          d_sortCount++;
          // d_type_eq_class[d_sortCount].push_back( n );
        }
        retType = d_op_return_types[n];
      }else if( n.isConst() ){
        Trace("sort-inference-debug") << n << " is a constant." << std::endl;
        //can be any type we want
        retType = d_sortCount;
        d_sortCount++;
      }else{
        Trace("sort-inference-debug") << n << " is a interpreted symbol." << std::endl;
        //it is an interpreted term
        for( size_t i=0; i<children.size(); i++ ){
          Trace("sort-inference-debug") << children[i] << " forced to have " << children[i].getType() << std::endl;
          //must enforce the actual type of the operator on the children
          int ct = getIdForType( children[i].getType() );
          setEqual( child_types[i], ct );
        }
        //return type must be the actual return type
        retType = getIdForType( n.getType() );
      }
    }
    Trace("sort-inference-debug") << "...Type( " << n << " ) = ";
    printSort("sort-inference-debug", retType );
    Trace("sort-inference-debug") << std::endl;
    visited[n] = retType;
    return retType;
  }
}

void SortInference::processMonotonic( Node n, bool pol, bool hasPol, std::map< Node, Node >& var_bound, std::map< Node, std::map< int, bool > >& visited, bool typeMode ) {
  int pindex = hasPol ? ( pol ? 1 : -1 ) : 0;
  if( visited[n].find( pindex )==visited[n].end() ){
    visited[n][pindex] = true;
    Trace("sort-inference-debug") << "...Process monotonic " << pol << " " << hasPol << " " << n << std::endl;
    if( n.getKind()==kind::FORALL ){
      //only consider variables universally if it is possible this quantified formula is asserted positively
      if( !hasPol || pol ){
        for( unsigned i=0; i<n[0].getNumChildren(); i++ ){
          var_bound[n[0][i]] = n;
        }
      }
      processMonotonic( n[1], pol, hasPol, var_bound, visited, typeMode );
      if( !hasPol || pol ){
        for( unsigned i=0; i<n[0].getNumChildren(); i++ ){
          var_bound.erase( n[0][i] );
        }
      }
      return;
    }else if( n.getKind()==kind::EQUAL ){
      if( !hasPol || pol ){
        for( unsigned i=0; i<2; i++ ){
          if( var_bound.find( n[i] )!=var_bound.end() ){
            if( !typeMode ){
              int sid = getSortId( var_bound[n[i]], n[i] );
              d_non_monotonic_sorts[sid] = true;
            }else{
              d_non_monotonic_sorts_orig[n[i].getType()] = true;
            }
            break;
          }
        }
      }
    }
    for( unsigned i=0; i<n.getNumChildren(); i++ ){
      bool npol;
      bool nhasPol;
      theory::QuantPhaseReq::getPolarity( n, i, hasPol, pol, nhasPol, npol );
      processMonotonic( n[i], npol, nhasPol, var_bound, visited, typeMode );
    }
  }
}


TypeNode SortInference::getOrCreateTypeForId( int t, TypeNode pref ){
  int rt = d_type_union_find.getRepresentative( t );
  if( d_type_types.find( rt )!=d_type_types.end() ){
    return d_type_types[rt];
  }else{
    TypeNode retType;
    // See if we can assign pref. This is an optimization for reusing an
    // uninterpreted sort as the first subsort, so that fewer symbols needed
    // to be rewritten in the sort-inferred signature. Notice we only assign
    // pref here if it is an uninterpreted sort.
    if (!pref.isNull() && d_id_for_types.find(pref) == d_id_for_types.end()
        && pref.isSort())
    {
      retType = pref;
    }else{
      //must create new type
      std::stringstream ss;
      ss << "it_" << t << "_" << pref;
      retType = NodeManager::currentNM()->mkSort(ss.str());
    }
    Trace("sort-inference") << "-> Make type " << retType << " to correspond to ";
    printSort("sort-inference", t );
    Trace("sort-inference") << std::endl;
    d_id_for_types[ retType ] = rt;
    d_type_types[ rt ] = retType;
    return retType;
  }
}

TypeNode SortInference::getTypeForId( int t ){
  int rt = d_type_union_find.getRepresentative( t );
  if( d_type_types.find( rt )!=d_type_types.end() ){
    return d_type_types[rt];
  }else{
    return TypeNode::null();
  }
}

Node SortInference::getNewSymbol( Node old, TypeNode tn ){
  NodeManager* nm = NodeManager::currentNM();
  SkolemManager* sm = nm->getSkolemManager();
  // if no sort was inferred for this node, return original
  if( tn.isNull() || tn.isComparableTo( old.getType() ) ){
    return old;
  }else if( old.isConst() ){
    //must make constant of type tn
    if( d_const_map[tn].find( old )==d_const_map[tn].end() ){
      std::stringstream ss;
      ss << "ic_" << tn << "_" << old;
      d_const_map[tn][old] = sm->mkDummySkolem(
          ss.str(),
          tn,
          "constant created during sort inference");  // use mkConst???
    }
    return d_const_map[tn][ old ];
  }else if( old.getKind()==kind::BOUND_VARIABLE ){
    std::stringstream ss;
    ss << "b_" << old;
    return nm->mkBoundVar(ss.str(), tn);
  }
  std::stringstream ss;
  ss << "i_" << old;
  return sm->mkDummySkolem(ss.str(), tn, "created during sort inference");
}

Node SortInference::simplifyNode(
    Node n,
    std::map<Node, Node>& var_bound,
    TypeNode tnn,
    std::map<Node, Node>& model_replace_f,
    std::map<Node, std::map<TypeNode, Node> >& visited)
{
  std::map< TypeNode, Node >::iterator itv = visited[n].find( tnn );
  if( itv!=visited[n].end() ){
    return itv->second;
  }else{
    NodeManager* nm = NodeManager::currentNM();
    SkolemManager* sm = nm->getSkolemManager();
    Trace("sort-inference-debug2") << "Simplify " << n << ", type context=" << tnn << std::endl;
    std::vector< Node > children;
    std::map< Node, std::map< TypeNode, Node > > new_visited;
    bool use_new_visited = false;
    if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
      //recreate based on types of variables
      std::vector< Node > new_children;
      for( size_t i=0; i<n[0].getNumChildren(); i++ ){
        TypeNode tn = getOrCreateTypeForId( d_var_types[n][ n[0][i] ], n[0][i].getType() );
        Node v = getNewSymbol( n[0][i], tn );
        Trace("sort-inference-debug2") << "Map variable " << n[0][i] << " to " << v << std::endl;
        new_children.push_back( v );
        var_bound[ n[0][i] ] = v;
      }
      children.push_back(nm->mkNode(n[0].getKind(), new_children));
      use_new_visited = true;
    }

    //process children
    if( n.getMetaKind() == kind::metakind::PARAMETERIZED ){
      children.push_back( n.getOperator() );
    }
    Node op;
    if( n.hasOperator() ){
      op = n.getOperator();
    }
    bool childChanged = false;
    TypeNode tnnc;
    for( size_t i=0; i<n.getNumChildren(); i++ ){
      bool processChild = true;
      if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
        processChild = options().quantifiers.userPatternsQuant
                               == options::UserPatMode::IGNORE
                           ? i == 1
                           : i >= 1;
      }
      if( processChild ){
        if (isHandledApplyUf(n.getKind()))
        {
          Assert(d_op_arg_types.find(op) != d_op_arg_types.end());
          tnnc = getOrCreateTypeForId( d_op_arg_types[op][i], n[i].getType() );
          Assert(!tnnc.isNull());
        }
        else if (n.getKind() == kind::EQUAL && !n[0].getType().isBoolean()
                 && i == 0)
        {
          Assert(d_equality_types.find(n) != d_equality_types.end());
          tnnc = getOrCreateTypeForId( d_equality_types[n], n[0].getType() );
          Assert(!tnnc.isNull());
        }
        Node nc = simplifyNode(n[i],
                               var_bound,
                               tnnc,
                               model_replace_f,
                               use_new_visited ? new_visited : visited);
        Trace("sort-inference-debug2") << "Simplify " << i << " " << n[i] << " returned " << nc << std::endl;
        children.push_back( nc );
        childChanged = childChanged || nc!=n[i];
      }
    }

    //remove from variable bindings
    Node ret;
    if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
      //erase from variable bound
      for( size_t i=0; i<n[0].getNumChildren(); i++ ){
        Trace("sort-inference-debug2") << "Remove bound for " << n[0][i] << std::endl;
        var_bound.erase( n[0][i] );
      }
      ret = nm->mkNode(n.getKind(), children);
    }else if( n.getKind()==kind::EQUAL ){
      TypeNode tn1 = children[0].getType();
      TypeNode tn2 = children[1].getType();
      if( !tn1.isComparableTo( tn2 ) ){
        Trace("sort-inference-warn") << "Sort inference created bad equality: " << children[0] << " = " << children[1] << std::endl;
        Trace("sort-inference-warn") << "  Types : " << children[0].getType() << " " << children[1].getType() << std::endl;
        Assert(false);
      }
      ret = nm->mkNode(kind::EQUAL, children);
    }
    else if (isHandledApplyUf(n.getKind()))
    {
      if( d_symbol_map.find( op )==d_symbol_map.end() ){
        //make the new operator if necessary
        bool opChanged = false;
        std::vector< TypeNode > argTypes;
        for( size_t i=0; i<n.getNumChildren(); i++ ){
          TypeNode tn = getOrCreateTypeForId( d_op_arg_types[op][i], n[i].getType() );
          argTypes.push_back( tn );
          if( tn!=n[i].getType() ){
            opChanged = true;
          }
        }
        TypeNode retType = getOrCreateTypeForId( d_op_return_types[op], n.getType() );
        if( retType!=n.getType() ){
          opChanged = true;
        }
        if( opChanged ){
          std::stringstream ss;
          ss << "io_" << op;
          TypeNode typ = nm->mkFunctionType(argTypes, retType);
          d_symbol_map[op] = sm->mkDummySkolem(
              ss.str(), typ, "op created during sort inference");
          Trace("setp-model") << "Function " << op << " is replaced with " << d_symbol_map[op] << std::endl;
          model_replace_f[op] = d_symbol_map[op];
        }else{
          d_symbol_map[op] = op;
        }
      }
      children[0] = d_symbol_map[op];
      // make sure all children have been given proper types
      for (size_t i = 0, size = n.getNumChildren(); i < size; i++)
      {
        TypeNode tn = children[i+1].getType();
        TypeNode tna = getTypeForId( d_op_arg_types[op][i] );
        if (!tn.isSubtypeOf(tna))
        {
          Trace("sort-inference-warn") << "Sort inference created bad child: " << n << " " << n[i] << " " << tn << " " << tna << std::endl;
          Assert(false);
        }
      }
      ret = nm->mkNode(kind::APPLY_UF, children);
    }else{
      std::map< Node, Node >::iterator it = var_bound.find( n );
      if( it!=var_bound.end() ){
        ret = it->second;
      }else if( n.getKind() == kind::VARIABLE || n.getKind() == kind::SKOLEM ){
        if( d_symbol_map.find( n )==d_symbol_map.end() ){
          TypeNode tn = getOrCreateTypeForId( d_op_return_types[n], n.getType() );
          d_symbol_map[n] = getNewSymbol( n, tn );
        }
        ret = d_symbol_map[n];
      }else if( n.isConst() ){
        //type is determined by context
        ret = getNewSymbol( n, tnn );
      }else if( childChanged ){
        ret = nm->mkNode(n.getKind(), children);
      }else{
        ret = n;
      }
    }
    visited[n][tnn] = ret;
    return ret;
  }
}

Node SortInference::mkInjection( TypeNode tn1, TypeNode tn2 ) {
  NodeManager* nm = NodeManager::currentNM();
  SkolemManager* sm = nm->getSkolemManager();
  std::vector< TypeNode > tns;
  tns.push_back( tn1 );
  TypeNode typ = nm->mkFunctionType(tns, tn2);
  Node f =
      sm->mkDummySkolem("inj", typ, "injection for monotonicity constraint");
  Trace("sort-inference") << "-> Make injection " << f << " from " << tn1 << " to " << tn2 << std::endl;
  Node v1 = nm->mkBoundVar("?x", tn1);
  Node v2 = nm->mkBoundVar("?y", tn1);
  Node ret =
      nm->mkNode(kind::FORALL,
                 nm->mkNode(kind::BOUND_VAR_LIST, v1, v2),
                 nm->mkNode(kind::OR,
                            nm->mkNode(kind::APPLY_UF, f, v1)
                                .eqNode(nm->mkNode(kind::APPLY_UF, f, v2))
                                .negate(),
                            v1.eqNode(v2)));
  ret = rewrite(ret);
  return ret;
}

int SortInference::getSortId( Node n ) {
  Node op = n.getKind()==kind::APPLY_UF ? n.getOperator() : n;
  if( d_op_return_types.find( op )!=d_op_return_types.end() ){
    return d_type_union_find.getRepresentative( d_op_return_types[op] );
  }else{
    return 0;
  }
}

int SortInference::getSortId( Node f, Node v ) {
  if( d_var_types.find( f )!=d_var_types.end() ){
    return d_type_union_find.getRepresentative( d_var_types[f][v] );
  }else{
    return 0;
  }
}

void SortInference::setSkolemVar( Node f, Node v, Node sk ){
  Trace("sort-inference-temp") << "Set skolem var for " << f << ", variable " << v << std::endl;
  if( isWellSortedFormula( f ) && d_var_types.find( f )==d_var_types.end() ){
    //calculate the sort for variables if not done so already
    std::map< Node, Node > var_bound;
    std::map< Node, int > visited;
    process( f, var_bound, visited );
  }
  d_op_return_types[sk] = getSortId( f, v );
  Trace("sort-inference-temp") << "Set skolem sort id for " << sk << " to " << d_op_return_types[sk] << std::endl;
}

bool SortInference::isWellSortedFormula( Node n ) {
  if (n.getType().isBoolean() && !isHandledApplyUf(n.getKind()))
  {
    for( unsigned i=0; i<n.getNumChildren(); i++ ){
      if( !isWellSortedFormula( n[i] ) ){
        return false;
      }
    }
    return true;
  }else{
    return isWellSorted( n );
  }
}

bool SortInference::isWellSorted( Node n ) {
  if( getSortId( n )==0 ){
    return false;
  }else{
    if (isHandledApplyUf(n.getKind()))
    {
      for( unsigned i=0; i<n.getNumChildren(); i++ ){
        int s1 = getSortId( n[i] );
        int s2 = d_type_union_find.getRepresentative( d_op_arg_types[ n.getOperator() ][i] );
        if( s1!=s2 ){
          return false;
        }
        if( !isWellSorted( n[i] ) ){
          return false;
        }
      }
    }
    return true;
  }
}

bool SortInference::isMonotonic( TypeNode tn ) {
  Assert(tn.isSort());
  return d_non_monotonic_sorts_orig.find( tn )==d_non_monotonic_sorts_orig.end();
}

bool SortInference::isHandledApplyUf(Kind k) const
{
  return k == APPLY_UF && !logicInfo().isHigherOrder();
}

}  // namespace theory
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback