summaryrefslogtreecommitdiff
path: root/src/theory/sets/theory_sets_rels.cpp
blob: e8724aa8bc84e7ce71167fc18274b9dc9bc10905 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
/*********************                                                        */
/*! \file theory_sets_rels.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Paul Meng, Andrew Reynolds, Tim King
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Sets theory implementation.
 **
 ** Extension to Sets theory.
 **/

#include "theory/sets/theory_sets_rels.h"
#include "expr/datatype.h"
#include "theory/sets/theory_sets_private.h"
#include "theory/sets/theory_sets.h"

using namespace std;
using namespace CVC4::kind;

namespace CVC4 {
namespace theory {
namespace sets {

typedef std::map< Node, std::vector< Node > >::iterator                                         MEM_IT;
typedef std::map< kind::Kind_t, std::vector< Node > >::iterator                                 KIND_TERM_IT;
typedef std::map< Node, std::unordered_set< Node, NodeHashFunction > >::iterator                     TC_GRAPH_IT;
typedef std::map< Node, std::map< kind::Kind_t, std::vector< Node > > >::iterator               TERM_IT;
typedef std::map< Node, std::map< Node, std::unordered_set< Node, NodeHashFunction > > >::iterator   TC_IT;

TheorySetsRels::TheorySetsRels(SolverState& s,
                               InferenceManager& im,
                               eq::EqualityEngine& e,
                               context::UserContext* u)
    : d_state(s), d_im(im), d_ee(e), d_shared_terms(u)
{
  d_trueNode = NodeManager::currentNM()->mkConst(true);
  d_falseNode = NodeManager::currentNM()->mkConst(false);
  d_ee.addFunctionKind(PRODUCT);
  d_ee.addFunctionKind(JOIN);
  d_ee.addFunctionKind(TRANSPOSE);
  d_ee.addFunctionKind(TCLOSURE);
  d_ee.addFunctionKind(JOIN_IMAGE);
  d_ee.addFunctionKind(IDEN);
  d_ee.addFunctionKind(APPLY_CONSTRUCTOR);
}

TheorySetsRels::~TheorySetsRels() {}

void TheorySetsRels::check(Theory::Effort level)
{
  Trace("rels") << "\n[sets-rels] ******************************* Start the "
                   "relational solver, effort = "
                << level << " *******************************\n"
                << std::endl;
  if (Theory::fullEffort(level))
  {
    collectRelsInfo();
    check();
    doPendingInfers();
  }
  Assert(d_pending.empty());
  Trace("rels") << "\n[sets-rels] ******************************* Done with "
                   "the relational solver *******************************\n"
                << std::endl;
}

  void TheorySetsRels::check() {
    MEM_IT m_it = d_rReps_memberReps_cache.begin();

    while(m_it != d_rReps_memberReps_cache.end()) {
      Node rel_rep = m_it->first;

      for(unsigned int i = 0; i < m_it->second.size(); i++) {
        Node    mem     = d_rReps_memberReps_cache[rel_rep][i];
        Node    exp     = d_rReps_memberReps_exp_cache[rel_rep][i];
        std::map<kind::Kind_t, std::vector<Node> >& kind_terms =
            d_terms_cache[rel_rep];

        if( kind_terms.find(kind::TRANSPOSE) != kind_terms.end() ) {
          std::vector<Node>& tp_terms = kind_terms[TRANSPOSE];
          if( tp_terms.size() > 0 ) {
            applyTransposeRule( tp_terms );
            applyTransposeRule( tp_terms[0], rel_rep, exp );
          }
        }
        if( kind_terms.find(kind::JOIN) != kind_terms.end() ) {
          std::vector<Node>& join_terms = kind_terms[JOIN];
          for( unsigned int j = 0; j < join_terms.size(); j++ ) {
            applyJoinRule( join_terms[j], rel_rep, exp );
          }
        }
        if( kind_terms.find(kind::PRODUCT) != kind_terms.end() ) {
          std::vector<Node>& product_terms = kind_terms[PRODUCT];
          for( unsigned int j = 0; j < product_terms.size(); j++ ) {
            applyProductRule( product_terms[j], rel_rep, exp );
          }
        }
        if( kind_terms.find(kind::TCLOSURE) != kind_terms.end() ) {
          std::vector<Node>& tc_terms = kind_terms[TCLOSURE];
          for( unsigned int j = 0; j < tc_terms.size(); j++ ) {
            applyTCRule( mem, tc_terms[j], rel_rep, exp );
          }
        }
        if( kind_terms.find(kind::JOIN_IMAGE) != kind_terms.end() ) {
          std::vector<Node>& join_image_terms = kind_terms[JOIN_IMAGE];
          for( unsigned int j = 0; j < join_image_terms.size(); j++ ) {
            applyJoinImageRule( mem, join_image_terms[j], exp );
          }
        }
        if( kind_terms.find(kind::IDEN) != kind_terms.end() ) {
          std::vector<Node>& iden_terms = kind_terms[IDEN];
          for( unsigned int j = 0; j < iden_terms.size(); j++ ) {
            applyIdenRule( mem, iden_terms[j], exp );
          }
        }
      }
      ++m_it;
    }

    TERM_IT t_it = d_terms_cache.begin();
    while( t_it != d_terms_cache.end() ) {
      if( d_rReps_memberReps_cache.find(t_it->first) == d_rReps_memberReps_cache.end() ) {
        Trace("rels-debug") << "[sets-rels] A term does not have membership constraints: " << t_it->first << std::endl;
        KIND_TERM_IT k_t_it = t_it->second.begin();

        while( k_t_it != t_it->second.end() ) {
          if( k_t_it->first == kind::JOIN || k_t_it->first == kind::PRODUCT ) {
            std::vector<Node>::iterator term_it = k_t_it->second.begin();
            while(term_it != k_t_it->second.end()) {
              computeMembersForBinOpRel( *term_it );
              ++term_it;
            }
          } else if( k_t_it->first == kind::TRANSPOSE ) {
            std::vector<Node>::iterator term_it = k_t_it->second.begin();
            while( term_it != k_t_it->second.end() ) {
              computeMembersForUnaryOpRel( *term_it );
              ++term_it;
            }
          } else if ( k_t_it->first == kind::TCLOSURE ) {
            std::vector<Node>::iterator term_it = k_t_it->second.begin();
            while( term_it != k_t_it->second.end() ) {
              buildTCGraphForRel( *term_it );
              ++term_it;
            }
          } else if( k_t_it->first == kind::JOIN_IMAGE ) {
            std::vector<Node>::iterator term_it = k_t_it->second.begin();
            while( term_it != k_t_it->second.end() ) {
              computeMembersForJoinImageTerm( *term_it );
              ++term_it;
            }
          } else if( k_t_it->first == kind::IDEN ) {
            std::vector<Node>::iterator term_it = k_t_it->second.begin();
            while( term_it != k_t_it->second.end() ) {
              computeMembersForIdenTerm( *term_it );
              ++term_it;
            }
          }
          ++k_t_it;
        }
      }
      ++t_it;
    }
    doTCInference();

    // clean up
    d_tuple_reps.clear();
    d_rReps_memberReps_exp_cache.clear();
    d_terms_cache.clear();
    d_membership_trie.clear();
    d_rel_nodes.clear();
    d_rReps_memberReps_cache.clear();
    d_rRep_tcGraph.clear();
    d_tcr_tcGraph_exps.clear();
    d_tcr_tcGraph.clear();
  }

  /*
   * Populate relational terms data structure
   */

  void TheorySetsRels::collectRelsInfo() {
    Trace("rels") << "[sets-rels] Start collecting relational terms..." << std::endl;
    eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(&d_ee);
    while( !eqcs_i.isFinished() ){
      Node                      eqc_rep  = (*eqcs_i);
      eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc_rep, &d_ee);

      TypeNode erType = eqc_rep.getType();
      Trace("rels-ee") << "[sets-rels-ee] Eqc term representative: " << eqc_rep << " with type " << eqc_rep.getType() << std::endl;

      while( !eqc_i.isFinished() ){
        Node eqc_node = (*eqc_i);

        Trace("rels-ee") << "  term : " << eqc_node << std::endl;

        if (erType.isBoolean() && eqc_rep.isConst())
        {
          // collect membership info
          if( eqc_node.getKind() == kind::MEMBER && eqc_node[1].getType().getSetElementType().isTuple()) {
            Node tup_rep = getRepresentative( eqc_node[0] );
            Node rel_rep = getRepresentative( eqc_node[1] );

            if( eqc_node[0].isVar() ){
              reduceTupleVar( eqc_node );
            }

            bool is_true_eq = eqc_rep.getConst<bool>();
            Node reason        = is_true_eq ? eqc_node : eqc_node.negate();

            if( is_true_eq ) {
              if( safelyAddToMap(d_rReps_memberReps_cache, rel_rep, tup_rep) ) {
                d_rReps_memberReps_exp_cache[rel_rep].push_back(reason);
                computeTupleReps(tup_rep);
                d_membership_trie[rel_rep].addTerm(tup_rep, d_tuple_reps[tup_rep]);
              }
            }
          }
        // collect relational terms info
        }
        else if (erType.isSet() && erType.getSetElementType().isTuple())
        {
          if( eqc_node.getKind() == kind::TRANSPOSE || eqc_node.getKind() == kind::JOIN ||
              eqc_node.getKind() == kind::PRODUCT || eqc_node.getKind() == kind::TCLOSURE ||
              eqc_node.getKind() == kind::JOIN_IMAGE || eqc_node.getKind() == kind::IDEN ) {
            std::vector<Node> terms;
            std::map< kind::Kind_t, std::vector<Node> >  rel_terms;
            TERM_IT terms_it = d_terms_cache.find(eqc_rep);

            if( terms_it == d_terms_cache.end() ) {
              terms.push_back(eqc_node);
              rel_terms[eqc_node.getKind()]      = terms;
              d_terms_cache[eqc_rep]             = rel_terms;
            } else {
              KIND_TERM_IT kind_term_it = terms_it->second.find(eqc_node.getKind());

              if( kind_term_it == terms_it->second.end() ) {
                terms.push_back(eqc_node);
                d_terms_cache[eqc_rep][eqc_node.getKind()] = terms;
              } else {
                kind_term_it->second.push_back(eqc_node);
              }
            }
          }
        // need to add all tuple elements as shared terms
        }
        else if (erType.isTuple() && !eqc_node.isConst() && !eqc_node.isVar())
        {
          for (unsigned i = 0, tlen = erType.getTupleLength(); i < tlen; i++)
          {
            Node element = RelsUtils::nthElementOfTuple( eqc_node, i );

            if( !element.isConst() ) {
              makeSharedTerm( element );
            }
          }
        }
        ++eqc_i;
      }
      ++eqcs_i;
    }
    Trace("rels-debug") << "[Theory::Rels] Done with collecting relational terms!" << std::endl;
  }

  /* JOIN-IMAGE UP  :   (x, x1) IS_IN R, ..., (x, xn) IS_IN R  (R JOIN_IMAGE n)
  *                     -------------------------------------------------------
  *                     x IS_IN (R JOIN_IMAGE n) || NOT DISTINCT(x1, ... , xn)
  *
  */

  void TheorySetsRels::computeMembersForJoinImageTerm( Node join_image_term ) {
    Trace("rels-debug") << "\n[Theory::Rels] *********** Compute members for JoinImage Term = " << join_image_term << std::endl;
    MEM_IT rel_mem_it = d_rReps_memberReps_cache.find( getRepresentative( join_image_term[0] ) );

    if( rel_mem_it == d_rReps_memberReps_cache.end() ) {
      return;
    }
    NodeManager* nm = NodeManager::currentNM();

    Node join_image_rel = join_image_term[0];
    std::unordered_set< Node, NodeHashFunction > hasChecked;
    Node join_image_rel_rep = getRepresentative( join_image_rel );
    std::vector< Node >::iterator mem_rep_it = (*rel_mem_it).second.begin();
    MEM_IT rel_mem_exp_it = d_rReps_memberReps_exp_cache.find( join_image_rel_rep );
    std::vector< Node >::iterator mem_rep_exp_it = (*rel_mem_exp_it).second.begin();
    unsigned int min_card = join_image_term[1].getConst<Rational>().getNumerator().getUnsignedInt();

    while( mem_rep_it != (*rel_mem_it).second.end() ) {
      Node fst_mem_rep = RelsUtils::nthElementOfTuple( *mem_rep_it, 0 );

      if( hasChecked.find( fst_mem_rep ) != hasChecked.end() ) {
        ++mem_rep_it;
        ++mem_rep_exp_it;
        continue;
      }
      hasChecked.insert( fst_mem_rep );

      const Datatype& dt =
          join_image_term.getType().getSetElementType().getDatatype();
      Node new_membership = NodeManager::currentNM()->mkNode(kind::MEMBER,
                                                             NodeManager::currentNM()->mkNode( kind::APPLY_CONSTRUCTOR,
                                                                                               Node::fromExpr(dt[0].getConstructor()), fst_mem_rep ),
                                                             join_image_term);
      if (d_state.isEntailed(new_membership, true))
      {
        ++mem_rep_it;
        ++mem_rep_exp_it;
        continue;
      }

      std::vector< Node > reasons;
      std::vector< Node > existing_members;
      std::vector< Node >::iterator mem_rep_exp_it_snd = (*rel_mem_exp_it).second.begin();

      while( mem_rep_exp_it_snd != (*rel_mem_exp_it).second.end() ) {
        Node fst_element_snd_mem = RelsUtils::nthElementOfTuple( (*mem_rep_exp_it_snd)[0], 0 );

        if( areEqual( fst_mem_rep,  fst_element_snd_mem ) ) {
          bool notExist = true;
          std::vector< Node >::iterator existing_mem_it = existing_members.begin();
          Node snd_element_snd_mem = RelsUtils::nthElementOfTuple( (*mem_rep_exp_it_snd)[0], 1 );

          while( existing_mem_it != existing_members.end() ) {
            if( areEqual( (*existing_mem_it), snd_element_snd_mem ) ) {
              notExist = false;
              break;
            }
            ++existing_mem_it;
          }

          if( notExist ) {
            existing_members.push_back( snd_element_snd_mem );
            reasons.push_back( *mem_rep_exp_it_snd );
            if( fst_mem_rep != fst_element_snd_mem ) {
              reasons.push_back( NodeManager::currentNM()->mkNode( kind::EQUAL, fst_mem_rep, fst_element_snd_mem ) );
            }
            if( join_image_rel != (*mem_rep_exp_it_snd)[1] ) {
              reasons.push_back( NodeManager::currentNM()->mkNode( kind::EQUAL, (*mem_rep_exp_it_snd)[1], join_image_rel ));
            }
            if( existing_members.size() == min_card ) {
              if( min_card >= 2) {
                new_membership = NodeManager::currentNM()->mkNode( kind::OR, new_membership, NodeManager::currentNM()->mkNode( kind::NOT, NodeManager::currentNM()->mkNode( kind::DISTINCT, existing_members ) ));
              }
              Assert(reasons.size() >= 1);
              sendInfer(
                  new_membership,
                  reasons.size() > 1 ? nm->mkNode(AND, reasons) : reasons[0],
                  "JOIN-IMAGE UP");
              break;
            }
          }
        }
        ++mem_rep_exp_it_snd;
      }
      ++mem_rep_it;
      ++mem_rep_exp_it;
    }
    Trace("rels-debug") << "\n[Theory::Rels] *********** Done with computing members for JoinImage Term" << join_image_term << "*********** " << std::endl;
  }

  /* JOIN-IMAGE DOWN  : (x) IS_IN (R JOIN_IMAGE n)
  *                     -------------------------------------------------------
  *                     (x, x1) IS_IN R .... (x, xn) IS_IN R  DISTINCT(x1, ... , xn)
  *
  */

  void TheorySetsRels::applyJoinImageRule( Node mem_rep, Node join_image_term, Node exp ) {
    Trace("rels-debug") << "\n[Theory::Rels] *********** applyJoinImageRule on " << join_image_term
                        << " with mem_rep = " << mem_rep  << " and exp = " << exp << std::endl;
    if( d_rel_nodes.find( join_image_term ) == d_rel_nodes.end() ) {
      computeMembersForJoinImageTerm( join_image_term );
      d_rel_nodes.insert( join_image_term );
    }

    Node join_image_rel = join_image_term[0];
    Node join_image_rel_rep = getRepresentative( join_image_rel );
    MEM_IT rel_mem_it = d_rReps_memberReps_cache.find( join_image_rel_rep );
    unsigned int min_card = join_image_term[1].getConst<Rational>().getNumerator().getUnsignedInt();

    if( rel_mem_it != d_rReps_memberReps_cache.end() ) {
      if( d_membership_trie.find( join_image_rel_rep ) != d_membership_trie.end() ) {
        computeTupleReps( mem_rep );
        if( d_membership_trie[join_image_rel_rep].findSuccessors(d_tuple_reps[mem_rep]).size() >= min_card ) {
          return;
        }
      }
    }

    Node reason = exp;
    Node conclusion = d_trueNode;
    std::vector< Node > distinct_skolems;
    Node fst_mem_element = RelsUtils::nthElementOfTuple( exp[0], 0 );

    if( exp[1] != join_image_term ) {
      reason = NodeManager::currentNM()->mkNode( kind::AND, reason, NodeManager::currentNM()->mkNode( kind::EQUAL, exp[1], join_image_term ) );
    }
    for( unsigned int i = 0; i < min_card; i++ ) {
      Node skolem = NodeManager::currentNM()->mkSkolem( "jig", join_image_rel.getType()[0].getTupleTypes()[0] );
      distinct_skolems.push_back( skolem );
      conclusion = NodeManager::currentNM()->mkNode( kind::AND, conclusion, NodeManager::currentNM()->mkNode( kind::MEMBER, RelsUtils::constructPair( join_image_rel, fst_mem_element, skolem ), join_image_rel ) );
    }
    if( distinct_skolems.size() >= 2 ) {
      conclusion =  NodeManager::currentNM()->mkNode( kind::AND, conclusion, NodeManager::currentNM()->mkNode( kind::DISTINCT, distinct_skolems ) );
    }
    sendInfer(conclusion, reason, "JOIN-IMAGE DOWN");
    Trace("rels-debug") << "\n[Theory::Rels] *********** Done with applyJoinImageRule ***********" << std::endl;

  }


  /* IDENTITY-DOWN  : (x, y) IS_IN IDEN(R)
  *               -------------------------------------------------------
  *                   x = y,  (x IS_IN R)
  *
  */

  void TheorySetsRels::applyIdenRule( Node mem_rep, Node iden_term, Node exp) {
    Trace("rels-debug") << "\n[Theory::Rels] *********** applyIdenRule on " << iden_term
                        << " with mem_rep = " << mem_rep  << " and exp = " << exp << std::endl;
    NodeManager* nm = NodeManager::currentNM();
    if( d_rel_nodes.find( iden_term ) == d_rel_nodes.end() ) {
      computeMembersForIdenTerm( iden_term );
      d_rel_nodes.insert( iden_term );
    }
    Node reason = exp;
    Node fst_mem = RelsUtils::nthElementOfTuple( exp[0], 0 );
    Node snd_mem = RelsUtils::nthElementOfTuple( exp[0], 1 );
    const Datatype& dt =
        iden_term[0].getType().getSetElementType().getDatatype();
    Node fact = NodeManager::currentNM()->mkNode( kind::MEMBER, NodeManager::currentNM()->mkNode( kind::APPLY_CONSTRUCTOR, Node::fromExpr(dt[0].getConstructor()), fst_mem ), iden_term[0] );

    if( exp[1] != iden_term ) {
      reason = NodeManager::currentNM()->mkNode( kind::AND, reason, NodeManager::currentNM()->mkNode( kind::EQUAL, exp[1], iden_term ) );
    }
    sendInfer(nm->mkNode(AND, fact, nm->mkNode(EQUAL, fst_mem, snd_mem)),
              reason,
              "IDENTITY-DOWN");
    Trace("rels-debug") << "\n[Theory::Rels] *********** Done with applyIdenRule on " << iden_term << std::endl;
  }

  /* IDEN UP  : (x) IS_IN R        IDEN(R) IN T
  *             --------------------------------
  *                   (x, x) IS_IN IDEN(R)
  *
  */

  void TheorySetsRels::computeMembersForIdenTerm( Node iden_term ) {
    Trace("rels-debug") << "\n[Theory::Rels] *********** Compute members for Iden Term = " << iden_term << std::endl;
    Node iden_term_rel = iden_term[0];
    Node iden_term_rel_rep = getRepresentative( iden_term_rel );

    if( d_rReps_memberReps_cache.find( iden_term_rel_rep ) == d_rReps_memberReps_cache.end() ) {
      return;
    }
    NodeManager* nm = NodeManager::currentNM();

    MEM_IT rel_mem_exp_it = d_rReps_memberReps_exp_cache.find( iden_term_rel_rep );
    std::vector< Node >::iterator mem_rep_exp_it = (*rel_mem_exp_it).second.begin();

    while( mem_rep_exp_it != (*rel_mem_exp_it).second.end() ) {
      Node reason = *mem_rep_exp_it;
      Node fst_exp_mem = RelsUtils::nthElementOfTuple( (*mem_rep_exp_it)[0], 0 );
      Node new_mem = RelsUtils::constructPair( iden_term, fst_exp_mem, fst_exp_mem );

      if( (*mem_rep_exp_it)[1] != iden_term_rel ) {
        reason = NodeManager::currentNM()->mkNode( kind::AND, reason, NodeManager::currentNM()->mkNode( kind::EQUAL, (*mem_rep_exp_it)[1], iden_term_rel ) );
      }
      sendInfer(nm->mkNode(MEMBER, new_mem, iden_term), reason, "IDENTITY-UP");
      ++mem_rep_exp_it;
    }
    Trace("rels-debug") << "\n[Theory::Rels] *********** Done with computing members for Iden Term = " << iden_term << std::endl;
  }


  /*
   * Construct transitive closure graph for tc_rep based on the members of tc_r_rep
   */

  /*
   * TCLOSURE TCLOSURE(x) = x | x.x | x.x.x | ... (| is union)
   *
   * TCLOSURE-UP I:   (a, b) IS_IN x            TCLOSURE(x) in T
   *              ---------------------------------------------
   *                              (a, b) IS_IN TCLOSURE(x)
   *
   *
   *
   * TCLOSURE-UP II : (a, b) IS_IN TCLOSURE(x)  (b, c) IS_IN TCLOSURE(x)
   *              -----------------------------------------------------------
   *                            (a, c) IS_IN TCLOSURE(x)
   *
   */
  void TheorySetsRels::applyTCRule( Node mem_rep, Node tc_rel, Node tc_rel_rep, Node exp ) {
    Trace("rels-debug") << "[Theory::Rels] *********** Applying TCLOSURE rule on a tc term = " << tc_rel
                            << ", its representative = " << tc_rel_rep
                            << " with member rep = " << mem_rep << " and explanation = " << exp << std::endl;
    MEM_IT mem_it = d_rReps_memberReps_cache.find( tc_rel[0] );

    if( mem_it != d_rReps_memberReps_cache.end() && d_rel_nodes.find( tc_rel ) == d_rel_nodes.end()
        && d_rRep_tcGraph.find( getRepresentative( tc_rel[0] ) ) ==  d_rRep_tcGraph.end() ) {
      buildTCGraphForRel( tc_rel );
      d_rel_nodes.insert( tc_rel );
    }

    // mem_rep is a member of tc_rel[0] or mem_rep can be infered by TC_Graph of tc_rel[0], thus skip
    if( isTCReachable( mem_rep, tc_rel) ) {
      Trace("rels-debug") << "[Theory::Rels] mem_rep is a member of tc_rel[0] = " << tc_rel[0]
                              << " or can be infered by TC_Graph of tc_rel[0]! " << std::endl;
      return;
    }
    NodeManager* nm = NodeManager::currentNM();

    // add mem_rep to d_tcrRep_tcGraph
    TC_IT tc_it = d_tcr_tcGraph.find( tc_rel );
    Node mem_rep_fst = getRepresentative( RelsUtils::nthElementOfTuple( mem_rep, 0 ) );
    Node mem_rep_snd = getRepresentative( RelsUtils::nthElementOfTuple( mem_rep, 1 ) );
    Node mem_rep_tup = RelsUtils::constructPair( tc_rel, mem_rep_fst, mem_rep_snd );

    if( tc_it != d_tcr_tcGraph.end() ) {
      std::map< Node, std::map< Node, Node > >::iterator tc_exp_it = d_tcr_tcGraph_exps.find( tc_rel );

      TC_GRAPH_IT tc_graph_it = (tc_it->second).find( mem_rep_fst );
      Assert(tc_exp_it != d_tcr_tcGraph_exps.end());
      std::map< Node, Node >::iterator exp_map_it = (tc_exp_it->second).find( mem_rep_tup );

      if( exp_map_it == (tc_exp_it->second).end() ) {
        (tc_exp_it->second)[mem_rep_tup] = exp;
      }

      if( tc_graph_it != (tc_it->second).end() ) {
        (tc_graph_it->second).insert( mem_rep_snd );
      } else {
        std::unordered_set< Node, NodeHashFunction > sets;
        sets.insert( mem_rep_snd );
        (tc_it->second)[mem_rep_fst] = sets;
      }
    } else {
      std::map< Node, Node > exp_map;
      std::unordered_set< Node, NodeHashFunction > sets;
      std::map< Node, std::unordered_set<Node, NodeHashFunction> > element_map;
      sets.insert( mem_rep_snd );
      element_map[mem_rep_fst] = sets;
      d_tcr_tcGraph[tc_rel] = element_map;
      exp_map[mem_rep_tup] = exp;
      d_tcr_tcGraph_exps[tc_rel] = exp_map;
    }
    Node fst_element = RelsUtils::nthElementOfTuple( exp[0], 0 );
    Node snd_element = RelsUtils::nthElementOfTuple( exp[0], 1 );
    SkolemCache& sc = d_state.getSkolemCache();
    Node sk_1 = sc.mkTypedSkolemCached(fst_element.getType(),
                                       exp[0],
                                       tc_rel[0],
                                       SkolemCache::SK_TCLOSURE_DOWN1,
                                       "stc1");
    Node sk_2 = sc.mkTypedSkolemCached(fst_element.getType(),
                                       exp[0],
                                       tc_rel[0],
                                       SkolemCache::SK_TCLOSURE_DOWN2,
                                       "stc2");
    Node mem_of_r = nm->mkNode(MEMBER, exp[0], tc_rel[0]);
    Node sk_eq = nm->mkNode(EQUAL, sk_1, sk_2);
    Node reason   = exp;

    if( tc_rel != exp[1] ) {
      reason = nm->mkNode(AND, reason, nm->mkNode(EQUAL, tc_rel, exp[1]));
    }

    Node conc = nm->mkNode(
        OR,
        mem_of_r,
        nm->mkNode(
            AND,
            nm->mkNode(MEMBER,
                       RelsUtils::constructPair(tc_rel, fst_element, sk_1),
                       tc_rel[0]),
            nm->mkNode(MEMBER,
                       RelsUtils::constructPair(tc_rel, sk_2, snd_element),
                       tc_rel[0]),
            nm->mkNode(OR,
                       sk_eq,
                       nm->mkNode(MEMBER,
                                  RelsUtils::constructPair(tc_rel, sk_1, sk_2),
                                  tc_rel))));

    Node tc_lemma = nm->mkNode(IMPLIES, reason, conc);
    d_pending.push_back(tc_lemma);
  }

  bool TheorySetsRels::isTCReachable( Node mem_rep, Node tc_rel ) {
    MEM_IT mem_it = d_rReps_memberReps_cache.find( getRepresentative( tc_rel[0] ) );

    if( mem_it != d_rReps_memberReps_cache.end() && std::find( (mem_it->second).begin(), (mem_it->second).end(), mem_rep) != (mem_it->second).end() ) {
      return true;
    }

    TC_IT tc_it = d_rRep_tcGraph.find( getRepresentative(tc_rel[0]) );
    if( tc_it != d_rRep_tcGraph.end() ) {
      bool isReachable = false;
      std::unordered_set<Node, NodeHashFunction> seen;
      isTCReachable( getRepresentative( RelsUtils::nthElementOfTuple(mem_rep, 0) ),
                     getRepresentative( RelsUtils::nthElementOfTuple(mem_rep, 1) ), seen, tc_it->second, isReachable );
      return isReachable;
    }
    return false;
  }

  void TheorySetsRels::isTCReachable( Node start, Node dest, std::unordered_set<Node, NodeHashFunction>& hasSeen,
                                    std::map< Node, std::unordered_set< Node, NodeHashFunction > >& tc_graph, bool& isReachable ) {
    if(hasSeen.find(start) == hasSeen.end()) {
      hasSeen.insert(start);
    }

    TC_GRAPH_IT pair_set_it = tc_graph.find(start);

    if(pair_set_it != tc_graph.end()) {
      if(pair_set_it->second.find(dest) != pair_set_it->second.end()) {
        isReachable = true;
        return;
      } else {
        std::unordered_set< Node, NodeHashFunction >::iterator set_it = pair_set_it->second.begin();

        while( set_it != pair_set_it->second.end() ) {
          // need to check if *set_it has been looked already
          if( hasSeen.find(*set_it) == hasSeen.end() ) {
            isTCReachable( *set_it, dest, hasSeen, tc_graph, isReachable );
          }
          ++set_it;
        }
      }
    }
  }

  void TheorySetsRels::buildTCGraphForRel( Node tc_rel ) {
    std::map< Node, Node > rel_tc_graph_exps;
    std::map< Node, std::unordered_set<Node, NodeHashFunction> > rel_tc_graph;

    Node rel_rep = getRepresentative( tc_rel[0] );
    Node tc_rel_rep = getRepresentative( tc_rel );
    std::vector< Node > members = d_rReps_memberReps_cache[rel_rep];
    std::vector< Node > exps = d_rReps_memberReps_exp_cache[rel_rep];

    for( unsigned int i = 0; i < members.size(); i++ ) {
      Node fst_element_rep = getRepresentative( RelsUtils::nthElementOfTuple( members[i], 0 ));
      Node snd_element_rep = getRepresentative( RelsUtils::nthElementOfTuple( members[i], 1 ));
      Node tuple_rep = RelsUtils::constructPair( rel_rep, fst_element_rep, snd_element_rep );
      std::map< Node, std::unordered_set<Node, NodeHashFunction> >::iterator rel_tc_graph_it = rel_tc_graph.find( fst_element_rep );

      if( rel_tc_graph_it == rel_tc_graph.end() ) {
        std::unordered_set< Node, NodeHashFunction > snd_elements;
        snd_elements.insert( snd_element_rep );
        rel_tc_graph[fst_element_rep] = snd_elements;
        rel_tc_graph_exps[tuple_rep] = exps[i];
      } else if( (rel_tc_graph_it->second).find( snd_element_rep ) ==  (rel_tc_graph_it->second).end() ) {
        (rel_tc_graph_it->second).insert( snd_element_rep );
        rel_tc_graph_exps[tuple_rep] = exps[i];
      }
    }

    if( members.size() > 0 ) {
      d_rRep_tcGraph[rel_rep] = rel_tc_graph;
      d_tcr_tcGraph_exps[tc_rel] = rel_tc_graph_exps;
      d_tcr_tcGraph[tc_rel] = rel_tc_graph;
    }
  }

  void TheorySetsRels::doTCInference( std::map< Node, std::unordered_set<Node, NodeHashFunction> > rel_tc_graph, std::map< Node, Node > rel_tc_graph_exps, Node tc_rel ) {
    Trace("rels-debug") << "[Theory::Rels] ****** doTCInference !" << std::endl;
    for (TC_GRAPH_IT tc_graph_it = rel_tc_graph.begin();
         tc_graph_it != rel_tc_graph.end();
         ++tc_graph_it)
    {
      for (std::unordered_set<Node, NodeHashFunction>::iterator
               snd_elements_it = tc_graph_it->second.begin();
           snd_elements_it != tc_graph_it->second.end();
           ++snd_elements_it)
      {
        std::vector< Node > reasons;
        std::unordered_set<Node, NodeHashFunction> seen;
        Node tuple = RelsUtils::constructPair( tc_rel, getRepresentative( tc_graph_it->first ), getRepresentative( *snd_elements_it) );
        Assert(rel_tc_graph_exps.find(tuple) != rel_tc_graph_exps.end());
        Node exp   = rel_tc_graph_exps.find( tuple )->second;

        reasons.push_back( exp );
        seen.insert( tc_graph_it->first );
        doTCInference( tc_rel, reasons, rel_tc_graph, rel_tc_graph_exps, tc_graph_it->first, *snd_elements_it, seen);
      }
    }
    Trace("rels-debug") << "[Theory::Rels] ****** Done with doTCInference !" << std::endl;
  }

  void TheorySetsRels::doTCInference(Node tc_rel, std::vector< Node > reasons, std::map< Node, std::unordered_set< Node, NodeHashFunction > >& tc_graph,
                                       std::map< Node, Node >& rel_tc_graph_exps, Node start_node_rep, Node cur_node_rep, std::unordered_set< Node, NodeHashFunction >& seen ) {
    NodeManager* nm = NodeManager::currentNM();
    Node tc_mem = RelsUtils::constructPair( tc_rel, RelsUtils::nthElementOfTuple((reasons.front())[0], 0), RelsUtils::nthElementOfTuple((reasons.back())[0], 1) );
    std::vector< Node > all_reasons( reasons );

    for( unsigned int i = 0 ; i < reasons.size()-1; i++ ) {
      Node fst_element_end = RelsUtils::nthElementOfTuple( reasons[i][0], 1 );
      Node snd_element_begin = RelsUtils::nthElementOfTuple( reasons[i+1][0], 0 );
      if( fst_element_end != snd_element_begin ) {
        all_reasons.push_back( NodeManager::currentNM()->mkNode(kind::EQUAL, fst_element_end, snd_element_begin) );
      }
      if( tc_rel != reasons[i][1] && tc_rel[0] != reasons[i][1] ) {
        all_reasons.push_back( NodeManager::currentNM()->mkNode(kind::EQUAL, tc_rel[0], reasons[i][1]) );
      }
    }
    if( tc_rel != reasons.back()[1] && tc_rel[0] != reasons.back()[1] ) {
      all_reasons.push_back( NodeManager::currentNM()->mkNode(kind::EQUAL, tc_rel[0], reasons.back()[1]) );
    }
    if( all_reasons.size() > 1) {
      sendInfer(nm->mkNode(MEMBER, tc_mem, tc_rel),
                nm->mkNode(AND, all_reasons),
                "TCLOSURE-Forward");
    } else {
      sendInfer(nm->mkNode(MEMBER, tc_mem, tc_rel),
                all_reasons.front(),
                "TCLOSURE-Forward");
    }

    // check if cur_node has been traversed or not
    if( seen.find( cur_node_rep ) != seen.end() ) {
      return;
    }
    seen.insert( cur_node_rep );
    TC_GRAPH_IT  cur_set = tc_graph.find( cur_node_rep );
    if( cur_set != tc_graph.end() ) {
      for (std::unordered_set<Node, NodeHashFunction>::iterator set_it =
               cur_set->second.begin();
           set_it != cur_set->second.end();
           ++set_it)
      {
        Node new_pair = RelsUtils::constructPair( tc_rel, cur_node_rep, *set_it );
        std::vector< Node > new_reasons( reasons );
        new_reasons.push_back( rel_tc_graph_exps.find( new_pair )->second );
        doTCInference( tc_rel, new_reasons, tc_graph, rel_tc_graph_exps, start_node_rep, *set_it, seen );
      }
    }
  }

 /*  product-split rule:  (a, b) IS_IN (X PRODUCT Y)
  *                     ----------------------------------
  *                       a IS_IN X  && b IS_IN Y
  *
  *  product-compose rule: (a, b) IS_IN X    (c, d) IS_IN Y
  *                        ---------------------------------
  *                        (a, b, c, d) IS_IN (X PRODUCT Y)
  */


  void TheorySetsRels::applyProductRule( Node pt_rel, Node pt_rel_rep, Node exp ) {
    Trace("rels-debug") << "\n[Theory::Rels] *********** Applying PRODUCT rule on producted term = " << pt_rel
                            << ", its representative = " << pt_rel_rep
                            << " with explanation = " << exp << std::endl;

    if(d_rel_nodes.find( pt_rel ) == d_rel_nodes.end()) {
      Trace("rels-debug") <<  "\n[Theory::Rels] Apply PRODUCT-COMPOSE rule on term: " << pt_rel
                          << " with explanation: " << exp << std::endl;

      computeMembersForBinOpRel( pt_rel );
      d_rel_nodes.insert( pt_rel );
    }

    Node mem = exp[0];
    std::vector<Node>   r1_element;
    std::vector<Node>   r2_element;
    const Datatype& dt1 = pt_rel[0].getType().getSetElementType().getDatatype();
    unsigned int s1_len  = pt_rel[0].getType().getSetElementType().getTupleLength();
    unsigned int tup_len = pt_rel.getType().getSetElementType().getTupleLength();

    r1_element.push_back(Node::fromExpr(dt1[0].getConstructor()));

    unsigned int i = 0;
    for(; i < s1_len; ++i) {
      r1_element.push_back(RelsUtils::nthElementOfTuple(mem, i));
    }
    const Datatype& dt2 = pt_rel[1].getType().getSetElementType().getDatatype();
    r2_element.push_back(Node::fromExpr(dt2[0].getConstructor()));
    for(; i < tup_len; ++i) {
      r2_element.push_back(RelsUtils::nthElementOfTuple(mem, i));
    }
    Node reason   = exp;
    Node mem1     = NodeManager::currentNM()->mkNode(kind::APPLY_CONSTRUCTOR, r1_element);
    Node mem2     = NodeManager::currentNM()->mkNode(kind::APPLY_CONSTRUCTOR, r2_element);
    Node fact_1   = NodeManager::currentNM()->mkNode(kind::MEMBER, mem1, pt_rel[0]);
    Node fact_2   = NodeManager::currentNM()->mkNode(kind::MEMBER, mem2, pt_rel[1]);

    if( pt_rel != exp[1] ) {
      reason = NodeManager::currentNM()->mkNode(kind::AND, exp, NodeManager::currentNM()->mkNode(kind::EQUAL, pt_rel, exp[1]));
    }
    sendInfer(fact_1, reason, "product-split");
    sendInfer(fact_2, reason, "product-split");
  }

  /* join-split rule:           (a, b) IS_IN (X JOIN Y)
   *                  --------------------------------------------
   *                  exists z | (a, z) IS_IN X  && (z, b) IS_IN Y
   *
   *
   * join-compose rule: (a, b) IS_IN X    (b, c) IS_IN Y  NOT (t, u) IS_IN (X JOIN Y)
   *                    -------------------------------------------------------------
   *                                      (a, c) IS_IN (X JOIN Y)
   */

  void TheorySetsRels::applyJoinRule( Node join_rel, Node join_rel_rep, Node exp ) {
    Trace("rels-debug") << "\n[Theory::Rels] *********** Applying JOIN rule on joined term = " << join_rel
                            << ", its representative = " << join_rel_rep
                            << " with explanation = " << exp << std::endl;
    if(d_rel_nodes.find( join_rel ) == d_rel_nodes.end()) {
      Trace("rels-debug") <<  "\n[Theory::Rels] Apply JOIN-COMPOSE rule on term: " << join_rel
                          << " with explanation: " << exp << std::endl;

      computeMembersForBinOpRel( join_rel );
      d_rel_nodes.insert( join_rel );
    }

    Node mem = exp[0];
    std::vector<Node> r1_element;
    std::vector<Node> r2_element;
    Node r1_rep = getRepresentative(join_rel[0]);
    Node r2_rep = getRepresentative(join_rel[1]);
    TypeNode     shared_type    = r2_rep.getType().getSetElementType().getTupleTypes()[0];
    Node shared_x = d_state.getSkolemCache().mkTypedSkolemCached(
        shared_type, mem, join_rel, SkolemCache::SK_JOIN, "srj");
    const Datatype& dt1 =
        join_rel[0].getType().getSetElementType().getDatatype();
    unsigned int s1_len         = join_rel[0].getType().getSetElementType().getTupleLength();
    unsigned int tup_len        = join_rel.getType().getSetElementType().getTupleLength();

    unsigned int i = 0;
    r1_element.push_back(Node::fromExpr(dt1[0].getConstructor()));
    for(; i < s1_len-1; ++i) {
      r1_element.push_back(RelsUtils::nthElementOfTuple(mem, i));
    }
    r1_element.push_back(shared_x);
    const Datatype& dt2 =
        join_rel[1].getType().getSetElementType().getDatatype();
    r2_element.push_back(Node::fromExpr(dt2[0].getConstructor()));
    r2_element.push_back(shared_x);
    for(; i < tup_len; ++i) {
      r2_element.push_back(RelsUtils::nthElementOfTuple(mem, i));
    }
    Node mem1 = NodeManager::currentNM()->mkNode(kind::APPLY_CONSTRUCTOR, r1_element);
    Node mem2 = NodeManager::currentNM()->mkNode(kind::APPLY_CONSTRUCTOR, r2_element);

    computeTupleReps(mem1);
    computeTupleReps(mem2);

    std::vector<Node> elements = d_membership_trie[r1_rep].findTerms(d_tuple_reps[mem1]);

    for(unsigned int j = 0; j < elements.size(); j++) {
      std::vector<Node> new_tup;
      new_tup.push_back(elements[j]);
      new_tup.insert(new_tup.end(), d_tuple_reps[mem2].begin()+1, d_tuple_reps[mem2].end());
      if(d_membership_trie[r2_rep].existsTerm(new_tup) != Node::null()) {
        return;
      }
    }
    Node reason = exp;
    if( join_rel != exp[1] ) {
      reason = NodeManager::currentNM()->mkNode(kind::AND, reason, NodeManager::currentNM()->mkNode(kind::EQUAL, join_rel, exp[1]));
    }
    Node fact = NodeManager::currentNM()->mkNode(kind::MEMBER, mem1, join_rel[0]);
    sendInfer(fact, reason, "JOIN-Split-1");
    fact = NodeManager::currentNM()->mkNode(kind::MEMBER, mem2, join_rel[1]);
    sendInfer(fact, reason, "JOIN-Split-2");
    makeSharedTerm( shared_x );
  }

  /*
   * transpose-occur rule:    (a, b) IS_IN X   (TRANSPOSE X) in T
   *                         ---------------------------------------
   *                            (b, a) IS_IN (TRANSPOSE X)
   *
   * transpose-reverse rule:    (a, b) IS_IN (TRANSPOSE X)
   *                         ---------------------------------------
   *                            (b, a) IS_IN X
   *
   */
  void TheorySetsRels::applyTransposeRule( std::vector<Node> tp_terms ) {
    if( tp_terms.size() < 1) {
      return;
    }
    NodeManager* nm = NodeManager::currentNM();
    for( unsigned int i = 1; i < tp_terms.size(); i++ ) {
      Trace("rels-debug") << "\n[Theory::Rels] *********** Applying TRANSPOSE-Equal rule on transposed term = " << tp_terms[0] << " and " << tp_terms[i] << std::endl;
      sendInfer(nm->mkNode(EQUAL, tp_terms[0][0], tp_terms[i][0]),
                nm->mkNode(EQUAL, tp_terms[0], tp_terms[i]),
                "TRANSPOSE-Equal");
    }
  }

  void TheorySetsRels::applyTransposeRule( Node tp_rel, Node tp_rel_rep, Node exp ) {
    Trace("rels-debug") << "\n[Theory::Rels] *********** Applying TRANSPOSE rule on transposed term = " << tp_rel
                        << ", its representative = " << tp_rel_rep
                        << " with explanation = " << exp << std::endl;
    NodeManager* nm = NodeManager::currentNM();

    if(d_rel_nodes.find( tp_rel ) == d_rel_nodes.end()) {
      Trace("rels-debug") <<  "\n[Theory::Rels] Apply TRANSPOSE-Compose rule on term: " << tp_rel
                          << " with explanation: " << exp << std::endl;

      computeMembersForUnaryOpRel( tp_rel );
      d_rel_nodes.insert( tp_rel );
    }

    Node reason = exp;
    Node reversed_mem = RelsUtils::reverseTuple( exp[0] );

    if( tp_rel != exp[1] ) {
      reason = NodeManager::currentNM()->mkNode(kind::AND, reason, NodeManager::currentNM()->mkNode(kind::EQUAL, tp_rel, exp[1]));
    }
    sendInfer(nm->mkNode(MEMBER, reversed_mem, tp_rel[0]),
              reason,
              "TRANSPOSE-Reverse");
  }

  void TheorySetsRels::doTCInference() {
    Trace("rels-debug") << "[Theory::Rels] ****** Finalizing transitive closure inferences!" << std::endl;
    TC_IT tc_graph_it = d_tcr_tcGraph.begin();
    while( tc_graph_it != d_tcr_tcGraph.end() ) {
      Assert(d_tcr_tcGraph_exps.find(tc_graph_it->first)
             != d_tcr_tcGraph_exps.end());
      doTCInference( tc_graph_it->second, d_tcr_tcGraph_exps.find(tc_graph_it->first)->second, tc_graph_it->first );
      ++tc_graph_it;
    }
    Trace("rels-debug") << "[Theory::Rels] ****** Done with finalizing transitive closure inferences!" << std::endl;
  }


  // Bottom-up fashion to compute relations with more than 1 arity
  void TheorySetsRels::computeMembersForBinOpRel(Node rel) {
    Trace("rels-debug") << "\n[Theory::Rels] computeMembersForBinOpRel for relation  " << rel << std::endl;

    switch(rel[0].getKind()) {
      case kind::TRANSPOSE:
      case kind::TCLOSURE: {
        computeMembersForUnaryOpRel(rel[0]);
        break;
      }
      case kind::JOIN:
      case kind::PRODUCT: {
        computeMembersForBinOpRel(rel[0]);
        break;
      }
      default:
        break;
    }
    switch(rel[1].getKind()) {
      case kind::TRANSPOSE: {
        computeMembersForUnaryOpRel(rel[1]);
        break;
      }
      case kind::JOIN:
      case kind::PRODUCT: {
        computeMembersForBinOpRel(rel[1]);
        break;
      }
      default:
        break;
    }
    if(d_rReps_memberReps_cache.find(getRepresentative(rel[0])) == d_rReps_memberReps_cache.end() ||
       d_rReps_memberReps_cache.find(getRepresentative(rel[1])) == d_rReps_memberReps_cache.end()) {
      return;
    }
    composeMembersForRels(rel);
  }

  // Bottom-up fashion to compute unary relation
  void TheorySetsRels::computeMembersForUnaryOpRel(Node rel) {
    Trace("rels-debug") << "\n[Theory::Rels] computeMembersForUnaryOpRel for relation  " << rel << std::endl;

    switch(rel[0].getKind()) {
      case kind::TRANSPOSE:
      case kind::TCLOSURE:
        computeMembersForUnaryOpRel(rel[0]);
        break;
      case kind::JOIN:
      case kind::PRODUCT:
        computeMembersForBinOpRel(rel[0]);
        break;
      default:
        break;
    }

    Node rel0_rep  = getRepresentative(rel[0]);
    if (d_rReps_memberReps_cache.find(rel0_rep)
        == d_rReps_memberReps_cache.end())
    {
      return;
    }
    NodeManager* nm = NodeManager::currentNM();

    std::vector<Node>   members = d_rReps_memberReps_cache[rel0_rep];
    std::vector<Node>   exps    = d_rReps_memberReps_exp_cache[rel0_rep];

    Assert(members.size() == exps.size());

    for(unsigned int i = 0; i < members.size(); i++) {
      Node reason = exps[i];
      if( rel.getKind() == kind::TRANSPOSE) {
        if( rel[0] != exps[i][1] ) {
          reason = NodeManager::currentNM()->mkNode(kind::AND, reason, NodeManager::currentNM()->mkNode(kind::EQUAL, rel[0], exps[i][1]));
        }
        sendInfer(nm->mkNode(MEMBER, RelsUtils::reverseTuple(exps[i][0]), rel),
                  reason,
                  "TRANSPOSE-reverse");
      }
    }
  }

  /*
   * Explicitly compose the join or product relations of r1 and r2
   * e.g. If (a, b) in X and (b, c) in Y, (a, c) in (X JOIN Y)
   *
   */
  void TheorySetsRels::composeMembersForRels( Node rel ) {
    Trace("rels-debug") << "[Theory::Rels] Start composing members for relation = " << rel << std::endl;
    Node r1 = rel[0];
    Node r2 = rel[1];
    Node r1_rep = getRepresentative( r1 );
    Node r2_rep = getRepresentative( r2 );

    if(d_rReps_memberReps_cache.find( r1_rep ) == d_rReps_memberReps_cache.end() ||
       d_rReps_memberReps_cache.find( r2_rep ) == d_rReps_memberReps_cache.end() ) {
      return;
    }
    NodeManager* nm = NodeManager::currentNM();

    std::vector<Node> r1_rep_exps = d_rReps_memberReps_exp_cache[r1_rep];
    std::vector<Node> r2_rep_exps = d_rReps_memberReps_exp_cache[r2_rep];
    unsigned int r1_tuple_len = r1.getType().getSetElementType().getTupleLength();
    unsigned int r2_tuple_len = r2.getType().getSetElementType().getTupleLength();

    for( unsigned int i = 0; i < r1_rep_exps.size(); i++ ) {
      for( unsigned int j = 0; j < r2_rep_exps.size(); j++ ) {
        std::vector<Node> tuple_elements;
        TypeNode tn = rel.getType().getSetElementType();
        Node r1_rmost = RelsUtils::nthElementOfTuple( r1_rep_exps[i][0], r1_tuple_len-1 );
        Node r2_lmost = RelsUtils::nthElementOfTuple( r2_rep_exps[j][0], 0 );
        tuple_elements.push_back( Node::fromExpr(tn.getDatatype()[0].getConstructor()) );

        if( (areEqual(r1_rmost, r2_lmost) && rel.getKind() == kind::JOIN) ||
            rel.getKind() == kind::PRODUCT ) {
          bool isProduct = rel.getKind() == kind::PRODUCT;
          unsigned int k = 0;
          unsigned int l = 1;

          for( ; k < r1_tuple_len - 1; ++k ) {
            tuple_elements.push_back( RelsUtils::nthElementOfTuple( r1_rep_exps[i][0], k ) );
          }
          if(isProduct) {
            tuple_elements.push_back( RelsUtils::nthElementOfTuple( r1_rep_exps[i][0], k ) );
            tuple_elements.push_back( RelsUtils::nthElementOfTuple( r2_rep_exps[j][0], 0 ) );
          }
          for( ; l < r2_tuple_len; ++l ) {
            tuple_elements.push_back( RelsUtils::nthElementOfTuple( r2_rep_exps[j][0], l ) );
          }

          Node composed_tuple = NodeManager::currentNM()->mkNode(kind::APPLY_CONSTRUCTOR, tuple_elements);
          Node fact = NodeManager::currentNM()->mkNode(kind::MEMBER, composed_tuple, rel);
          std::vector<Node> reasons;
          reasons.push_back( r1_rep_exps[i] );
          reasons.push_back( r2_rep_exps[j] );

          if( r1 != r1_rep_exps[i][1] ) {
            reasons.push_back( NodeManager::currentNM()->mkNode(kind::EQUAL, r1, r1_rep_exps[i][1]) );
          }
          if( r2 != r2_rep_exps[j][1] ) {
            reasons.push_back( NodeManager::currentNM()->mkNode(kind::EQUAL, r2, r2_rep_exps[j][1]) );
          }
          if( isProduct ) {
            sendInfer(fact,
                      nm->mkNode(kind::AND, reasons),
                      "PRODUCT-Compose");
          } else {
            if( r1_rmost != r2_lmost ) {
              reasons.push_back( NodeManager::currentNM()->mkNode(kind::EQUAL, r1_rmost, r2_lmost) );
            }
            sendInfer(fact, nm->mkNode(kind::AND, reasons), "JOIN-Compose");
          }
        }
      }
    }

  }

  void TheorySetsRels::doPendingInfers()
  {
    // process the inferences in d_pending
    if (!d_state.isInConflict())
    {
      for (const Node& p : d_pending)
      {
        if (p.getKind() == IMPLIES)
        {
          processInference(p[1], p[0], "rels");
        }
        else
        {
          processInference(p, d_trueNode, "rels");
        }
        if (d_state.isInConflict())
        {
          break;
        }
      }
      // if we are still not in conflict, send lemmas
      if (!d_state.isInConflict())
      {
        d_im.flushPendingLemmas();
      }
    }
    d_pending.clear();
  }

  void TheorySetsRels::processInference(Node conc, Node exp, const char* c)
  {
    Trace("sets-pinfer") << "Process inference: " << exp << " => " << conc
                         << std::endl;
    if (!d_state.isEntailed(exp, true))
    {
      Trace("sets-pinfer") << "  must assert as lemma" << std::endl;
      // we wrap the spurious explanation into a splitting lemma
      Node lem = NodeManager::currentNM()->mkNode(OR, exp.negate(), conc);
      d_im.assertInference(lem, d_trueNode, c, 1);
      return;
    }
    // try to assert it as a fact
    d_im.assertInference(conc, exp, c);
  }

  bool TheorySetsRels::isRelationKind( Kind k ) {
    return k == TRANSPOSE || k == PRODUCT || k == JOIN || k == TCLOSURE
           || k == IDEN || k == JOIN_IMAGE;
  }

  Node TheorySetsRels::getRepresentative( Node t ) {
    if (d_ee.hasTerm(t))
    {
      return d_ee.getRepresentative(t);
    }
    else
    {
      return t;
    }
  }

  bool TheorySetsRels::hasTerm(Node a) { return d_ee.hasTerm(a); }
  bool TheorySetsRels::areEqual( Node a, Node b ){
    Assert(a.getType() == b.getType());
    Trace("rels-eq") << "[sets-rels]**** checking equality between " << a << " and " << b << std::endl;
    if(a == b) {
      return true;
    } else if( hasTerm( a ) && hasTerm( b ) ){
      return d_ee.areEqual(a, b);
    } else if(a.getType().isTuple()) {
      bool equal = true;
      for(unsigned int i = 0; i < a.getType().getTupleLength(); i++) {
        equal = equal && areEqual(RelsUtils::nthElementOfTuple(a, i), RelsUtils::nthElementOfTuple(b, i));
      }
      return equal;
    } else if(!a.getType().isBoolean()){
      makeSharedTerm(a);
      makeSharedTerm(b);
    }
    return false;
  }

  /*
   * Make sure duplicate members are not added in map
   */
  bool TheorySetsRels::safelyAddToMap(std::map< Node, std::vector<Node> >& map, Node rel_rep, Node member) {
    std::map< Node, std::vector< Node > >::iterator mem_it = map.find(rel_rep);
    if(mem_it == map.end()) {
      std::vector<Node> members;
      members.push_back(member);
      map[rel_rep] = members;
      return true;
    } else {
      std::vector<Node>::iterator mems = mem_it->second.begin();
      while(mems != mem_it->second.end()) {
        if(areEqual(*mems, member)) {
          return false;
        }
        ++mems;
      }
      map[rel_rep].push_back(member);
      return true;
    }
    return false;
  }

  void TheorySetsRels::makeSharedTerm( Node n ) {
    if (d_shared_terms.find(n) != d_shared_terms.end())
    {
      return;
    }
    Trace("rels-share") << " [sets-rels] making shared term " << n << std::endl;
    // force a proxy lemma to be sent for the singleton containing n
    Node ss = NodeManager::currentNM()->mkNode(SINGLETON, n);
    d_state.getProxy(ss);
    d_shared_terms.insert(n);
  }

  /*
   * For each tuple n, we store a mapping between n and a list of its elements representatives
   * in d_tuple_reps. This would later be used for applying JOIN operator.
   */
  void TheorySetsRels::computeTupleReps( Node n ) {
    if( d_tuple_reps.find( n ) == d_tuple_reps.end() ){
      for( unsigned i = 0; i < n.getType().getTupleLength(); i++ ){
        d_tuple_reps[n].push_back( getRepresentative( RelsUtils::nthElementOfTuple(n, i) ) );
      }
    }
  }

  /*
   * Node n[0] is a tuple variable, reduce n[0] to a concrete representation,
   * which is (e1, ..., en) where e1, ... ,en are concrete elements of tuple n[0].
   */
  void TheorySetsRels::reduceTupleVar(Node n) {
    if(d_symbolic_tuples.find(n) == d_symbolic_tuples.end()) {
      Trace("rels-debug") << "[Theory::Rels] Reduce tuple var: " << n[0] << " to a concrete one " << " node = " << n << std::endl;
      std::vector<Node> tuple_elements;
      tuple_elements.push_back(Node::fromExpr((n[0].getType().getDatatype())[0].getConstructor()));
      for(unsigned int i = 0; i < n[0].getType().getTupleLength(); i++) {
        Node element = RelsUtils::nthElementOfTuple(n[0], i);
        makeSharedTerm(element);
        tuple_elements.push_back(element);
      }
      Node tuple_reduct = NodeManager::currentNM()->mkNode(kind::APPLY_CONSTRUCTOR, tuple_elements);
      tuple_reduct = NodeManager::currentNM()->mkNode(kind::MEMBER,tuple_reduct, n[1]);
      Node tuple_reduction_lemma = NodeManager::currentNM()->mkNode(kind::EQUAL, n, tuple_reduct);
      sendInfer(tuple_reduction_lemma, d_trueNode, "tuple-reduction");
      d_symbolic_tuples.insert(n);
    }
  }

  std::vector<Node> TupleTrie::findTerms( std::vector< Node >& reps, int argIndex ) {
    std::vector<Node>                           nodes;
    std::map< Node, TupleTrie >::iterator       it;

    if( argIndex==(int)reps.size()-1 ){
      if(reps[argIndex].getKind() == kind::SKOLEM) {
        it = d_data.begin();
        while(it != d_data.end()) {
          nodes.push_back(it->first);
          ++it;
        }
      }
      return nodes;
    }else{
      it = d_data.find( reps[argIndex] );
      if( it==d_data.end() ){
        return nodes;
      }else{
        return it->second.findTerms( reps, argIndex+1 );
      }
    }
  }

  std::vector<Node> TupleTrie::findSuccessors( std::vector< Node >& reps, int argIndex ) {
    std::vector<Node>   nodes;
    std::map< Node, TupleTrie >::iterator it;

    if( argIndex==(int)reps.size() ){
      it = d_data.begin();
      while(it != d_data.end()) {
        nodes.push_back(it->first);
        ++it;
      }
      return nodes;
    }else{
      it = d_data.find( reps[argIndex] );
      if( it==d_data.end() ){
        return nodes;
      }else{
        return it->second.findSuccessors( reps, argIndex+1 );
      }
    }
  }

  Node TupleTrie::existsTerm( std::vector< Node >& reps, int argIndex ) {
    if( argIndex==(int)reps.size() ){
      if( d_data.empty() ){        
        return Node::null();
      }else{
        return d_data.begin()->first;
      }
    }else{
      std::map< Node, TupleTrie >::iterator it = d_data.find( reps[argIndex] );
      if( it==d_data.end() ){
        return Node::null();
      }else{
        return it->second.existsTerm( reps, argIndex+1 );
      }
    }
  }

  bool TupleTrie::addTerm( Node n, std::vector< Node >& reps, int argIndex ){
    if( argIndex==(int)reps.size() ){
      if( d_data.empty() ){
        //store n in d_data (this should be interpretted as the "data" and not as a reference to a child)
        d_data[n].clear();
        return true;
      }else{
        return false;
      }
    }else{
      return d_data[reps[argIndex]].addTerm( n, reps, argIndex+1 );
    }
  }

  void TupleTrie::debugPrint( const char * c, Node n, unsigned depth ) {
    for( std::map< Node, TupleTrie >::iterator it = d_data.begin(); it != d_data.end(); ++it ){
      for( unsigned i=0; i<depth; i++ ){ Debug(c) << "  "; }
      Debug(c) << it->first << std::endl;
      it->second.debugPrint( c, n, depth+1 );
    }
  }

  void TheorySetsRels::sendInfer(Node fact, Node reason, const char* c)
  {
    Trace("rels-lemma") << "Rels::lemma " << fact << " from " << reason
                        << " by " << c << std::endl;
    Node lemma = NodeManager::currentNM()->mkNode(IMPLIES, reason, fact);
    d_pending.push_back(lemma);
  }
}
}
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback