summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/sygus/sygus_unif_io.h
blob: a499ba2843bb6763fb529413669d20aac933668d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/*********************                                                        */
/*! \file sygus_unif_io.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Haniel Barbosa
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief sygus_unif_io
 **/

#include "cvc4_private.h"

#ifndef __CVC4__THEORY__QUANTIFIERS__SYGUS_UNIF_IO_H
#define __CVC4__THEORY__QUANTIFIERS__SYGUS_UNIF_IO_H

#include <map>
#include "theory/quantifiers/sygus/sygus_unif.h"

namespace CVC4 {
namespace theory {
namespace quantifiers {

class SygusUnifIo;

/** Unification context
  *
  * This class maintains state information during calls to
  * SygusUnifIo::constructSolution, which implements unification-based
  * approaches for constructing solutions to synthesis conjectures.
  */
class UnifContextIo : public UnifContext
{
 public:
  UnifContextIo();
  /** get current role */
  NodeRole getCurrentRole() override;

  /**
   * This intiializes this context based on information in sui regarding the
   * kinds of examples it contains.
   */
  void initialize(SygusUnifIo* sui);

  //----------for ITE strategy
  /** the value of the context conditional
  *
  * This stores a list of Boolean constants that is the same length of the
  * number of input/output example pairs we are considering. For each i,
  * if d_vals[i] = true, i/o pair #i is active according to this context
  * if d_vals[i] = false, i/o pair #i is inactive according to this context
  */
  std::vector<Node> d_vals;
  /** update the examples
  *
  * if pol=true, this method updates d_vals to d_vals & vals
  * if pol=false, this method updates d_vals to d_vals & ( ~vals )
  */
  bool updateContext(SygusUnifIo* sui, std::vector<Node>& vals, bool pol);
  //----------end for ITE strategy

  //----------for CONCAT strategies
  /** the position in the strings
  *
  * For each i/o example pair, this stores the length of the current solution
  * for the input of the pair, where the solution for that input is a prefix
  * or
  * suffix of the output of the pair. For example, if our i/o pairs are:
  *   f( "abcd" ) = "abcdcd"
  *   f( "aa" ) = "aacd"
  * If the solution we have currently constructed is str.++( x1, "c", ... ),
  * then d_str_pos = ( 5, 3 ), where notice that
  *   str.++( "abc", "c" ) is a prefix of "abcdcd" and
  *   str.++( "aa", "c" ) is a prefix of "aacd".
  */
  std::vector<unsigned> d_str_pos;
  /** update the string examples
  *
  * This method updates d_str_pos to d_str_pos + pos, and updates the current
  * role to nrole.
  */
  bool updateStringPosition(SygusUnifIo* sui,
                            std::vector<unsigned>& pos,
                            NodeRole nrole);
  /** get current strings
  *
  * This returns the prefix/suffix of the string constants stored in vals
  * of size d_str_pos, and stores the result in ex_vals. For example, if vals
  * is (abcdcd", "aacde") and d_str_pos = ( 5, 3 ), then we add
  * "d" and "de" to ex_vals.
  */
  void getCurrentStrings(SygusUnifIo* sui,
                         const std::vector<Node>& vals,
                         std::vector<String>& ex_vals);
  /** get string increment
  *
  * If this method returns true, then inc and tot are updated such that
  *   for all active indices i,
  *      vals[i] is a prefix (or suffix if isPrefix=false) of ex_vals[i], and
  *      inc[i] = str.len(vals[i])
  *   for all inactive indices i, inc[i] = 0
  * We set tot to the sum of inc[i] for i=1,...,n. This indicates the total
  * number of characters incremented across all examples.
  */
  bool getStringIncrement(SygusUnifIo* sui,
                          bool isPrefix,
                          const std::vector<String>& ex_vals,
                          const std::vector<Node>& vals,
                          std::vector<unsigned>& inc,
                          unsigned& tot);
  /** returns true if ex_vals[i] = vals[i] for all active indices i. */
  bool isStringSolved(SygusUnifIo* sui,
                      const std::vector<String>& ex_vals,
                      const std::vector<Node>& vals);
  //----------end for CONCAT strategies

  /** visited role
  *
  * This is the current set of enumerator/node role pairs we are currently
  * visiting. This set is cleared when the context is updated.
  */
  std::map<Node, std::map<NodeRole, bool>> d_visit_role;

  /** unif context enumerator information */
  class UEnumInfo
  {
   public:
    UEnumInfo() {}
    /** map from conditions and branch positions to a solved node
    *
    * For example, if we have:
    *   f( 1 ) = 2 ^ f( 3 ) = 4 ^ f( -1 ) = 1
    * Then, valid entries in this map is:
    *   d_look_ahead_sols[x>0][1] = x+1
    *   d_look_ahead_sols[x>0][2] = 1
    * For the first entry, notice that  for all input examples such that x>0
    * evaluates to true, which are (1) and (3), we have that their output
    * values for x+1 under the substitution that maps x to the input value,
    * resulting in 2 and 4, are equal to the output value for the respective
    * pairs.
    */
    std::map<Node, std::map<unsigned, Node>> d_look_ahead_sols;
    /** clear */
    void clear() { d_look_ahead_sols.clear(); }
    /** is empty */
    bool empty() { return d_look_ahead_sols.empty(); }
  };
  /** map from enumerators to the above info class */
  std::map<Node, UEnumInfo> d_uinfo;

 private:
  /** true and false nodes */
  Node d_true;
  Node d_false;
  /** current role (see getCurrentRole). */
  NodeRole d_curr_role;
};

/** Subsumption trie
*
* This class manages a set of terms for a PBE sygus enumerator.
*
* In PBE sygus, we are interested in, for each term t, the set of I/O examples
* that it satisfies, which can be represented by a vector of Booleans.
* For example, given conjecture:
*   f( 1 ) = 2 ^ f( 3 ) = 4 ^ f( -1 ) = 1 ^ f( 5 ) = 5
* If solutions for f are of the form (lambda x. [term]), then:
*   Term x satisfies 0001,
*   Term x+1 satisfies 1100,
*   Term 2 satisfies 0100.
* Above, term 2 is subsumed by term x+1, since the set of I/O examples that
* x+1 satisfies are a superset of those satisfied by 2.
*/
class SubsumeTrie
{
 public:
  SubsumeTrie() {}
  /**
  * Adds term t to the trie, removes all terms that are subsumed by t from the
  * trie and adds them to subsumed. The set of I/O examples that t satisfies
  * is given by (pol ? vals : !vals).
  */
  Node addTerm(Node t,
               const std::vector<Node>& vals,
               bool pol,
               std::vector<Node>& subsumed);
  /**
  * Adds term c to the trie, without calculating/updating based on
  * subsumption. This is useful for using this class to store conditionals
  * in ITE strategies, where any conditional whose set of vals is unique
  * (as opposed to not subsumed) is useful.
  */
  Node addCond(Node c, const std::vector<Node>& vals, bool pol);
  /**
    * Returns the set of terms that are subsumed by (pol ? vals : !vals).
    */
  void getSubsumed(const std::vector<Node>& vals,
                   bool pol,
                   std::vector<Node>& subsumed);
  /**
    * Returns the set of terms that subsume (pol ? vals : !vals). This
    * is for instance useful when determining whether there exists a term
    * that satisfies all active examples in the decision tree learning
    * algorithm.
    */
  void getSubsumedBy(const std::vector<Node>& vals,
                     bool pol,
                     std::vector<Node>& subsumed_by);
  /**
  * Get the leaves of the trie, which we store in the map v.
  * v[-1] stores the children that always evaluate to !pol,
  * v[1] stores the children that always evaluate to pol,
  * v[0] stores the children that both evaluate to true and false for at least
  * one example.
  */
  void getLeaves(const std::vector<Node>& vals,
                 bool pol,
                 std::map<int, std::vector<Node>>& v);
  /** is this trie empty? */
  bool isEmpty() { return d_term.isNull() && d_children.empty(); }
  /** clear this trie */
  void clear()
  {
    d_term = Node::null();
    d_children.clear();
  }

 private:
  /** the term at this node */
  Node d_term;
  /** the children nodes of this trie */
  std::map<Node, SubsumeTrie> d_children;
  /** helper function for above functions */
  Node addTermInternal(Node t,
                       const std::vector<Node>& vals,
                       bool pol,
                       std::vector<Node>& subsumed,
                       bool spol,
                       unsigned index,
                       int status,
                       bool checkExistsOnly,
                       bool checkSubsume);
  /** helper function for above functions */
  void getLeavesInternal(const std::vector<Node>& vals,
                         bool pol,
                         std::map<int, std::vector<Node>>& v,
                         unsigned index,
                         int status);
};

/** Sygus unification I/O utility
 *
 * This class implement synthesis-by-unification, where the specification is
 * I/O examples. With respect to SygusUnif, it's main interface function is
 * addExample, which adds an I/O example to the specification.
 *
 * Since I/O specifications for multiple functions can be fully separated, we
 * assume that this class is used only for a single function to synthesize.
 *
 * In addition to the base class which maintains a strategy tree, this class
 * maintains:
 * (1) A set of input/output examples that are the specification for f. This
 * can be updated via calls to resetExmaples/addExamples,
 * (2) A set of terms that have been enumerated for enumerators (d_ecache). This
 * can be updated via calls to notifyEnumeration.
 */
class SygusUnifIo : public SygusUnif
{
  friend class UnifContextIo;

 public:
  SygusUnifIo();
  ~SygusUnifIo();

  /** initialize
   *
   * We only initialize for one function f, since I/O specifications across
   * multiple functions can be separated.
   */
  void initializeCandidate(
      QuantifiersEngine* qe,
      Node f,
      std::vector<Node>& enums,
      std::map<Node, std::vector<Node>>& strategy_lemmas) override;
  /** Notify enumeration */
  void notifyEnumeration(Node e, Node v, std::vector<Node>& lemmas) override;

  /** Construct solution */
  bool constructSolution(std::vector<Node>& sols,
                         std::vector<Node>& lemmas) override;

  /** add example
   *
   * This adds input -> output to the specification for f. The arity of
   * input should be equal to the number of arguments in the sygus variable
   * list of the grammar of f. That is, if we are searching for solutions for f
   * of the form (lambda v1...vn. t), then the arity of input should be n.
   */
  void addExample(const std::vector<Node>& input, Node output);

 protected:
  /** the candidate */
  Node d_candidate;
  /**
   * Whether we will try to construct solution on the next call to
   * constructSolution. This flag is set to true when we successfully
   * register a new value for an enumerator.
   */
  bool d_check_sol;
  /** whether we have solved the overall conjecture */
  bool d_solved;
  /** The number of values we have enumerated for all enumerators. */
  unsigned d_cond_count;
  /** The solution for the function of this class, if one has been found */
  Node d_solution;
  /**
   * This flag is set to true if the solution construction was
   * non-deterministic with respect to failure/success.
   *
   * The solution construction for the string concatenation strategy is
   * non-deterministic with respect to success/failure. That is, choosing
   * a particular string may lead to being unsolvable in the recursive calls,
   * whereas others may not. For example, if our pool of enumerated strings is:
   *   { "A", x, "B" }
   * and our I/O example is:
   *   f( "AC" ) = "ACB"
   * then choosing to consider a solution of the form ( "A" ++ _ ) leads
   * to a recursive call where we are solving for f' in:
   *   "A" ++ f'("AC") = "ACB"
   * which is unsolvable since we cannot generate a term starting with "C"
   * from the pool above. Whereas if we would have chosen ( x ++ _ ), this
   * leads to a recursive call where we are solving for f' in:
   *   "AC" ++ f'("AC") = "ACB"
   * which can be closed with "B", giving us (x ++ "B") as a solution.
   */
  bool d_sol_cons_nondet;
  /** true and false nodes */
  Node d_true;
  Node d_false;
  /** input of I/O examples */
  std::vector<std::vector<Node>> d_examples;
  /** output of I/O examples */
  std::vector<Node> d_examples_out;

  /**
  * This class stores information regarding an enumerator, including:
  * a database of values that have been enumerated for this enumerator.
  */
  class EnumCache
  {
   public:
    EnumCache() {}
    /**
    * Notify this class that the term v has been enumerated for this enumerator.
    * Its evaluation under the set of examples in sui are stored in results.
    */
    void addEnumValue(Node v, std::vector<Node>& results);
    /**
    * Notify this class that slv is the complete solution to the synthesis
    * conjecture. This occurs rarely, for instance, when during an ITE strategy
    * we find that a single enumerated term covers all examples.
    */
    void setSolved(Node slv) { d_enum_solved = slv; }
    /** Have we been notified that a complete solution exists? */
    bool isSolved() { return !d_enum_solved.isNull(); }
    /** Get the complete solution to the synthesis conjecture. */
    Node getSolved() { return d_enum_solved; }
    /** Values that have been enumerated for this enumerator */
    std::vector<Node> d_enum_vals;
    /**
      * This either stores the values of f( I ) for inputs
      * or the value of f( I ) = O if d_role==enum_io
      */
    std::vector<std::vector<Node>> d_enum_vals_res;
    /**
    * The set of values in d_enum_vals that have been "subsumed" by others
    * (see SubsumeTrie for explanation of subsumed).
    */
    std::vector<Node> d_enum_subsume;
    /** Map from values to their index in d_enum_vals. */
    std::map<Node, unsigned> d_enum_val_to_index;
    /**
    * A subsumption trie containing the values in d_enum_vals. Depending on the
    * role of this enumerator, values may either be added to d_term_trie with
    * subsumption (if role=enum_io), or without (if role=enum_ite_condition or
    * enum_concat_term).
    */
    SubsumeTrie d_term_trie;

   private:
    /**
      * Whether an enumerated value for this conjecture has solved the entire
      * conjecture.
      */
    Node d_enum_solved;
  };
  /** maps enumerators to the information above */
  std::map<Node, EnumCache> d_ecache;
  /** Construct solution node
   *
   * This is called for the (single) function-to-synthesize during a call to
   * constructSolution. If this returns a non-null node, then that term is a
   * solution for the function-to-synthesize in the overall conjecture.
   */
  Node constructSolutionNode(std::vector<Node>& lemmas);
  /** domain-specific enumerator exclusion techniques
   *
   * Returns true if the value v for e can be excluded based on a
   * domain-specific exclusion technique like the ones below.
   *
   * results : the values of v under the input examples,
   * exp : if this function returns true, then exp contains a (possibly
   * generalize) explanation for why v can be excluded.
   */
  bool getExplanationForEnumeratorExclude(Node e,
                                          Node v,
                                          std::vector<Node>& results,
                                                     std::map< Node, std::vector< Node > >& srmap,
                                                     bool prereg,
                                          std::vector<Node>& exp);
  Node getExclusionInvariancePredicate(Node e, Node v,
                                       std::map< Node, std::vector< Node > >& srmap,
                                                     bool prereg);
  /** returns true if we can exlude values of e based on negative str.contains
   *
   * Values v for e may be excluded if we realize that the value of v under the
   * substitution for some input example will never be contained in some output
   * example. For details on this technique, see NegContainsSygusInvarianceTest
   * in sygus_invariance.h.
   *
   * This function depends on whether e is being used to enumerate values
   * for any node that is conditional in the strategy graph. For example,
   * nodes that are children of ITE strategy nodes are conditional. If any node
   * is conditional, then this function returns false.
   */
  bool useStrContainsEnumeratorExclude(Node e);
  /** cache for the above function */
  std::map<Node, bool> d_use_str_contains_eexc;

  /** the unification context used within constructSolution */
  UnifContextIo d_context;
  /** initialize construct solution */
  void initializeConstructSol() override;
  /** initialize construct solution for */
  void initializeConstructSolFor(Node f) override;
  /** construct solution */
  Node constructSol(Node f,
                    Node e,
                    NodeRole nrole,
                    int ind,
                    std::vector<Node>& lemmas) override;
};

} /* CVC4::theory::quantifiers namespace */
} /* CVC4::theory namespace */
} /* CVC4 namespace */

#endif /* __CVC4__THEORY__QUANTIFIERS__SYGUS_UNIF_IO_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback