summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/first_order_model.cpp
blob: de71d62a7658d01cfbba1d923725494599e0d96e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Aina Niemetz
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Implementation of model engine model class.
 */

#include "theory/quantifiers/first_order_model.h"
#include "options/base_options.h"
#include "options/quantifiers_options.h"
#include "theory/quantifiers/fmf/bounded_integers.h"
#include "theory/quantifiers/fmf/model_engine.h"
#include "theory/quantifiers/quantifiers_attributes.h"
#include "theory/quantifiers/term_database.h"
#include "theory/quantifiers/term_enumeration.h"
#include "theory/quantifiers/term_registry.h"
#include "theory/quantifiers/term_util.h"

using namespace cvc5::kind;
using namespace cvc5::context;

namespace cvc5 {
namespace theory {
namespace quantifiers {

struct ModelBasisAttributeId
{
};
using ModelBasisAttribute = expr::Attribute<ModelBasisAttributeId, bool>;
// for APPLY_UF terms, 1 : term has direct child with model basis attribute,
//                     0 : term has no direct child with model basis attribute.
struct ModelBasisArgAttributeId
{
};
using ModelBasisArgAttribute = expr::Attribute<ModelBasisArgAttributeId, uint64_t>;

FirstOrderModel::FirstOrderModel(QuantifiersState& qs,
                                 QuantifiersRegistry& qr,
                                 TermRegistry& tr,
                                 std::string name)
    : TheoryModel(qs.getSatContext(), name, true),
      d_qe(nullptr),
      d_qreg(qr),
      d_treg(tr),
      d_eq_query(qs, this),
      d_forall_asserts(qs.getSatContext()),
      d_forallRlvComputed(false)
{
}

//!!!!!!!!!!!!!!!!!!!!! temporary (project #15)
void FirstOrderModel::finishInit(QuantifiersEngine* qe) { d_qe = qe; }

Node FirstOrderModel::getInternalRepresentative(Node a, Node q, size_t index)
{
  return d_eq_query.getInternalRepresentative(a, q, index);
}

void FirstOrderModel::assertQuantifier( Node n ){
  if( n.getKind()==FORALL ){
    d_forall_asserts.push_back( n );
  }else if( n.getKind()==NOT ){
    Assert(n[0].getKind() == FORALL);
  }
}

size_t FirstOrderModel::getNumAssertedQuantifiers() const
{
  return d_forall_asserts.size(); 
}

Node FirstOrderModel::getAssertedQuantifier( unsigned i, bool ordered ) { 
  if( !ordered || !d_forallRlvComputed ){
    return d_forall_asserts[i]; 
  }
  // If we computed the relevant forall assertion vector, in reset_round,
  // then it should have the same size as the default assertion vector.
  Assert(d_forall_rlv_assert.size() == d_forall_asserts.size());
  return d_forall_rlv_assert[i];
}

void FirstOrderModel::initialize() {
  processInitialize( true );
  //this is called after representatives have been chosen and the equality engine has been built
  //for each quantifier, collect all operators we care about
  for( unsigned i=0; i<getNumAssertedQuantifiers(); i++ ){
    Node f = getAssertedQuantifier( i );
    if( d_quant_var_id.find( f )==d_quant_var_id.end() ){
      for(unsigned j=0; j<f[0].getNumChildren(); j++){
        d_quant_var_id[f][f[0][j]] = j;
      }
    }
    processInitializeQuantifier( f );
    //initialize relevant models within bodies of all quantifiers
    std::map< Node, bool > visited;
    initializeModelForTerm( f[1], visited );
  }
  processInitialize( false );
}

void FirstOrderModel::initializeModelForTerm( Node n, std::map< Node, bool >& visited ){
  if( visited.find( n )==visited.end() ){
    visited[n] = true;
    processInitializeModelForTerm( n );
    for( int i=0; i<(int)n.getNumChildren(); i++ ){
      initializeModelForTerm( n[i], visited );
    }
  }
}

Node FirstOrderModel::getSomeDomainElement(TypeNode tn){
  //check if there is even any domain elements at all
  if (!d_rep_set.hasType(tn) || d_rep_set.d_type_reps[tn].size() == 0)
  {
    Trace("fm-debug") << "Must create domain element for " << tn << "..."
                      << std::endl;
    Node mbt = getModelBasisTerm(tn);
    Trace("fm-debug") << "Add to representative set..." << std::endl;
    d_rep_set.add(tn, mbt);
  }
  return d_rep_set.d_type_reps[tn][0];
}

bool FirstOrderModel::initializeRepresentativesForType(TypeNode tn)
{
  if (tn.isSort())
  {
    // must ensure uninterpreted type is non-empty.
    if (!d_rep_set.hasType(tn))
    {
      // terms in rep_set are now constants which mapped to terms through
      // TheoryModel. Thus, should introduce a constant and a term.
      // For now, we just add an arbitrary term.
      Node var = getSomeDomainElement(tn);
      Trace("mkVar") << "RepSetIterator:: Make variable " << var << " : " << tn
                     << std::endl;
      d_rep_set.add(tn, var);
    }
    return true;
  }
  else
  {
    // can we complete it?
    if (d_qreg.getQuantifiersBoundInference().mayComplete(tn))
    {
      Trace("fm-debug") << "  do complete, since cardinality is small ("
                        << tn.getCardinality() << ")..." << std::endl;
      d_rep_set.complete(tn);
      // must have succeeded
      Assert(d_rep_set.hasType(tn));
      return true;
    }
    Trace("fm-debug") << "  variable cannot be bounded." << std::endl;
    return false;
  }
}

bool FirstOrderModel::isModelBasis(TNode n)
{
  return n.getAttribute(ModelBasisAttribute());
}

EqualityQuery* FirstOrderModel::getEqualityQuery() { return &d_eq_query; }

/** needs check */
bool FirstOrderModel::checkNeeded() {
  return d_forall_asserts.size()>0;
}

void FirstOrderModel::reset_round() {
  d_quant_active.clear();

  // compute which quantified formulas are asserted if necessary
  std::map<Node, bool> qassert;
  if (!d_forall_rlv_vec.empty())
  {
    Trace("fm-relevant-debug")
        << "Mark asserted quantified formulas..." << std::endl;
    for (const Node& q : d_forall_asserts)
    {
      qassert[q] = true;
    }
  }
  //order the quantified formulas
  d_forall_rlv_assert.clear();
  d_forallRlvComputed = false;
  if( !d_forall_rlv_vec.empty() ){
    d_forallRlvComputed = true;
    Trace("fm-relevant") << "Build sorted relevant list..." << std::endl;
    Trace("fm-relevant-debug") << "Add relevant asserted formulas..." << std::endl;
    std::map<Node, bool>::iterator ita;
    for( int i=(int)(d_forall_rlv_vec.size()-1); i>=0; i-- ){
      Node q = d_forall_rlv_vec[i];
      ita = qassert.find(q);
      if (ita != qassert.end())
      {
        Trace("fm-relevant") << "   " << q << std::endl;
        d_forall_rlv_assert.push_back( q );
        qassert.erase(ita);
      }
    }
    Trace("fm-relevant-debug") << "Add remaining asserted formulas..." << std::endl;
    for (const Node& q : d_forall_asserts)
    {
      // if we didn't include it above
      if (qassert.find(q) != qassert.end())
      {
        d_forall_rlv_assert.push_back( q );
      }else{
        Trace("fm-relevant-debug") << "...already included " << q << std::endl;
      }
    }
    Trace("fm-relevant-debug") << "Sizes : " << d_forall_rlv_assert.size() << " " << d_forall_asserts.size() << std::endl;
    Assert(d_forall_rlv_assert.size() == d_forall_asserts.size());
  }
}

void FirstOrderModel::markRelevant( Node q ) {
  // Put q on the back of the vector d_forall_rlv_vec.
  // If we were the last quantifier marked relevant, this is a no-op, return.
  if( q!=d_last_forall_rlv ){
    Trace("fm-relevant") << "Mark relevant : " << q << std::endl;
    std::vector<Node>::iterator itr =
        std::find(d_forall_rlv_vec.begin(), d_forall_rlv_vec.end(), q);
    if (itr != d_forall_rlv_vec.end())
    {
      d_forall_rlv_vec.erase(itr, itr + 1);
    }
    d_forall_rlv_vec.push_back(q);
    d_last_forall_rlv = q;
  }
}

void FirstOrderModel::setQuantifierActive( TNode q, bool active ) {
  d_quant_active[q] = active;
}

bool FirstOrderModel::isQuantifierActive(TNode q) const
{
  std::map<TNode, bool>::const_iterator it = d_quant_active.find(q);
  if( it==d_quant_active.end() ){
    return true;
  }
  return it->second;
}

bool FirstOrderModel::isQuantifierAsserted(TNode q) const
{
  return std::find( d_forall_asserts.begin(), d_forall_asserts.end(), q )!=d_forall_asserts.end();
}

Node FirstOrderModel::getModelBasisTerm(TypeNode tn)
{
  if (d_model_basis_term.find(tn) == d_model_basis_term.end())
  {
    Node mbt;
    if (tn.isClosedEnumerable())
    {
      mbt = d_treg.getTermEnumeration()->getEnumerateTerm(tn, 0);
    }
    else
    {
      if (options::fmfFreshDistConst())
      {
        mbt = d_treg.getTermDatabase()->getOrMakeTypeFreshVariable(tn);
      }
      else
      {
        // The model basis term cannot be an interpreted function, or else we
        // may produce an inconsistent model by choosing an arbitrary
        // equivalence class for it. Hence, we require that it be an existing or
        // fresh variable.
        mbt = d_treg.getTermDatabase()->getOrMakeTypeGroundTerm(tn, true);
      }
    }
    ModelBasisAttribute mba;
    mbt.setAttribute(mba, true);
    d_model_basis_term[tn] = mbt;
    Trace("model-basis-term") << "Choose " << mbt << " as model basis term for "
                              << tn << std::endl;
  }
  return d_model_basis_term[tn];
}

bool FirstOrderModel::isModelBasisTerm(Node n)
{
  return n == getModelBasisTerm(n.getType());
}

Node FirstOrderModel::getModelBasisOpTerm(Node op)
{
  if (d_model_basis_op_term.find(op) == d_model_basis_op_term.end())
  {
    TypeNode t = op.getType();
    std::vector<Node> children;
    children.push_back(op);
    for (int i = 0; i < (int)(t.getNumChildren() - 1); i++)
    {
      children.push_back(getModelBasisTerm(t[i]));
    }
    if (children.size() == 1)
    {
      d_model_basis_op_term[op] = op;
    }
    else
    {
      d_model_basis_op_term[op] =
          NodeManager::currentNM()->mkNode(APPLY_UF, children);
    }
  }
  return d_model_basis_op_term[op];
}

Node FirstOrderModel::getModelBasis(Node q, Node n)
{
  // make model basis
  if (d_model_basis_terms.find(q) == d_model_basis_terms.end())
  {
    for (unsigned j = 0; j < q[0].getNumChildren(); j++)
    {
      d_model_basis_terms[q].push_back(getModelBasisTerm(q[0][j].getType()));
    }
  }
  Node gn = d_qreg.substituteInstConstants(n, q, d_model_basis_terms[q]);
  return gn;
}

void FirstOrderModel::computeModelBasisArgAttribute(Node n)
{
  if (!n.hasAttribute(ModelBasisArgAttribute()))
  {
    // ensure that the model basis terms have been defined
    if (n.getKind() == APPLY_UF)
    {
      getModelBasisOpTerm(n.getOperator());
    }
    uint64_t val = 0;
    // determine if it has model basis attribute
    for (unsigned j = 0, nchild = n.getNumChildren(); j < nchild; j++)
    {
      if (n[j].getAttribute(ModelBasisAttribute()))
      {
        val++;
      }
    }
    ModelBasisArgAttribute mbaa;
    n.setAttribute(mbaa, val);
  }
}

unsigned FirstOrderModel::getModelBasisArg(Node n)
{
  computeModelBasisArgAttribute(n);
  return n.getAttribute(ModelBasisArgAttribute());
}

}  // namespace quantifiers
}  // namespace theory
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback