summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/first_order_model.cpp
blob: fa4961352d6a68d52836df4b8c3171b0c62067a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/*********************                                                        */
/*! \file first_order_model.cpp
 ** \verbatim
 ** Original author: Andrew Reynolds
 ** Major contributors: Morgan Deters
 ** Minor contributors (to current version): none
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2013  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Implementation of model engine model class
 **/

#include "theory/quantifiers/first_order_model.h"
#include "theory/quantifiers/model_engine.h"
#include "theory/quantifiers/term_database.h"
#include "theory/quantifiers/quantifiers_attributes.h"

#define USE_INDEX_ORDERING

using namespace std;
using namespace CVC4;
using namespace CVC4::kind;
using namespace CVC4::context;
using namespace CVC4::theory;
using namespace CVC4::theory::quantifiers;
using namespace CVC4::theory::quantifiers::fmcheck;

FirstOrderModel::FirstOrderModel( context::Context* c, std::string name ) : TheoryModel( c, name, true ),
d_axiom_asserted( c, false ), d_forall_asserts( c ), d_isModelSet( c, false ){

}

void FirstOrderModel::assertQuantifier( Node n ){
  d_forall_asserts.push_back( n );
  if( n.getAttribute(AxiomAttribute()) ){
    d_axiom_asserted = true;
  }
}

Node FirstOrderModel::getCurrentModelValue( Node n, bool partial ) {
  std::vector< Node > children;
  if( n.getNumChildren()>0 ){
    if( n.getKind()!=APPLY_UF && n.getMetaKind() == kind::metakind::PARAMETERIZED ){
      children.push_back( n.getOperator() );
    }
    for (unsigned i=0; i<n.getNumChildren(); i++) {
      Node nc = getCurrentModelValue( n[i], partial );
      if (nc.isNull()) {
        return Node::null();
      }else{
        children.push_back( nc );
      }
    }
    if( n.getKind()==APPLY_UF ){
      return getCurrentUfModelValue( n, children, partial );
    }else{
      Node nn = NodeManager::currentNM()->mkNode( n.getKind(), children );
      nn = Rewriter::rewrite( nn );
      return nn;
    }
  }else{
    return getRepresentative(n);
  }
}

void FirstOrderModel::initialize( bool considerAxioms ) {
  processInitialize();
  //this is called after representatives have been chosen and the equality engine has been built
  //for each quantifier, collect all operators we care about
  for( int i=0; i<getNumAssertedQuantifiers(); i++ ){
    Node f = getAssertedQuantifier( i );
    if( considerAxioms || !f.hasAttribute(AxiomAttribute()) ){
      //initialize relevant models within bodies of all quantifiers
      initializeModelForTerm( f[1] );
    }
  }
}

void FirstOrderModel::initializeModelForTerm( Node n ){
  processInitializeModelForTerm( n );
  for( int i=0; i<(int)n.getNumChildren(); i++ ){
    initializeModelForTerm( n[i] );
  }
}

FirstOrderModelIG::FirstOrderModelIG(context::Context* c, std::string name) : FirstOrderModel(c,name) {

}

void FirstOrderModelIG::processInitialize(){
  //rebuild models
  d_uf_model_tree.clear();
  d_uf_model_gen.clear();
}

void FirstOrderModelIG::processInitializeModelForTerm( Node n ){
  if( n.getKind()==APPLY_UF ){
    Node op = n.getOperator();
    if( d_uf_model_tree.find( op )==d_uf_model_tree.end() ){
      TypeNode tn = op.getType();
      tn = tn[ (int)tn.getNumChildren()-1 ];
      //only generate models for predicates and functions with uninterpreted range types
      if( tn==NodeManager::currentNM()->booleanType() || tn.isSort() ){
        d_uf_model_tree[ op ] = uf::UfModelTree( op );
        d_uf_model_gen[ op ].clear();
      }
    }
  }
  /*
  if( n.getType().isArray() ){
    while( n.getKind()==STORE ){
      n = n[0];
    }
    Node nn = getRepresentative( n );
    if( d_array_model.find( nn )==d_array_model.end() ){
      d_array_model[nn] = arrays::ArrayModel( nn, this );
    }
  }
  */
}

//for evaluation of quantifier bodies

void FirstOrderModelIG::resetEvaluate(){
  d_eval_uf_use_default.clear();
  d_eval_uf_model.clear();
  d_eval_term_index_order.clear();
  d_eval_failed.clear();
  d_eval_failed_lits.clear();
  d_eval_formulas = 0;
  d_eval_uf_terms = 0;
  d_eval_lits = 0;
  d_eval_lits_unknown = 0;
}

//if evaluate( n ) = eVal,
// let n' = ri * n be the formula n instantiated with the current values in r_iter
// if eVal = 1, then n' is true, if eVal = -1, then n' is false,
// if eVal = 0, then n' cannot be proven to be equal to phaseReq
// if eVal is not 0, then
//   each n{ri->d_index[0]/x_0...ri->d_index[depIndex]/x_depIndex, */x_(depIndex+1) ... */x_n } is equivalent in the current model
int FirstOrderModelIG::evaluate( Node n, int& depIndex, RepSetIterator* ri ){
  ++d_eval_formulas;
  //Debug("fmf-eval-debug") << "Evaluate " << n << " " << phaseReq << std::endl;
  //Notice() << "Eval " << n << std::endl;
  if( n.getKind()==NOT ){
    int val = evaluate( n[0], depIndex, ri );
    return val==1 ? -1 : ( val==-1 ? 1 : 0 );
  }else if( n.getKind()==OR || n.getKind()==AND || n.getKind()==IMPLIES ){
    int baseVal = n.getKind()==AND ? 1 : -1;
    int eVal = baseVal;
    int posDepIndex = ri->getNumTerms();
    int negDepIndex = -1;
    for( int i=0; i<(int)n.getNumChildren(); i++ ){
      //evaluate subterm
      int childDepIndex;
      Node nn = ( i==0 && n.getKind()==IMPLIES ) ? n[i].notNode() : n[i];
      int eValT = evaluate( nn, childDepIndex, ri );
      if( eValT==baseVal ){
        if( eVal==baseVal ){
          if( childDepIndex>negDepIndex ){
            negDepIndex = childDepIndex;
          }
        }
      }else if( eValT==-baseVal ){
        eVal = -baseVal;
        if( childDepIndex<posDepIndex ){
          posDepIndex = childDepIndex;
          if( posDepIndex==-1 ){
            break;
          }
        }
      }else if( eValT==0 ){
        if( eVal==baseVal ){
          eVal = 0;
        }
      }
    }
    if( eVal!=0 ){
      depIndex = eVal==-baseVal ? posDepIndex : negDepIndex;
      return eVal;
    }else{
      return 0;
    }
  }else if( n.getKind()==IFF || n.getKind()==XOR ){
    int depIndex1;
    int eVal = evaluate( n[0], depIndex1, ri );
    if( eVal!=0 ){
      int depIndex2;
      int eVal2 = evaluate( n.getKind()==XOR ? n[1].notNode() : n[1], depIndex2, ri );
      if( eVal2!=0 ){
        depIndex = depIndex1>depIndex2 ? depIndex1 : depIndex2;
        return eVal==eVal2 ? 1 : -1;
      }
    }
    return 0;
  }else if( n.getKind()==ITE ){
    int depIndex1, depIndex2;
    int eVal = evaluate( n[0], depIndex1, ri );
    if( eVal==0 ){
      //evaluate children to see if they are the same value
      int eval1 = evaluate( n[1], depIndex1, ri );
      if( eval1!=0 ){
        int eval2 = evaluate( n[1], depIndex2, ri );
        if( eval1==eval2 ){
          depIndex = depIndex1>depIndex2 ? depIndex1 : depIndex2;
          return eval1;
        }
      }
    }else{
      int eValT = evaluate( n[eVal==1 ? 1 : 2], depIndex2, ri );
      depIndex = depIndex1>depIndex2 ? depIndex1 : depIndex2;
      return eValT;
    }
    return 0;
  }else if( n.getKind()==FORALL ){
    return 0;
  }else{
    ++d_eval_lits;
    ////if we know we will fail again, immediately return
    //if( d_eval_failed.find( n )!=d_eval_failed.end() ){
    //  if( d_eval_failed[n] ){
    //    return -1;
    //  }
    //}
    //Debug("fmf-eval-debug") << "Evaluate literal " << n << std::endl;
    int retVal = 0;
    depIndex = ri->getNumTerms()-1;
    Node val = evaluateTerm( n, depIndex, ri );
    if( !val.isNull() ){
      if( areEqual( val, d_true ) ){
        retVal = 1;
      }else if( areEqual( val, d_false ) ){
        retVal = -1;
      }else{
        if( val.getKind()==EQUAL ){
          if( areEqual( val[0], val[1] ) ){
            retVal = 1;
          }else if( areDisequal( val[0], val[1] ) ){
            retVal = -1;
          }
        }
      }
    }
    if( retVal!=0 ){
      Debug("fmf-eval-debug") << "Evaluate literal: return " << retVal << ", depIndex = " << depIndex << std::endl;
    }else{
      ++d_eval_lits_unknown;
      Trace("fmf-eval-amb") << "Neither true nor false : " << n << std::endl;
      Trace("fmf-eval-amb") << "   value : " << val << std::endl;
      //std::cout << "Neither true nor false : " << n << std::endl;
      //std::cout << "  Value : " << val << std::endl;
      //for( int i=0; i<(int)n.getNumChildren(); i++ ){
      //  std::cout << "   " << i << " : " << n[i].getType() << std::endl;
      //}
    }
    return retVal;
  }
}

Node FirstOrderModelIG::evaluateTerm( Node n, int& depIndex, RepSetIterator* ri ){
  //Message() << "Eval term " << n << std::endl;
  Node val;
  depIndex = ri->getNumTerms()-1;
  //check the type of n
  if( n.getKind()==INST_CONSTANT ){
    int v = n.getAttribute(InstVarNumAttribute());
    depIndex = ri->d_var_order[ v ];
    val = ri->getTerm( v );
  }else if( n.getKind()==ITE ){
    int depIndex1, depIndex2;
    int eval = evaluate( n[0], depIndex1, ri );
    if( eval==0 ){
      //evaluate children to see if they are the same
      Node val1 = evaluateTerm( n[ 1 ], depIndex1, ri );
      Node val2 = evaluateTerm( n[ 2 ], depIndex2, ri );
      if( val1==val2 ){
        val = val1;
        depIndex = depIndex1>depIndex2 ? depIndex1 : depIndex2;
      }else{
        return Node::null();
      }
    }else{
      val = evaluateTerm( n[ eval==1 ? 1 : 2 ], depIndex2, ri );
      depIndex = depIndex1>depIndex2 ? depIndex1 : depIndex2;
    }
  }else{
    std::vector< int > children_depIndex;
    //for select, pre-process read over writes
    if( n.getKind()==SELECT ){
#if 0
      //std::cout << "Evaluate " << n << std::endl;
      Node sel = evaluateTerm( n[1], depIndex, ri );
      if( sel.isNull() ){
        depIndex = ri->getNumTerms()-1;
        return Node::null();
      }
      Node arr = getRepresentative( n[0] );
      //if( n[0]!=getRepresentative( n[0] ) ){
      //  std::cout << n[0] << " is " << getRepresentative( n[0] ) << std::endl;
      //}
      int tempIndex;
      int eval = 1;
      while( arr.getKind()==STORE && eval!=0 ){
        eval = evaluate( sel.eqNode( arr[1] ), tempIndex, ri );
        depIndex = tempIndex > depIndex ? tempIndex : depIndex;
        if( eval==1 ){
          val = evaluateTerm( arr[2], tempIndex, ri );
          depIndex = tempIndex > depIndex ? tempIndex : depIndex;
          return val;
        }else if( eval==-1 ){
          arr = arr[0];
        }
      }
      arr = evaluateTerm( arr, tempIndex, ri );
      depIndex = tempIndex > depIndex ? tempIndex : depIndex;
      val = NodeManager::currentNM()->mkNode( SELECT, arr, sel );
#else
      val = evaluateTermDefault( n, depIndex, children_depIndex, ri );
#endif
    }else{
      //default term evaluate : evaluate all children, recreate the value
      val = evaluateTermDefault( n, depIndex, children_depIndex, ri );
    }
    if( !val.isNull() ){
      bool setVal = false;
      //custom ways of evaluating terms
      if( n.getKind()==APPLY_UF ){
        Node op = n.getOperator();
        //Debug("fmf-eval-debug") << "Evaluate term " << n << " (" << gn << ")" << std::endl;
        //if it is a defined UF, then consult the interpretation
        if( d_uf_model_tree.find( op )!=d_uf_model_tree.end() ){
          ++d_eval_uf_terms;
          int argDepIndex = 0;
          //make the term model specifically for n
          makeEvalUfModel( n );
          //now, consult the model
          if( d_eval_uf_use_default[n] ){
            val = d_uf_model_tree[ op ].getValue( this, val, argDepIndex );
          }else{
            val = d_eval_uf_model[ n ].getValue( this, val, argDepIndex );
          }
          //Debug("fmf-eval-debug") << "Evaluate term " << n << " (" << gn << ")" << std::endl;
          //d_eval_uf_model[ n ].debugPrint("fmf-eval-debug", d_qe );
          Assert( !val.isNull() );
          //recalculate the depIndex
          depIndex = -1;
          for( int i=0; i<argDepIndex; i++ ){
            int index = d_eval_uf_use_default[n] ? i : d_eval_term_index_order[n][i];
            Debug("fmf-eval-debug") << "Add variables from " << index << "..." << std::endl;
            if( children_depIndex[index]>depIndex ){
              depIndex = children_depIndex[index];
            }
          }
          setVal = true;
        }
      }else if( n.getKind()==SELECT ){
        //we are free to interpret this term however we want
      }
      //if not set already, rewrite and consult model for interpretation
      if( !setVal ){
        val = Rewriter::rewrite( val );
        if( val.getMetaKind()!=kind::metakind::CONSTANT ){
          //FIXME: we cannot do this until we trust all theories collectModelInfo!
          //val = getInterpretedValue( val );
          //val = getRepresentative( val );
        }
      }
      Trace("fmf-eval-debug") << "Evaluate term " << n << " = ";
      printRepresentativeDebug( "fmf-eval-debug", val );
      Trace("fmf-eval-debug") << ", depIndex = " << depIndex << std::endl;
    }
  }
  return val;
}

Node FirstOrderModelIG::evaluateTermDefault( Node n, int& depIndex, std::vector< int >& childDepIndex, RepSetIterator* ri ){
  depIndex = -1;
  if( n.getNumChildren()==0 ){
    return n;
  }else{
    //first we must evaluate the arguments
    std::vector< Node > children;
    if( n.getMetaKind()==kind::metakind::PARAMETERIZED ){
      children.push_back( n.getOperator() );
    }
    //for each argument, calculate its value, and the variables its value depends upon
    for( int i=0; i<(int)n.getNumChildren(); i++ ){
      childDepIndex.push_back( -1 );
      Node nn = evaluateTerm( n[i], childDepIndex[i], ri );
      if( nn.isNull() ){
        depIndex = ri->getNumTerms()-1;
        return nn;
      }else{
        children.push_back( nn );
        if( childDepIndex[i]>depIndex ){
          depIndex = childDepIndex[i];
        }
      }
    }
    //recreate the value
    Node val = NodeManager::currentNM()->mkNode( n.getKind(), children );
    return val;
  }
}

void FirstOrderModelIG::clearEvalFailed( int index ){
  for( int i=0; i<(int)d_eval_failed_lits[index].size(); i++ ){
    d_eval_failed[ d_eval_failed_lits[index][i] ] = false;
  }
  d_eval_failed_lits[index].clear();
}

void FirstOrderModelIG::makeEvalUfModel( Node n ){
  if( d_eval_uf_model.find( n )==d_eval_uf_model.end() ){
    makeEvalUfIndexOrder( n );
    if( !d_eval_uf_use_default[n] ){
      Node op = n.getOperator();
      d_eval_uf_model[n] = uf::UfModelTree( op, d_eval_term_index_order[n] );
      d_uf_model_gen[op].makeModel( this, d_eval_uf_model[n] );
      //Debug("fmf-index-order") << "Make model for " << n << " : " << std::endl;
      //d_eval_uf_model[n].debugPrint( "fmf-index-order", d_qe, 2 );
    }
  }
}

struct sortGetMaxVariableNum {
  std::map< Node, int > d_max_var_num;
  int computeMaxVariableNum( Node n ){
    if( n.getKind()==INST_CONSTANT ){
      return n.getAttribute(InstVarNumAttribute());
    }else if( TermDb::hasInstConstAttr(n) ){
      int maxVal = -1;
      for( int i=0; i<(int)n.getNumChildren(); i++ ){
        int val = getMaxVariableNum( n[i] );
        if( val>maxVal ){
          maxVal = val;
        }
      }
      return maxVal;
    }else{
      return -1;
    }
  }
  int getMaxVariableNum( Node n ){
    std::map< Node, int >::iterator it = d_max_var_num.find( n );
    if( it==d_max_var_num.end() ){
      int num = computeMaxVariableNum( n );
      d_max_var_num[n] = num;
      return num;
    }else{
      return it->second;
    }
  }
  bool operator() (Node i,Node j) { return (getMaxVariableNum(i)<getMaxVariableNum(j));}
};

void FirstOrderModelIG::makeEvalUfIndexOrder( Node n ){
  if( d_eval_term_index_order.find( n )==d_eval_term_index_order.end() ){
#ifdef USE_INDEX_ORDERING
    //sort arguments in order of least significant vs. most significant variable in default ordering
    std::map< Node, std::vector< int > > argIndex;
    std::vector< Node > args;
    for( int i=0; i<(int)n.getNumChildren(); i++ ){
      if( argIndex.find( n[i] )==argIndex.end() ){
        args.push_back( n[i] );
      }
      argIndex[n[i]].push_back( i );
    }
    sortGetMaxVariableNum sgmvn;
    std::sort( args.begin(), args.end(), sgmvn );
    for( int i=0; i<(int)args.size(); i++ ){
      for( int j=0; j<(int)argIndex[ args[i] ].size(); j++ ){
        d_eval_term_index_order[n].push_back( argIndex[ args[i] ][j] );
      }
    }
    bool useDefault = true;
    for( int i=0; i<(int)d_eval_term_index_order[n].size(); i++ ){
      if( i!=d_eval_term_index_order[n][i] ){
        useDefault = false;
        break;
      }
    }
    d_eval_uf_use_default[n] = useDefault;
    Debug("fmf-index-order") << "Will consider the following index ordering for " << n << " : ";
    for( int i=0; i<(int)d_eval_term_index_order[n].size(); i++ ){
      Debug("fmf-index-order") << d_eval_term_index_order[n][i] << " ";
    }
    Debug("fmf-index-order") << std::endl;
#else
    d_eval_uf_use_default[n] = true;
#endif
  }
}

Node FirstOrderModelIG::getCurrentUfModelValue( Node n, std::vector< Node > & args, bool partial ) {
  std::vector< Node > children;
  children.push_back(n.getOperator());
  children.insert(children.end(), args.begin(), args.end());
  Node nv = NodeManager::currentNM()->mkNode(APPLY_UF, children);
  //make the term model specifically for nv
  makeEvalUfModel( nv );
  int argDepIndex;
  if( d_eval_uf_use_default[nv] ){
    return d_uf_model_tree[ n.getOperator() ].getValue( this, nv, argDepIndex );
  }else{
    return d_eval_uf_model[ nv ].getValue( this, nv, argDepIndex );
  }
}






FirstOrderModelFmc::FirstOrderModelFmc(QuantifiersEngine * qe, context::Context* c, std::string name) :
FirstOrderModel(c, name), d_qe(qe){

}

Node FirstOrderModelFmc::getUsedRepresentative(Node n, bool strict) {
  //Assert( fm->hasTerm(n) );
  TypeNode tn = n.getType();
  if( tn.isBoolean() ){
    return areEqual(n, d_true) ? d_true : d_false;
  }else{
    if( !hasTerm(n) ){
      if( strict ){
        return Node::null();
      }else{
        Trace("fmc-warn") << "WARNING : no representative for " << n << std::endl;
      }
    }
    Node r = getRepresentative(n);
    if( d_model_basis_rep.find(tn)!=d_model_basis_rep.end() ){
      if (r==d_model_basis_rep[tn]) {
        r = d_qe->getTermDatabase()->getModelBasisTerm(tn);
      }
    }
    return r;
  }
}

Node FirstOrderModelFmc::getCurrentUfModelValue( Node n, std::vector< Node > & args, bool partial ) {
  Trace("fmc-uf-model") << "Get model value for " << n << " " << n.getKind() << std::endl;
  for(unsigned i=0; i<args.size(); i++) {
    args[i] = getUsedRepresentative(args[i]);
  }
  Assert( n.getKind()==APPLY_UF );
  return d_models[n.getOperator()]->evaluate(this, args);
}

void FirstOrderModelFmc::processInitialize() {
  if( options::fmfFmcInterval() && intervalOp.isNull() ){
    std::vector< TypeNode > types;
    for(unsigned i=0; i<2; i++){
      types.push_back(NodeManager::currentNM()->integerType());
    }
    TypeNode typ = NodeManager::currentNM()->mkFunctionType( types, NodeManager::currentNM()->integerType() );
    intervalOp = NodeManager::currentNM()->mkSkolem( "interval_$$", typ, "op representing interval" );
  }
  for( std::map<Node, Def * >::iterator it = d_models.begin(); it != d_models.end(); ++it ){
    it->second->reset();
  }
  d_model_basis_rep.clear();
}

void FirstOrderModelFmc::processInitializeModelForTerm(Node n) {
  if( n.getKind()==APPLY_UF ){
    if( d_models.find(n.getOperator())==d_models.end()) {
      d_models[n.getOperator()] = new Def;
    }
  }
}

Node FirstOrderModelFmc::getSomeDomainElement(TypeNode tn){
  //check if there is even any domain elements at all
  if (!d_rep_set.hasType(tn)) {
    Trace("fmc-model-debug") << "Must create domain element for " << tn << "..." << std::endl;
    Node mbt = d_qe->getTermDatabase()->getModelBasisTerm(tn);
    d_rep_set.d_type_reps[tn].push_back(mbt);
  }else if( d_rep_set.d_type_reps[tn].size()==0 ){
    Message() << "empty reps" << std::endl;
    exit(0);
  }
  return d_rep_set.d_type_reps[tn][0];
}


bool FirstOrderModelFmc::isStar(Node n) {
  return n==getStar(n.getType());
}

Node FirstOrderModelFmc::getStar(TypeNode tn) {
  if( d_type_star.find(tn)==d_type_star.end() ){
    Node st = NodeManager::currentNM()->mkSkolem( "star_$$", tn, "skolem created for full-model checking" );
    d_type_star[tn] = st;
  }
  return d_type_star[tn];
}

Node FirstOrderModelFmc::getStarElement(TypeNode tn) {
  Node st = getStar(tn);
  if( options::fmfFmcInterval() && tn.isInteger() ){
    st = getInterval( st, st );
  }
  return st;
}

bool FirstOrderModelFmc::isModelBasisTerm(Node n) {
  return n==getModelBasisTerm(n.getType());
}

Node FirstOrderModelFmc::getModelBasisTerm(TypeNode tn) {
  return d_qe->getTermDatabase()->getModelBasisTerm(tn);
}

Node FirstOrderModelFmc::getFunctionValue(Node op, const char* argPrefix ) {
  Trace("fmc-model") << "Get function value for " << op << std::endl;
  TypeNode type = op.getType();
  std::vector< Node > vars;
  for( size_t i=0; i<type.getNumChildren()-1; i++ ){
    std::stringstream ss;
    ss << argPrefix << (i+1);
    Node b = NodeManager::currentNM()->mkBoundVar( ss.str(), type[i] );
    vars.push_back( b );
  }
  Node boundVarList = NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST, vars);
  Node curr;
  for( int i=(d_models[op]->d_cond.size()-1); i>=0; i--) {
    Node v = getRepresentative( d_models[op]->d_value[i] );
    if( curr.isNull() ){
      curr = v;
    }else{
      //make the condition
      Node cond = d_models[op]->d_cond[i];
      std::vector< Node > children;
      for( unsigned j=0; j<cond.getNumChildren(); j++) {
        if (isInterval(cond[j])){
          if( !isStar(cond[j][0]) ){
            children.push_back( NodeManager::currentNM()->mkNode( GEQ, vars[j], cond[j][0] ) );
          }
          if( !isStar(cond[j][1]) ){
            children.push_back( NodeManager::currentNM()->mkNode( LT, vars[j], cond[j][1] ) );
          }
        }else if (!isStar(cond[j])){
          Node c = getUsedRepresentative( cond[j] );
          children.push_back( NodeManager::currentNM()->mkNode( EQUAL, vars[j], c ) );
        }
      }
      Assert( !children.empty() );
      Node cc = children.size()==1 ? children[0] : NodeManager::currentNM()->mkNode( AND, children );
      curr = NodeManager::currentNM()->mkNode( ITE, cc, v, curr );
    }
  }
  curr = Rewriter::rewrite( curr );
  return NodeManager::currentNM()->mkNode(kind::LAMBDA, boundVarList, curr);
}

bool FirstOrderModelFmc::isInterval(Node n) {
  return n.getKind()==APPLY_UF && n.getOperator()==intervalOp;
}

Node FirstOrderModelFmc::getInterval( Node lb, Node ub ){
  return NodeManager::currentNM()->mkNode( APPLY_UF, intervalOp, lb, ub );
}

bool FirstOrderModelFmc::isInRange( Node v, Node i ) {
  if( isStar( i ) ){
    return true;
  }else if( isInterval( i ) ){
    for( unsigned b=0; b<2; b++ ){
      if( !isStar( i[b] ) ){
        if( ( b==0 && i[b].getConst<Rational>() > v.getConst<Rational>() ) ||
            ( b==1 && i[b].getConst<Rational>() <= v.getConst<Rational>() ) ){
          return false;
        }
      }
    }
    return true;
  }else{
    return v==i;
  }
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback