summaryrefslogtreecommitdiff
path: root/src/theory/arith/normal_form.cpp
blob: 8454ca2106de0dcf54c6308bf1200c0adb2553ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
/*********************                                                        */
/*! \file normal_form.cpp
 ** \verbatim
 ** Original author: Tim King
 ** Major contributors: none
 ** Minor contributors (to current version): Dejan Jovanovic, Morgan Deters
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2013  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief [[ Add one-line brief description here ]]
 **
 ** [[ Add lengthier description here ]]
 ** \todo document this file
 **/

#include "theory/arith/normal_form.h"
#include "theory/arith/arith_utilities.h"
#include <list>

using namespace std;

namespace CVC4 {
namespace theory{
namespace arith {

bool Variable::isDivMember(Node n){
  switch(n.getKind()){
  case kind::DIVISION:
  case kind::INTS_DIVISION:
  case kind::INTS_MODULUS:
  case kind::DIVISION_TOTAL:
  case kind::INTS_DIVISION_TOTAL:
  case kind::INTS_MODULUS_TOTAL:
    return Polynomial::isMember(n[0]) && Polynomial::isMember(n[1]);
  default:
    return false;
  }
}

bool VarList::isSorted(iterator start, iterator end) {
  return __gnu_cxx::is_sorted(start, end);
}

bool VarList::isMember(Node n) {
  if(Variable::isMember(n)) {
    return true;
  }
  if(n.getKind() == kind::MULT) {
    Node::iterator curr = n.begin(), end = n.end();
    Node prev = *curr;
    if(!Variable::isMember(prev)) return false;

    while( (++curr) != end) {
      if(!Variable::isMember(*curr)) return false;
      if(!(prev <= *curr)) return false;
      prev = *curr;
    }
    return true;
  } else {
    return false;
  }
}
int VarList::cmp(const VarList& vl) const {
  int dif = this->size() - vl.size();
  if (dif == 0) {
    return this->getNode().getId() - vl.getNode().getId();
  } else if(dif < 0) {
    return -1;
  } else {
    return 1;
  }
}

VarList VarList::parseVarList(Node n) {
  if(Variable::isMember(n)) {
    return VarList(Variable(n));
  } else {
    Assert(n.getKind() == kind::MULT);
    for(Node::iterator i=n.begin(), end = n.end(); i!=end; ++i) {
      Assert(Variable::isMember(*i));
    }
    return VarList(n);
  }
}

VarList VarList::operator*(const VarList& other) const {
  if(this->empty()) {
    return other;
  } else if(other.empty()) {
    return *this;
  } else {
    vector<Node> result;

    internal_iterator
      thisBegin = this->internalBegin(),
      thisEnd = this->internalEnd(),
      otherBegin = other.internalBegin(),
      otherEnd = other.internalEnd();

    merge_ranges(thisBegin, thisEnd, otherBegin, otherEnd, result);

    Assert(result.size() >= 2);
    Node mult = NodeManager::currentNM()->mkNode(kind::MULT, result);
    return VarList::parseVarList(mult);
  }
}

bool Monomial::isMember(TNode n){
  if(n.getKind() == kind::CONST_RATIONAL) {
    return true;
  } else if(multStructured(n)) {
    return VarList::isMember(n[1]);
  } else {
    return VarList::isMember(n);
  }
}

Monomial Monomial::mkMonomial(const Constant& c, const VarList& vl) {
  if(c.isZero() || vl.empty() ) {
    return Monomial(c);
  } else if(c.isOne()) {
    return Monomial(vl);
  } else {
    return Monomial(c, vl);
  }
}
Monomial Monomial::parseMonomial(Node n) {
  if(n.getKind() == kind::CONST_RATIONAL) {
    return Monomial(Constant(n));
  } else if(multStructured(n)) {
    return Monomial::mkMonomial(Constant(n[0]),VarList::parseVarList(n[1]));
  } else {
    return Monomial(VarList::parseVarList(n));
  }
}
Monomial Monomial::operator*(const Rational& q) const {
  if(q.isZero()){
    return mkZero();
  }else{
    Constant newConstant = this->getConstant() * q;
    return Monomial::mkMonomial(newConstant, getVarList());
  }
}

Monomial Monomial::operator*(const Constant& c) const {
  return (*this) * c.getValue();
  // if(c.isZero()){
  //   return mkZero();
  // }else{
  //   Constant newConstant = this->getConstant() * c;
  //   return Monomial::mkMonomial(newConstant, getVarList());
  // }
}

Monomial Monomial::operator*(const Monomial& mono) const {
  Constant newConstant = this->getConstant() * mono.getConstant();
  VarList newVL = this->getVarList() * mono.getVarList();

  return Monomial::mkMonomial(newConstant, newVL);
}

vector<Monomial> Monomial::sumLikeTerms(const std::vector<Monomial> & monos) {
  Assert(isSorted(monos));
  vector<Monomial> outMonomials;
  typedef vector<Monomial>::const_iterator iterator;
  for(iterator rangeIter = monos.begin(), end=monos.end(); rangeIter != end;) {
    Rational constant = (*rangeIter).getConstant().getValue();
    VarList varList  = (*rangeIter).getVarList();
    ++rangeIter;
    while(rangeIter != end && varList == (*rangeIter).getVarList()) {
      constant += (*rangeIter).getConstant().getValue();
      ++rangeIter;
    }
    if(constant != 0) {
      Constant asConstant = Constant::mkConstant(constant);
      Monomial nonZero = Monomial::mkMonomial(asConstant, varList);
      outMonomials.push_back(nonZero);
    }
  }

  Assert(isStrictlySorted(outMonomials));
  return outMonomials;
}

void Monomial::print() const {
  Debug("normal-form") <<  getNode() << std::endl;
}

void Monomial::printList(const std::vector<Monomial>& list) {
  for(vector<Monomial>::const_iterator i = list.begin(), end = list.end(); i != end; ++i) {
    const Monomial& m =*i;
    m.print();
  }
}
Polynomial Polynomial::operator+(const Polynomial& vl) const {

  std::vector<Monomial> sortedMonos;
  merge_ranges(begin(), end(), vl.begin(), vl.end(), sortedMonos);

  std::vector<Monomial> combined = Monomial::sumLikeTerms(sortedMonos);

  Polynomial result = mkPolynomial(combined);
  return result;
}

Polynomial Polynomial::operator-(const Polynomial& vl) const {
  Constant negOne = Constant::mkConstant(Rational(-1));

  return *this + (vl*negOne);
}

Polynomial Polynomial::operator*(const Rational& q) const{
  if(q.isZero()){
    return Polynomial::mkZero();
  }else if(q.isOne()){
    return *this;
  }else{
    std::vector<Monomial> newMonos;
    for(iterator i = this->begin(), end = this->end(); i != end; ++i) {
      newMonos.push_back((*i)*q);
    }

    Assert(Monomial::isStrictlySorted(newMonos));
    return Polynomial::mkPolynomial(newMonos);
  }
}

Polynomial Polynomial::operator*(const Constant& c) const{
  return (*this) * c.getValue();
  // if(c.isZero()){
  //   return Polynomial::mkZero();
  // }else if(c.isOne()){
  //   return *this;
  // }else{
  //   std::vector<Monomial> newMonos;
  //   for(iterator i = this->begin(), end = this->end(); i != end; ++i) {
  //     newMonos.push_back((*i)*c);
  //   }

  //   Assert(Monomial::isStrictlySorted(newMonos));
  //   return Polynomial::mkPolynomial(newMonos);
  // }
}

Polynomial Polynomial::operator*(const Monomial& mono) const {
  if(mono.isZero()) {
    return Polynomial(mono); //Don't multiply by zero
  } else {
    std::vector<Monomial> newMonos;
    for(iterator i = this->begin(), end = this->end(); i != end; ++i) {
      newMonos.push_back(mono * (*i));
    }

    // We may need to sort newMonos.
    // Suppose this = (+ x y), mono = x, (* x y).getId() < (* x x).getId()
    // newMonos = <(* x x), (* x y)> after this loop.
    // This is not sorted according to the current VarList order.
    std::sort(newMonos.begin(), newMonos.end());
    return Polynomial::mkPolynomial(newMonos);
  }
}

Polynomial Polynomial::operator*(const Polynomial& poly) const {
  Polynomial res = Polynomial::mkZero();
  for(iterator i = this->begin(), end = this->end(); i != end; ++i) {
    Monomial curr = *i;
    Polynomial prod = poly * curr;
    Polynomial sum  = res + prod;
    res = sum;
  }
  return res;
}

Monomial Polynomial::selectAbsMinimum() const {
  iterator iter = begin(), myend = end();
  Assert(iter != myend);

  Monomial min = *iter;
  ++iter;
  for(; iter != end(); ++iter){
    Monomial curr = *iter;
    if(curr.absLessThan(min)){
      min = curr;
    }
  }
  return min;
}

bool Polynomial::leadingCoefficientIsAbsOne() const {
  return getHead().absCoefficientIsOne();
}
bool Polynomial::leadingCoefficientIsPositive() const {
  return getHead().getConstant().isPositive();
}

bool Polynomial::denominatorLCMIsOne() const {
  return denominatorLCM().isOne();
}

bool Polynomial::numeratorGCDIsOne() const {
  return gcd().isOne();
}

Integer Polynomial::gcd() const {
  Assert(isIntegral());
  return numeratorGCD();
}

Integer Polynomial::numeratorGCD() const {
  //We'll use the standardization that gcd(0, 0) = 0
  //So that the gcd of the zero polynomial is gcd{0} = 0
  iterator i=begin(), e=end();
  Assert(i!=e);

  Integer d = (*i).getConstant().getValue().getNumerator().abs();
  ++i;
  for(; i!=e; ++i){
    Integer c = (*i).getConstant().getValue().getNumerator();
    d = d.gcd(c);
  }
  return d;
}

Integer Polynomial::denominatorLCM() const {
  Integer tmp(1);
  for(iterator i=begin(), e=end(); i!=e; ++i){
    const Constant& c = (*i).getConstant();
    tmp = tmp.lcm(c.getValue().getDenominator());
  }
  return tmp;
}


Constant Polynomial::getCoefficient(const VarList& vl) const{
  //TODO improve to binary search...
  for(iterator iter=begin(), myend=end(); iter != myend; ++iter){
    Monomial m = *iter;
    VarList curr = m.getVarList();
    if(curr == vl){
      return m.getConstant();
    }
  }
  return Constant::mkConstant(0);
}

Node Polynomial::computeQR(const Polynomial& p, const Integer& div){
  Assert(p.isIntegral());
  std::vector<Monomial> q_vec, r_vec;
  Integer tmp_q, tmp_r;
  for(iterator iter = p.begin(), pend = p.end(); iter != pend; ++iter){
    Monomial curr = *iter;
    VarList vl = curr.getVarList();
    Constant c = curr.getConstant();

    const Integer& a = c.getValue().getNumerator();
    Integer::floorQR(tmp_q, tmp_r, a, div);
    Constant q=Constant::mkConstant(tmp_q);
    Constant r=Constant::mkConstant(tmp_r);
    if(!q.isZero()){
      q_vec.push_back(Monomial::mkMonomial(q, vl));
    }
    if(!r.isZero()){
      r_vec.push_back(Monomial::mkMonomial(r, vl));
    }
  }

  Polynomial p_q = Polynomial::mkPolynomial(q_vec);
  Polynomial p_r = Polynomial::mkPolynomial(r_vec);

  return NodeManager::currentNM()->mkNode(kind::PLUS, p_q.getNode(), p_r.getNode());
}


Monomial Polynomial::minimumVariableMonomial() const{
  Assert(!isConstant());
  if(singleton()){
    return getHead();
  }else{
    iterator i = begin();
    Monomial first = *i;
    if( first.isConstant() ){
      ++i;
      Assert(i != end());
      return *i;
    }else{
      return first;
    }
  }
}

bool Polynomial::variableMonomialAreStrictlyGreater(const Monomial& m) const{
  if(isConstant()){
    return true;
  }else{
    Monomial minimum = minimumVariableMonomial();
    Debug("nf::tmp") << "minimum " << minimum.getNode() << endl;
    Debug("nf::tmp") << "m " << m.getNode() << endl;
    return m < minimum;
  }
}

Node SumPair::computeQR(const SumPair& sp, const Integer& div){
  Assert(sp.isIntegral());

  const Integer& constant = sp.getConstant().getValue().getNumerator();

  Integer constant_q, constant_r;
  Integer::floorQR(constant_q, constant_r, constant, div);

  Node p_qr = Polynomial::computeQR(sp.getPolynomial(), div);
  Assert(p_qr.getKind() == kind::PLUS);
  Assert(p_qr.getNumChildren() == 2);

  Polynomial p_q = Polynomial::parsePolynomial(p_qr[0]);
  Polynomial p_r = Polynomial::parsePolynomial(p_qr[1]);

  SumPair sp_q(p_q, Constant::mkConstant(constant_q));
  SumPair sp_r(p_r, Constant::mkConstant(constant_r));

  return NodeManager::currentNM()->mkNode(kind::PLUS, sp_q.getNode(), sp_r.getNode());
}

SumPair SumPair::mkSumPair(const Polynomial& p){
  if(p.isConstant()){
    Constant leadingConstant = p.getHead().getConstant();
    return SumPair(Polynomial::mkZero(), leadingConstant);
  }else if(p.containsConstant()){
    Assert(!p.singleton());
    return SumPair(p.getTail(), p.getHead().getConstant());
  }else{
    return SumPair(p, Constant::mkZero());
  }
}

Comparison::Comparison(TNode n)
  : NodeWrapper(n)
{
  Assert(isNormalForm());
}



SumPair Comparison::toSumPair() const {
  Kind cmpKind = comparisonKind();
  switch(cmpKind){
  case kind::LT:
  case kind::LEQ:
  case kind::GT:
  case kind::GEQ:
    {
      TNode lit = getNode();
      TNode atom = (cmpKind == kind::LT || cmpKind == kind::LEQ) ? lit[0] : lit;
      Polynomial p = Polynomial::parsePolynomial(atom[0]);
      Constant c = Constant::mkConstant(atom[1]);
      if(p.leadingCoefficientIsPositive()){
        return SumPair(p, -c);
      }else{
        return SumPair(-p, c);
      }
    }
  case kind::EQUAL:
  case kind::DISTINCT:
    {
      Polynomial left = getLeft();
      Polynomial right = getRight();
      Debug("nf::tmp") << "left: " << left.getNode() << endl;
      Debug("nf::tmp") << "right: " << right.getNode() << endl;
      if(right.isConstant()){
        return SumPair(left, -right.getHead().getConstant());
      }else if(right.containsConstant()){
        Assert(!right.singleton());

        Polynomial noConstant = right.getTail();
        return SumPair(left - noConstant, -right.getHead().getConstant());
      }else{
        return SumPair(left - right, Constant::mkZero());
      }
    }
  default:
    Unhandled(cmpKind);
  }
}

Polynomial Comparison::normalizedVariablePart() const {
  Kind cmpKind = comparisonKind();
  switch(cmpKind){
  case kind::LT:
  case kind::LEQ:
  case kind::GT:
  case kind::GEQ:
    {
      TNode lit = getNode();
      TNode atom = (cmpKind == kind::LT || cmpKind == kind::LEQ) ? lit[0] : lit;
      Polynomial p = Polynomial::parsePolynomial(atom[0]);
      if(p.leadingCoefficientIsPositive()){
        return p;
      }else{
        return -p;
      }
    }
  case kind::EQUAL:
  case kind::DISTINCT:
    {
      Polynomial left = getLeft();
      Polynomial right = getRight();
      if(right.isConstant()){
        return left;
      }else{
        Polynomial noConstant = right.containsConstant() ? right.getTail() : right;
        Polynomial diff = left - noConstant;
        if(diff.leadingCoefficientIsPositive()){
          return diff;
        }else{
          return -diff;
        }
      }
    }
  default:
    Unhandled(cmpKind);
  }
}

DeltaRational Comparison::normalizedDeltaRational() const {
  Kind cmpKind = comparisonKind();
  int delta = deltaCoeff(cmpKind);
  switch(cmpKind){
  case kind::LT:
  case kind::LEQ:
  case kind::GT:
  case kind::GEQ:
    {
      Node lit = getNode();
      Node atom = (cmpKind == kind::LT || cmpKind == kind::LEQ) ? lit[0] : lit;
      Polynomial left = Polynomial::parsePolynomial(atom[0]);
      const Rational& q = atom[1].getConst<Rational>();
      if(left.leadingCoefficientIsPositive()){
        return DeltaRational(q, delta);
      }else{
        return DeltaRational(-q, -delta);
      }
    }
  case kind::EQUAL:
  case kind::DISTINCT:
    {
      Polynomial right = getRight();
      Monomial firstRight = right.getHead();
      if(firstRight.isConstant()){
        DeltaRational c = DeltaRational(firstRight.getConstant().getValue(), 0);
        Polynomial left = getLeft();
        if(!left.allIntegralVariables()){
          return c;
          //this is a qpolynomial and the sign of the leading
          //coefficient will not change after the diff below
        } else{
          // the polynomial may be a z polynomial in which case
          // taking the diff is the simplest and obviously correct means
          Polynomial diff = right.singleton() ? left : left - right.getTail();
          if(diff.leadingCoefficientIsPositive()){
            return c;
          }else{
            return -c;
          }
        }
      }else{ // The constant is 0 sign cannot change
        return DeltaRational(0, 0);
      }
    }
  default:
    Unhandled(cmpKind);
  }
}

Comparison Comparison::parseNormalForm(TNode n) {
  Comparison result(n);
  Assert(result.isNormalForm());
  return result;
}

Node Comparison::toNode(Kind k, const Polynomial& l, const Constant& r) {
  Assert(isRelationOperator(k));
  switch(k) {
  case kind::GEQ:
  case kind::GT:
    return NodeManager::currentNM()->mkNode(k, l.getNode(), r.getNode());
  default:
    Unhandled(k);
  }
}

Node Comparison::toNode(Kind k, const Polynomial& l, const Polynomial& r) {
  Assert(isRelationOperator(k));
  switch(k) {
  case kind::GEQ:
  case kind::EQUAL:
  case kind::GT:
    return NodeManager::currentNM()->mkNode(k, l.getNode(), r.getNode());
  case kind::LEQ:
    return toNode(kind::GEQ, r, l).notNode();
  case kind::LT:
    return toNode(kind::GT, r, l).notNode();
  case kind::DISTINCT:
    return toNode(kind::EQUAL, r, l).notNode();
  default:
    Unreachable();
  }
}

bool Comparison::rightIsConstant() const {
  if(getNode().getKind() == kind::NOT){
    return getNode()[0][1].getKind() == kind::CONST_RATIONAL;
  }else{
    return getNode()[1].getKind() == kind::CONST_RATIONAL;
  }
}

Polynomial Comparison::getLeft() const {
  TNode left;
  Kind k = comparisonKind();
  switch(k){
  case kind::LT:
  case kind::LEQ:
  case kind::DISTINCT:
    left = getNode()[0][0];
    break;
  case kind::EQUAL:
  case kind::GT:
  case kind::GEQ:
    left = getNode()[0];
    break;
  default:
    Unhandled(k);
  }
  return Polynomial::parsePolynomial(left);
}

Polynomial Comparison::getRight() const {
  TNode right;
  Kind k = comparisonKind();
  switch(k){
  case kind::LT:
  case kind::LEQ:
  case kind::DISTINCT:
    right = getNode()[0][1];
    break;
  case kind::EQUAL:
  case kind::GT:
  case kind::GEQ:
    right = getNode()[1];
    break;
  default:
    Unhandled(k);
  }
  return Polynomial::parsePolynomial(right);
}

// Polynomial Comparison::getLeft() const {
//   Node n = getNode();
//   Node left = (n.getKind() == kind::NOT ? n[0]: n)[0];
//   return Polynomial::parsePolynomial(left);
// }

// Polynomial Comparison::getRight() const {
//   Node n = getNode();
//   Node right = (n.getKind() == kind::NOT ? n[0]: n)[1];
//   return Polynomial::parsePolynomial(right);
// }

bool Comparison::isNormalForm() const {
  Node n = getNode();
  Kind cmpKind = comparisonKind(n);
  Debug("nf::tmp") << "isNormalForm " << n << " " << cmpKind << endl;
  switch(cmpKind){
  case kind::CONST_BOOLEAN:
    return true;
  case kind::GT:
    return isNormalGT();
  case kind::GEQ:
    return isNormalGEQ();
  case kind::EQUAL:
    return isNormalEquality();
  case kind::LT:
    return isNormalLT();
  case kind::LEQ:
    return isNormalLEQ();
  case kind::DISTINCT:
    return isNormalDistinct();
  default:
    return false;
  }
}

/** This must be (> qpolynomial constant) */
bool Comparison::isNormalGT() const {
  Node n = getNode();
  Assert(n.getKind() == kind::GT);
  if(!rightIsConstant()){
    return false;
  }else{
    Polynomial left = getLeft();
    if(left.containsConstant()){
      return false;
    }else if(!left.leadingCoefficientIsAbsOne()){
      return false;
    }else{
      return !left.isIntegral();
    }
  }
}

/** This must be (not (> qpolynomial constant)) */
bool Comparison::isNormalLEQ() const {
  Node n = getNode();
  Debug("nf::tmp") << "isNormalLEQ " << n << endl;
  Assert(n.getKind() == kind::NOT);
  Assert(n[0].getKind() == kind::GT);
  if(!rightIsConstant()){
    return false;
  }else{
    Polynomial left = getLeft();
    if(left.containsConstant()){
      return false;
    }else if(!left.leadingCoefficientIsAbsOne()){
      return false;
    }else{
      return !left.isIntegral();
    }
  }
}


/** This must be (>= qpolynomial constant) or  (>= zpolynomial constant) */
bool Comparison::isNormalGEQ() const {
  Node n = getNode();
  Assert(n.getKind() == kind::GEQ);

  Debug("nf::tmp") << "isNormalGEQ " << n << " " << rightIsConstant() << endl;

  if(!rightIsConstant()){
    return false;
  }else{
    Polynomial left = getLeft();
    if(left.containsConstant()){
      return false;
    }else{
      if(left.isIntegral()){
        return left.denominatorLCMIsOne() && left.numeratorGCDIsOne();
      }else{
        Debug("nf::tmp") << "imme sdfhkdjfh "<< left.leadingCoefficientIsAbsOne() << endl;
        return left.leadingCoefficientIsAbsOne();
      }
    }
  }
}

/** This must be (not (>= qpolynomial constant)) or (not (>= zpolynomial constant)) */
bool Comparison::isNormalLT() const {
  Node n = getNode();
  Assert(n.getKind() == kind::NOT);
  Assert(n[0].getKind() == kind::GEQ);

  if(!rightIsConstant()){
    return false;
  }else{
    Polynomial left = getLeft();
    if(left.containsConstant()){
      return false;
    }else{
      if(left.isIntegral()){
        return left.denominatorLCMIsOne() && left.numeratorGCDIsOne();
      }else{
        return left.leadingCoefficientIsAbsOne();
      }
    }
  }
}


bool Comparison::isNormalEqualityOrDisequality() const {
  Polynomial pleft = getLeft();

  if(pleft.numMonomials() == 1){
    Monomial mleft = pleft.getHead();
    if(mleft.isConstant()){
      return false;
    }else{
      Polynomial pright = getRight();
      if(allIntegralVariables()){
        const Rational& lcoeff = mleft.getConstant().getValue();
        if(pright.isConstant()){
          return pright.isIntegral() && lcoeff.isOne();
        }
        Polynomial varRight = pright.containsConstant() ? pright.getTail() : pright;
        if(lcoeff.sgn() <= 0){
          return false;
        }else{
          Integer lcm = lcoeff.getDenominator().lcm(varRight.denominatorLCM());
          Integer g = lcoeff.getNumerator().gcd(varRight.numeratorGCD());
          Debug("nf::tmp") << lcm << " " << g << endl;
          if(!lcm.isOne()){
            return false;
          }else if(!g.isOne()){
            return false;
          }else{
            Monomial absMinRight = varRight.selectAbsMinimum();
            Debug("nf::tmp") << mleft.getNode() << " " << absMinRight.getNode() << endl;
            if( mleft.absLessThan(absMinRight) ){
              return true;
            }else{
              return (!absMinRight.absLessThan(mleft)) && mleft < absMinRight;
            }
          }
        }
      }else{
        if(mleft.coefficientIsOne()){
          Debug("nf::tmp")
            << "dfklj " << mleft.getNode() << endl
            << pright.getNode() << endl
            << pright.variableMonomialAreStrictlyGreater(mleft)
            << endl;
          return pright.variableMonomialAreStrictlyGreater(mleft);
        }else{
          return false;
        }
      }
    }
  }else{
    return false;
  }
}

/** This must be (= qvarlist qpolynomial) or (= zmonomial zpolynomial)*/
bool Comparison::isNormalEquality() const {
  Assert(getNode().getKind() == kind::EQUAL);

  return isNormalEqualityOrDisequality();
}

/**
 * This must be (not (= qvarlist qpolynomial)) or
 * (not (= zmonomial zpolynomial)).
 */
bool Comparison::isNormalDistinct() const {
  Assert(getNode().getKind() == kind::NOT);
  Assert(getNode()[0].getKind() == kind::EQUAL);

  return isNormalEqualityOrDisequality();
}

Node Comparison::mkRatEquality(const Polynomial& p){
  Assert(!p.isConstant());
  Assert(!p.allIntegralVariables());

  Monomial minimalVList = p.minimumVariableMonomial();
  Constant coeffInv = -(minimalVList.getConstant().inverse());

  Polynomial newRight = (p - minimalVList) * coeffInv;
  Polynomial newLeft(minimalVList.getVarList());

  return toNode(kind::EQUAL, newLeft, newRight);
}

Node Comparison::mkRatInequality(Kind k, const Polynomial& p){
  Assert(k == kind::GEQ || k == kind::GT);
  Assert(!p.isConstant());
  Assert(!p.allIntegralVariables());

  SumPair sp = SumPair::mkSumPair(p);
  Polynomial left = sp.getPolynomial();
  Constant right = - sp.getConstant();

  Monomial minimalVList = left.getHead();
  Assert(!minimalVList.isConstant());

  Constant coeffInv = minimalVList.getConstant().inverse().abs();
  Polynomial newLeft = left * coeffInv;
  Constant newRight = right * (coeffInv);

  return toNode(k, newLeft, newRight);
}

Node Comparison::mkIntInequality(Kind k, const Polynomial& p){
  Assert(kind::GT == k || kind::GEQ == k);
  Assert(!p.isConstant());
  Assert(p.allIntegralVariables());

  SumPair sp = SumPair::mkSumPair(p);
  Polynomial left = sp.getPolynomial();
  Rational right = - (sp.getConstant().getValue());

  Monomial m = left.getHead();
  Assert(!m.isConstant());

  Integer lcm = left.denominatorLCM();
  Integer g = left.numeratorGCD();
  Rational mult(lcm,g);

  Polynomial newLeft = left * mult;
  Rational rightMult = right * mult;


  if(rightMult.isIntegral()){
    if(k == kind::GT){
      // (> p z)
      // (>= p (+ z 1))
      Constant rightMultPlusOne = Constant::mkConstant(rightMult + 1);
      return toNode(kind::GEQ, newLeft, rightMultPlusOne);
    }else{
      Constant newRight = Constant::mkConstant(rightMult);
      return toNode(kind::GEQ, newLeft, newRight);
    }
  }else{
    //(>= l (/ n d))
    //(>= l (ceil (/ n d)))
    //This also hold for GT as (ceil (/ n d)) > (/ n d)
    Integer ceilr = rightMult.ceiling();
    Constant ceilRight = Constant::mkConstant(ceilr);
    return toNode(kind::GEQ, newLeft, ceilRight);
  }
}

Node Comparison::mkIntEquality(const Polynomial& p){
  Assert(!p.isConstant());
  Assert(p.allIntegralVariables());

  SumPair sp = SumPair::mkSumPair(p);
  Polynomial varPart = sp.getPolynomial();
  Constant constPart = sp.getConstant();

  Integer lcm = varPart.denominatorLCM();
  Integer g = varPart.numeratorGCD();
  Constant mult = Constant::mkConstant(Rational(lcm,g));

  Constant constMult = constPart * mult;

  if(constMult.isIntegral()){
    Polynomial varPartMult = varPart * mult;

    Monomial m = varPartMult.selectAbsMinimum();
    bool mIsPositive =  m.getConstant().isPositive();

    Polynomial noM = (varPartMult + (- m)) + Polynomial(constMult);

    // m + noM = 0
    Polynomial newRight = mIsPositive ? -noM : noM;
    Polynomial newLeft  = mIsPositive ? m  : -m;

    Assert(newRight.isIntegral());
    return toNode(kind::EQUAL, newLeft, newRight);
  }else{
    return mkBoolNode(false);
  }
}

Comparison Comparison::mkComparison(Kind k, const Polynomial& l, const Polynomial& r){

  //Make this special case fast for sharing!
  if((k == kind::EQUAL || k == kind::DISTINCT) && l.isVarList() && r.isVarList()){
    VarList vLeft = l.asVarList();
    VarList vRight = r.asVarList();

    if(vLeft == vRight){
      return Comparison(k == kind::EQUAL);
    }else{
      Node eqNode = vLeft < vRight ? toNode( kind::EQUAL, l, r) : toNode( kind::EQUAL, r, l);
      Node forK = (k == kind::DISTINCT) ? eqNode.notNode() : eqNode;
      return Comparison(forK);
    }
  }

  //General case
  Polynomial diff = l - r;
  if(diff.isConstant()){
    bool res = evaluateConstantPredicate(k, diff.asConstant(), Rational(0));
    return Comparison(res);
  }else{
    Node result = Node::null();
    bool isInteger = diff.allIntegralVariables();
    switch(k){
    case kind::EQUAL:
      result = isInteger ? mkIntEquality(diff) : mkRatEquality(diff);
      break;
    case kind::DISTINCT:
      {
        Node eq = isInteger ? mkIntEquality(diff) : mkRatEquality(diff);
        result = eq.notNode();
      }
      break;
    case kind::LEQ:
    case kind::LT:
      {
        Polynomial neg = - diff;
        Kind negKind = (k == kind::LEQ ? kind::GEQ : kind::GT);
        result = isInteger ?
          mkIntInequality(negKind, neg) : mkRatInequality(negKind, neg);
      }
      break;
    case kind::GEQ:
    case kind::GT:
      result = isInteger ?
        mkIntInequality(k, diff) : mkRatInequality(k, diff);
      break;
    default:
      Unhandled(k);
    }
    Assert(!result.isNull());
    if(result.getKind() == kind::NOT && result[0].getKind() == kind::CONST_BOOLEAN){
      return Comparison(!(result[0].getConst<bool>()));
    }else{
      Comparison cmp(result);
      Assert(cmp.isNormalForm());
      return cmp;
    }
  }
}

bool Comparison::isBoolean() const {
  return getNode().getKind() == kind::CONST_BOOLEAN;
}


bool Comparison::debugIsIntegral() const{
  return getLeft().isIntegral() && getRight().isIntegral();
}

Kind Comparison::comparisonKind(TNode literal){
  switch(literal.getKind()){
  case kind::CONST_BOOLEAN:
  case kind::GT:
  case kind::GEQ:
  case kind::EQUAL:
    return literal.getKind();
  case  kind::NOT:
    {
      TNode negatedAtom = literal[0];
      switch(negatedAtom.getKind()){
      case kind::GT: //(not (GT x c)) <=> (LEQ x c)
        return kind::LEQ;
      case kind::GEQ: //(not (GEQ x c)) <=> (LT x c)
        return kind::LT;
      case kind::EQUAL:
        return kind::DISTINCT;
      default:
        return  kind::UNDEFINED_KIND;
      }
    }
  default:
    return kind::UNDEFINED_KIND;
  }
}


Node Polynomial::makeAbsCondition(Variable v, Polynomial p){
  Polynomial zerop = Polynomial::mkZero();

  Polynomial varp = Polynomial::mkPolynomial(v);
  Comparison pLeq0 = Comparison::mkComparison(kind::LEQ, p, zerop);
  Comparison negP = Comparison::mkComparison(kind::EQUAL, varp, -p);
  Comparison posP = Comparison::mkComparison(kind::EQUAL, varp, p);

  Node absCnd = (pLeq0.getNode()).iteNode(negP.getNode(), posP.getNode());
  return absCnd;
}

} //namespace arith
} //namespace theory
} //namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback