summaryrefslogtreecommitdiff
path: root/src/theory/uf/tim/theory_uf_tim.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/theory/uf/tim/theory_uf_tim.h')
-rw-r--r--src/theory/uf/tim/theory_uf_tim.h229
1 files changed, 229 insertions, 0 deletions
diff --git a/src/theory/uf/tim/theory_uf_tim.h b/src/theory/uf/tim/theory_uf_tim.h
new file mode 100644
index 000000000..1591cc05c
--- /dev/null
+++ b/src/theory/uf/tim/theory_uf_tim.h
@@ -0,0 +1,229 @@
+/********************* */
+/*! \file theory_uf.h
+ ** \verbatim
+ ** Original author: taking
+ ** Major contributors: mdeters
+ ** Minor contributors (to current version): none
+ ** This file is part of the CVC4 prototype.
+ ** Copyright (c) 2009, 2010 The Analysis of Computer Systems Group (ACSys)
+ ** Courant Institute of Mathematical Sciences
+ ** New York University
+ ** See the file COPYING in the top-level source directory for licensing
+ ** information.\endverbatim
+ **
+ ** \brief This is a basic implementation of the Theory of Uninterpreted Functions
+ ** with Equality.
+ **
+ ** This is a basic implementation of the Theory of Uninterpreted Functions
+ ** with Equality. It is based on the Nelson-Oppen algorithm given in
+ ** "Fast Decision Procedures Based on Congruence Closure"
+ ** (http://portal.acm.org/ft_gateway.cfm?id=322198&type=pdf)
+ ** This has been extended to work in a context-dependent way.
+ ** This interacts heavily with the data-structures given in ecdata.h .
+ **
+ **/
+
+#include "cvc4_private.h"
+
+#ifndef __CVC4__THEORY__UF__TIM__THEORY_UF_TIM_H
+#define __CVC4__THEORY__UF__TIM__THEORY_UF_TIM_H
+
+#include "expr/node.h"
+#include "expr/attribute.h"
+
+#include "theory/theory.h"
+
+#include "context/context.h"
+#include "context/cdo.h"
+#include "context/cdlist.h"
+#include "theory/uf/theory_uf.h"
+#include "theory/uf/tim/ecdata.h"
+
+namespace CVC4 {
+namespace theory {
+namespace uf {
+namespace tim {
+
+class TheoryUFTim : public TheoryUF {
+
+private:
+
+ /**
+ * List of all of the non-negated literals from the assertion queue.
+ * This is used only for conflict generation.
+ * This differs from pending as the program generates new equalities that
+ * are not in this list.
+ * This will probably be phased out in future version.
+ */
+ context::CDList<Node> d_assertions;
+
+ /**
+ * List of pending equivalence class merges.
+ *
+ * Tricky part:
+ * Must keep a hard link because new equality terms are created and appended
+ * to this list.
+ */
+ context::CDList<Node> d_pending;
+
+ /** Index of the next pending equality to merge. */
+ context::CDO<unsigned> d_currentPendingIdx;
+
+ /** List of all disequalities this theory has seen. */
+ context::CDList<Node> d_disequality;
+
+ /**
+ * List of all of the terms that are registered in the current context.
+ * When registerTerm is called on a term we want to guarentee that there
+ * is a hard link to the term for the duration of the context in which
+ * register term is called.
+ * This invariant is enough for us to use soft links where we want is the
+ * current implementation as well as making ECAttr() not context dependent.
+ * Soft links used both in ECData, and Link.
+ */
+ context::CDList<Node> d_registered;
+
+public:
+
+ /** Constructs a new instance of TheoryUF w.r.t. the provided context.*/
+ TheoryUFTim(int id, context::Context* c, OutputChannel& out);
+
+ /** Destructor for the TheoryUF object. */
+ ~TheoryUFTim();
+
+
+
+ /**
+ * Registers a previously unseen [in this context] node n.
+ * For TheoryUF, this sets up and maintains invaraints about
+ * equivalence class data-structures.
+ *
+ * Overloads a void registerTerm(TNode n); from theory.h.
+ * See theory/theory.h for more information about this method.
+ */
+ void registerTerm(TNode n);
+
+ /**
+ * Currently this does nothing.
+ *
+ * Overloads a void preRegisterTerm(TNode n); from theory.h.
+ * See theory/theory.h for more information about this method.
+ */
+ void preRegisterTerm(TNode n);
+
+ /**
+ * Checks whether the set of literals provided to the theory is consistent.
+ *
+ * If this is called at any effort level, it computes the congruence closure
+ * of all of the positive literals in the context.
+ *
+ * If this is called at full effort it checks if any of the negative literals
+ * are inconsistent with the congruence closure.
+ *
+ * Overloads void check(Effort level); from theory.h.
+ * See theory/theory.h for more information about this method.
+ */
+ void check(Effort level);
+
+
+ /**
+ * Rewrites a node in the theory of uninterpreted functions.
+ * This is fairly basic and only ensures that atoms that are
+ * unsatisfiable or a valid are rewritten to false or true respectively.
+ */
+ Node rewrite(TNode n);
+
+ /**
+ * Plug in old rewrite to the new (pre,post)rewrite interface.
+ */
+ RewriteResponse postRewrite(TNode n, bool topLevel) {
+ return RewriteComplete(topLevel ? rewrite(n) : Node(n));
+ }
+
+ /**
+ * Propagates theory literals. Currently does nothing.
+ *
+ * Overloads void propagate(Effort level); from theory.h.
+ * See theory/theory.h for more information about this method.
+ */
+ void propagate(Effort level) {}
+
+ /**
+ * Explains a previously reported conflict. Currently does nothing.
+ *
+ * Overloads void explain(TNode n, Effort level); from theory.h.
+ * See theory/theory.h for more information about this method.
+ */
+ void explain(TNode n, Effort level) {}
+
+ std::string identify() const { return std::string("TheoryUFTim"); }
+
+private:
+ /**
+ * Checks whether 2 nodes are already in the same equivalence class tree.
+ * This should only be used internally, and it should only be called when
+ * the only thing done with the equivalence classes is an equality check.
+ *
+ * @returns true iff ccFind(x) == ccFind(y);
+ */
+ bool sameCongruenceClass(TNode x, TNode y);
+
+ /**
+ * Checks whether Node x and Node y are currently congruent
+ * using the equivalence class data structures.
+ * @returns true iff
+ * |x| = n = |y| and
+ * x.getOperator() == y.getOperator() and
+ * forall 1 <= i < n : ccFind(x[i]) == ccFind(y[i])
+ */
+ bool equiv(TNode x, TNode y);
+
+ /**
+ * Merges 2 equivalence classes, checks wether any predecessors need to
+ * be set equal to complete congruence closure.
+ * The class with the smaller class size will be merged.
+ * @pre ecX->isClassRep()
+ * @pre ecY->isClassRep()
+ */
+ void ccUnion(ECData* ecX, ECData* ecY);
+
+ /**
+ * Returns the representative of the equivalence class.
+ * May modify the find pointers associated with equivalence classes.
+ */
+ ECData* ccFind(ECData* x);
+
+ /** Performs Congruence Closure to reflect the new additions to d_pending. */
+ void merge();
+
+ /** Constructs a conflict from an inconsistent disequality. */
+ Node constructConflict(TNode diseq);
+
+};/* class TheoryUFTim */
+
+
+/**
+ * Cleanup function for ECData. This will be used for called whenever
+ * a ECAttr is being destructed.
+ */
+struct ECCleanupStrategy {
+ static void cleanup(ECData* ec) {
+ Debug("ufgc") << "cleaning up ECData " << ec << "\n";
+ ec->deleteSelf();
+ }
+};/* struct ECCleanupStrategy */
+
+/** Unique name to use for constructing ECAttr. */
+struct ECAttrTag {};
+
+/**
+ * ECAttr is the attribute that maps a node to an equivalence class.
+ */
+typedef expr::Attribute<ECAttrTag, ECData*, ECCleanupStrategy> ECAttr;
+
+}/* CVC4::theory::uf::tim namespace */
+}/* CVC4::theory::uf namespace */
+}/* CVC4::theory namespace */
+}/* CVC4 namespace */
+
+#endif /* __CVC4__THEORY__UF__TIM__THEORY_UF_TIM_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback