summaryrefslogtreecommitdiff
path: root/upb_table.c
blob: 00adc0126316e0f2cbec5dcea06fc57cd1d51755 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2009 Joshua Haberman.  See LICENSE for details.
 */

#include "upb_table.h"

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#ifdef UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby
// Reformatted and C99-ified by Joshua Haberman.
// Note - This code makes a few assumptions about how your machine behaves -
//   1. We can read a 4-byte value from any address without crashing
//   2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
// And it has a few limitations -
//   1. It will not work incrementally.
//   2. It will not produce the same results on little-endian and big-endian
//      machines.
static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed)
{
  // 'm' and 'r' are mixing constants generated offline.
  // They're not really 'magic', they just happen to work well.
  const uint32_t m = 0x5bd1e995;
  const int32_t r = 24;

  // Initialize the hash to a 'random' value
  uint32_t h = seed ^ len;

  // Mix 4 bytes at a time into the hash
  const uint8_t * data = (const uint8_t *)key;
  while(len >= 4) {
    uint32_t k = *(uint32_t *)data;

    k *= m;
    k ^= k >> r;
    k *= m;

    h *= m;
    h ^= k;

    data += 4;
    len -= 4;
  }

  // Handle the last few bytes of the input array
  switch(len) {
    case 3: h ^= data[2] << 16;
    case 2: h ^= data[1] << 8;
    case 1: h ^= data[0]; h *= m;
  };

  // Do a few final mixes of the hash to ensure the last few
  // bytes are well-incorporated.
  h ^= h >> 13;
  h *= m;
  h ^= h >> 15;

  return h;
}

#else // !UPB_UNALIGNED_READS_OK

//-----------------------------------------------------------------------------
// MurmurHashAligned2, by Austin Appleby
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
// on certain platforms.
// Performance will be lower than MurmurHash2

#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }

static uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed)
{
  const uint32_t m = 0x5bd1e995;
  const int32_t r = 24;
  const uint8_t * data = (const uint8_t *)key;
  uint32_t h = seed ^ len;
  uint8_t align = (uintptr_t)data & 3;

  if(align && (len >= 4)) {
    // Pre-load the temp registers
    uint32_t t = 0, d = 0;

    switch(align) {
      case 1: t |= data[2] << 16;
      case 2: t |= data[1] << 8;
      case 3: t |= data[0];
    }

    t <<= (8 * align);

    data += 4-align;
    len -= 4-align;

    int32_t sl = 8 * (4-align);
    int32_t sr = 8 * align;

    // Mix

    while(len >= 4) {
      d = *(uint32_t *)data;
      t = (t >> sr) | (d << sl);

      uint32_t k = t;

      MIX(h,k,m);

      t = d;

      data += 4;
      len -= 4;
    }

    // Handle leftover data in temp registers

    d = 0;

    if(len >= align) {
      switch(align) {
        case 3: d |= data[2] << 16;
        case 2: d |= data[1] << 8;
        case 1: d |= data[0];
      }

      uint32_t k = (t >> sr) | (d << sl);
      MIX(h,k,m);

      data += align;
      len -= align;

      //----------
      // Handle tail bytes

      switch(len) {
        case 3: h ^= data[2] << 16;
        case 2: h ^= data[1] << 8;
        case 1: h ^= data[0]; h *= m;
      };
    } else {
      switch(len) {
        case 3: d |= data[2] << 16;
        case 2: d |= data[1] << 8;
        case 1: d |= data[0];
        case 0: h ^= (t >> sr) | (d << sl); h *= m;
      }
    }

    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return h;
  } else {
    while(len >= 4) {
      uint32_t k = *(uint32_t *)data;

      MIX(h,k,m);

      data += 4;
      len -= 4;
    }

    //----------
    // Handle tail bytes

    switch(len) {
      case 3: h ^= data[2] << 16;
      case 2: h ^= data[1] << 8;
      case 1: h ^= data[0]; h *= m;
    };

    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return h;
  }
}
#undef MIX

#endif // UPB_UNALIGNED_READS_OK

static int compare_entries(const void *f1, const void *f2)
{
  return ((struct upb_inttable_entry*)f1)->key -
         ((struct upb_inttable_entry*)f2)->key;
}

static uint32_t max(uint32_t a, uint32_t b) { return a > b ? a : b; }

static uint32_t round_up_to_pow2(uint32_t v)
{
  /* cf. Bit Twiddling Hacks:
   * http://www-graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 */
  v--;
  v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16;
  v++;
  return v;
}

static struct upb_inttable_entry *find_empty_slot(struct upb_inttable *table)
{
  /* TODO: does it matter that this is biased towards the front of the table? */
  for(uint32_t i = 0; i < table->size; i++) {
    struct upb_inttable_entry *e =
        upb_inttable_entry_get(table->entries, i, table->entry_size);
    if(e->key == UPB_EMPTY_ENTRY) return e;
  }
  assert(false);
  return NULL;
}

void upb_inttable_init(struct upb_inttable *table, void *entries,
                       int num_entries, int entry_size)
{
  qsort(entries, num_entries, entry_size, compare_entries);

  /* Find the largest n for which at least half the keys <n are used.  We
   * make sure our table size is at least n.  This allows all keys <n to be
   * in their main position (as if it were an array) and only numbers >n might
   * possibly have collisions.  Start at 8 to avoid noise of small numbers. */
  upb_inttable_key_t n = 0, maybe_n;
  bool all_in_array = true;
  for(int i = 0; i < num_entries; i++) {
    struct upb_inttable_entry *e =
        upb_inttable_entry_get(entries, i, entry_size);
    maybe_n = e->key;
    if(maybe_n > 8 && maybe_n/(i+1) >= 2) {
      all_in_array = false;
      break;
    }
    n = maybe_n;
  }

  /* TODO: measure, tweak, optimize this choice of table size.  Possibly test
   * (at runtime) maximum chain length for each proposed size. */
  uint32_t min_size_by_load = all_in_array ? n : (double)num_entries / 0.85;
  uint32_t min_size = max(n, min_size_by_load);
  table->size = round_up_to_pow2(min_size);
  table->entry_size = entry_size;
  table->entries = malloc(table->size * entry_size);

  /* Initialize to empty. */
  for(size_t i = 0; i < table->size; i++) {
    struct upb_inttable_entry *e =
        upb_inttable_entry_get(table->entries, i, entry_size);
    e->key = UPB_EMPTY_ENTRY;
    e->next = NULL;
  }

  /* Insert the elements. */
  for(int i = 0; i < num_entries; i++) {
    struct upb_inttable_entry *e, *table_e;
    e = upb_inttable_entry_get(entries, i, entry_size);
    table_e = upb_inttable_mainpos(table, e->key);
    if(table_e->key != UPB_EMPTY_ENTRY) {  /* Collision. */
      if(table_e == upb_inttable_mainpos(table, table_e->key)) {
        /* Existing element is in its main posisiton.  Find an empty slot to
         * place our new element and append it to this key's chain. */
        struct upb_inttable_entry *empty = find_empty_slot(table);
        while (table_e->next) table_e = table_e->next;
        table_e->next = empty;
        table_e = empty;
      } else {
        /* Existing element is not in its main position.  Move it to an empty
         * slot and put our element in its main position. */
        struct upb_inttable_entry *empty, *colliding_key_mainpos;
        empty = find_empty_slot(table);
        colliding_key_mainpos = upb_inttable_mainpos(table, table_e->key);
        assert(colliding_key_mainpos->key != UPB_EMPTY_ENTRY);
        assert(colliding_key_mainpos->next);
        memcpy(empty, table_e, entry_size);  /* next is copied also. */
        while(1) {
          assert(colliding_key_mainpos->next);
          if(colliding_key_mainpos->next == table_e) {
            colliding_key_mainpos->next = empty;
            break;
          }
        }
        /* table_e remains set to our mainpos. */
      }
    }
    memcpy(table_e, e, entry_size);
    table_e->next = NULL;
  }
}

void upb_inttable_free(struct upb_inttable *table)
{
  free(table->entries);
}

generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback