/* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * This file defines very fast int->upb_value (inttable) and string->upb_value * (strtable) hash tables. * * The table uses chained scatter with Brent's variation (inspired by the Lua * implementation of hash tables). The hash function for strings is Austin * Appleby's "MurmurHash." * * The inttable uses uintptr_t as its key, which guarantees it can be used to * store pointers or integers of at least 32 bits (upb isn't really useful on * systems where sizeof(void*) < 4). * * This header is internal to upb; its interface should not be considered * public or stable. * * The table must be homogenous (all values of the same type). We currently * enforce this on insert but store the full upb_value (with type) anyway. * This is required with the current interface because lookups vend a pointer * to the table's internal storage. */ #ifndef UPB_TABLE_H_ #define UPB_TABLE_H_ #include "upb.h" #ifdef __cplusplus extern "C" { #endif typedef union { uintptr_t num; const char *str; // We own, nullz. } upb_tabkey; #define UPB_TABKEY_NUM(n) {n} #ifdef UPB_C99 #define UPB_TABKEY_STR(s) {.str = s} #endif // TODO(haberman): C++ #define UPB_TABKEY_NONE {0} typedef struct _upb_tabent { upb_tabkey key; _upb_value val; // Internal chaining. This is const so we can create static initializers for // tables. We cast away const sometimes, but *only* when the containing // upb_table is known to be non-const. This requires a bit of care, but // the subtlety is confined to table.c. const struct _upb_tabent *next; } upb_tabent; typedef struct { size_t count; // Number of entries in the hash part. size_t mask; // Mask to turn hash value -> bucket. upb_ctype_t type; // Type of all values. uint8_t size_lg2; // Size of the hash table part is 2^size_lg2 entries. const upb_tabent *entries; // Hash table. } upb_table; typedef struct { upb_table t; } upb_strtable; #define UPB_STRTABLE_INIT(count, mask, type, size_lg2, entries) \ {{count, mask, type, size_lg2, entries}} typedef struct { upb_table t; // For entries that don't fit in the array part. const _upb_value *array; // Array part of the table. size_t array_size; // Array part size. size_t array_count; // Array part number of elements. } upb_inttable; #define UPB_INTTABLE_INIT(count, mask, type, size_lg2, ent, a, asize, acount) \ {{count, mask, type, size_lg2, ent}, a, asize, acount} #define UPB_EMPTY_INTTABLE_INIT(type) \ UPB_INTTABLE_INIT(0, 0, type, 0, NULL, NULL, 0, 0) #define UPB_ARRAY_EMPTYENT UPB_VALUE_INIT_INT64(-1) UPB_INLINE size_t upb_table_size(const upb_table *t) { if (t->size_lg2 == 0) return 0; else return 1 << t->size_lg2; } // Internal-only functions, in .h file only out of necessity. UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) { return e->key.num == 0; } UPB_INLINE upb_tabkey upb_intkey(uintptr_t key) { upb_tabkey k = {key}; return k; } UPB_INLINE const upb_tabent *upb_inthash(const upb_table *t, upb_tabkey key) { return t->entries + ((uint32_t)key.num & t->mask); } UPB_INLINE bool upb_arrhas(_upb_value v) { return v.uint64 != (uint64_t)-1; } uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed); // Initialize and uninitialize a table, respectively. If memory allocation // failed, false is returned that the table is uninitialized. bool upb_inttable_init(upb_inttable *table, upb_ctype_t type); bool upb_strtable_init(upb_strtable *table, upb_ctype_t type); void upb_inttable_uninit(upb_inttable *table); void upb_strtable_uninit(upb_strtable *table); // Returns the number of values in the table. size_t upb_inttable_count(const upb_inttable *t); UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) { return t->t.count; } // Inserts the given key into the hashtable with the given value. The key must // not already exist in the hash table. For string tables, the key must be // NULL-terminated, and the table will make an internal copy of the key. // Inttables must not insert a value of UINTPTR_MAX. // // If a table resize was required but memory allocation failed, false is // returned and the table is unchanged. bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val); bool upb_strtable_insert(upb_strtable *t, const char *key, upb_value val); // Looks up key in this table, returning a pointer to the table's internal copy // of the user's inserted data, or NULL if this key is not in the table. The // returned pointer is invalidated by inserts. bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v); bool upb_strtable_lookup(const upb_strtable *t, const char *key, upb_value *v); // Removes an item from the table. Returns true if the remove was successful, // and stores the removed item in *val if non-NULL. bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val); bool upb_strtable_remove(upb_strtable *t, const char *key, upb_value *val); // Handy routines for treating an inttable like a stack. May not be mixed with // other insert/remove calls. bool upb_inttable_push(upb_inttable *t, upb_value val); upb_value upb_inttable_pop(upb_inttable *t); // Convenience routines for inttables with pointer keys. bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val); bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val); bool upb_inttable_lookupptr( const upb_inttable *t, const void *key, upb_value *val); // Optimizes the table for the current set of entries, for both memory use and // lookup time. Client should call this after all entries have been inserted; // inserting more entries is legal, but will likely require a table resize. void upb_inttable_compact(upb_inttable *t); // A special-case inlinable version of the lookup routine for 32-bit integers. UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key, upb_value *v) { *v = upb_value_int32(0); // Silence compiler warnings. if (key < t->array_size) { _upb_value arrval = t->array[key]; if (upb_arrhas(arrval)) { _upb_value_setval(v, arrval, t->t.type); return true; } else { return false; } } else { const upb_tabent *e; if (t->t.entries == NULL) return NULL; for (e = upb_inthash(&t->t, upb_intkey(key)); true; e = e->next) { if ((uint32_t)e->key.num == key) { _upb_value_setval(v, e->val, t->t.type); return true; } if (e->next == NULL) return false; } } } /* upb_strtable_iter **********************************************************/ // Strtable iteration. Order is undefined. Insertions invalidate iterators. // upb_strtable_iter i; // upb_strtable_begin(&i, t); // for(; !upb_strtable_done(&i); upb_strtable_next(&i)) { // const char *key = upb_strtable_iter_key(&i); // const upb_value val = upb_strtable_iter_value(&i); // // ... // } typedef struct { const upb_strtable *t; const upb_tabent *e; } upb_strtable_iter; void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t); void upb_strtable_next(upb_strtable_iter *i); UPB_INLINE bool upb_strtable_done(upb_strtable_iter *i) { return i->e == NULL; } UPB_INLINE const char *upb_strtable_iter_key(upb_strtable_iter *i) { return i->e->key.str; } UPB_INLINE upb_value upb_strtable_iter_value(upb_strtable_iter *i) { return _upb_value_val(i->e->val, i->t->t.type); } /* upb_inttable_iter **********************************************************/ // Inttable iteration. Order is undefined. Insertions invalidate iterators. // upb_inttable_iter i; // upb_inttable_begin(&i, t); // for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { // uintptr_t key = upb_inttable_iter_key(&i); // upb_value val = upb_inttable_iter_value(&i); // // ... // } typedef struct { const upb_inttable *t; union { const upb_tabent *ent; // For hash iteration. const _upb_value *val; // For array iteration. } ptr; uintptr_t arrkey; bool array_part; } upb_inttable_iter; void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t); void upb_inttable_next(upb_inttable_iter *i); UPB_INLINE bool upb_inttable_done(upb_inttable_iter *i) { return i->ptr.ent == NULL; } UPB_INLINE uintptr_t upb_inttable_iter_key(upb_inttable_iter *i) { return i->array_part ? i->arrkey : i->ptr.ent->key.num; } UPB_INLINE upb_value upb_inttable_iter_value(upb_inttable_iter *i) { return _upb_value_val( i->array_part ? *i->ptr.val : i->ptr.ent->val, i->t->t.type); } #ifdef __cplusplus } /* extern "C" */ #endif #endif /* UPB_TABLE_H_ */