/* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * This file defines very fast int->upb_value (inttable) and string->upb_value * (strtable) hash tables. * * The table uses chained scatter with Brent's variation (inspired by the Lua * implementation of hash tables). The hash function for strings is Austin * Appleby's "MurmurHash." * * The inttable uses uintptr_t as its key, which guarantees it can be used to * store pointers or integers of at least 32 bits (upb isn't really useful on * systems where sizeof(void*) < 4). * * This header is internal to upb; its interface should not be considered * public or stable. */ #ifndef UPB_TABLE_H_ #define UPB_TABLE_H_ #include #include #include "upb.h" #ifdef __cplusplus extern "C" { #endif typedef union { uintptr_t num; char *str; // We own, nullz. } upb_tabkey; typedef struct _upb_tabent { upb_tabkey key; upb_value val; struct _upb_tabent *next; // Internal chaining. } upb_tabent; typedef struct { upb_tabent *entries; // Hash table. size_t count; // Number of entries in the hash part. size_t mask; // Mask to turn hash value -> bucket. uint8_t size_lg2; // Size of the hash table part is 2^size_lg2 entries. } upb_table; typedef struct { upb_table t; } upb_strtable; typedef struct { upb_table t; // For entries that don't fit in the array part. upb_value *array; // Array part of the table. size_t array_size; // Array part size. size_t array_count; // Array part number of elements. } upb_inttable; INLINE upb_tabkey upb_intkey(uintptr_t key) { upb_tabkey k = {key}; return k; } INLINE upb_tabent *upb_inthash(const upb_table *t, upb_tabkey key) { return t->entries + ((uint32_t)key.num & t->mask); } INLINE bool upb_arrhas(upb_value v) { return v.val.uint64 != (uint64_t)-1; } // Initialize and uninitialize a table, respectively. If memory allocation // failed, false is returned that the table is uninitialized. bool upb_inttable_init(upb_inttable *table); bool upb_strtable_init(upb_strtable *table); void upb_inttable_uninit(upb_inttable *table); void upb_strtable_uninit(upb_strtable *table); // Returns the number of values in the table. size_t upb_inttable_count(const upb_inttable *t); INLINE size_t upb_strtable_count(const upb_strtable *t) { return t->t.count; } // Inserts the given key into the hashtable with the given value. The key must // not already exist in the hash table. For string tables, the key must be // NULL-terminated, and the table will make an internal copy of the key. // Inttables must not insert a value of UINTPTR_MAX. // // If a table resize was required but memory allocation failed, false is // returned and the table is unchanged. bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val); bool upb_strtable_insert(upb_strtable *t, const char *key, upb_value val); // Looks up key in this table, returning a pointer to the table's internal copy // of the user's inserted data, or NULL if this key is not in the table. The // user is free to modify the given upb_value, which will be reflected in any // future lookups of this key. The returned pointer is invalidated by inserts. upb_value *upb_inttable_lookup(const upb_inttable *t, uintptr_t key); upb_value *upb_strtable_lookup(const upb_strtable *t, const char *key); // Removes an item from the table. Returns true if the remove was successful, // and stores the removed item in *val if non-NULL. bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val); // Optimizes the table for the current set of entries, for both memory use and // lookup time. Client should call this after all entries have been inserted; // inserting more entries is legal, but will likely require a table resize. void upb_inttable_compact(upb_inttable *t); // A special-case inlinable version of the lookup routine for 32-bit integers. INLINE upb_value *upb_inttable_lookup32(const upb_inttable *t, uint32_t key) { if (key < t->array_size) { upb_value *v = &t->array[key]; return upb_arrhas(*v) ? v : NULL; } for (upb_tabent *e = upb_inthash(&t->t, upb_intkey(key)); true; e = e->next) { if ((uint32_t)e->key.num == key) return &e->val; if (e->next == NULL) return NULL; } } /* upb_strtable_iter **********************************************************/ // Strtable iteration. Order is undefined. Insertions invalidate iterators. // upb_strtable_iter i; // upb_strtable_begin(&i, t); // for(; !upb_strtable_done(&i); upb_strtable_next(&i)) { // const char *key = upb_strtable_iter_key(&i); // const myval *val = upb_strtable_iter_value(&i); // // ... // } typedef struct { const upb_strtable *t; upb_tabent *e; } upb_strtable_iter; void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t); void upb_strtable_next(upb_strtable_iter *i); INLINE bool upb_strtable_done(upb_strtable_iter *i) { return i->e == NULL; } INLINE const char *upb_strtable_iter_key(upb_strtable_iter *i) { return i->e->key.str; } INLINE upb_value upb_strtable_iter_value(upb_strtable_iter *i) { return i->e->val; } /* upb_inttable_iter **********************************************************/ // Inttable iteration. Order is undefined. Insertions invalidate iterators. // upb_inttable_iter i; // upb_inttable_begin(&i, t); // for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { // // ... // } typedef struct { const upb_inttable *t; union { upb_tabent *ent; // For hash iteration. upb_value *val; // For array iteration. } ptr; uintptr_t arrkey; bool array_part; } upb_inttable_iter; void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t); void upb_inttable_next(upb_inttable_iter *i); INLINE bool upb_inttable_done(upb_inttable_iter *i) { return i->ptr.ent == NULL; } INLINE uintptr_t upb_inttable_iter_key(upb_inttable_iter *i) { return i->array_part ? i->arrkey : i->ptr.ent->key.num; } INLINE upb_value upb_inttable_iter_value(upb_inttable_iter *i) { return i->array_part ? *i->ptr.val : i->ptr.ent->val; } #ifdef __cplusplus } /* extern "C" */ #endif #endif /* UPB_TABLE_H_ */