/* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Implementation is heavily inspired by Lua's ltable.c. */ #include "upb/table.int.h" #include #include #define UPB_MAXARRSIZE 16 // 64k. // From Chromium. #define ARRAY_SIZE(x) \ ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) static const double MAX_LOAD = 0.85; // The minimum utilization of the array part of a mixed hash/array table. This // is a speed/memory-usage tradeoff (though it's not straightforward because of // cache effects). The lower this is, the more memory we'll use. static const double MIN_DENSITY = 0.1; bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } int log2ceil(uint64_t v) { int ret = 0; bool pow2 = is_pow2(v); while (v >>= 1) ret++; ret = pow2 ? ret : ret + 1; // Ceiling. return UPB_MIN(UPB_MAXARRSIZE, ret); } char *upb_strdup(const char *s) { size_t n = strlen(s) + 1; char *p = malloc(n); if (p) memcpy(p, s, n); return p; } static upb_tabkey strkey(const char *str) { upb_tabkey k; k.str = (char*)str; return k; } typedef const upb_tabent *hashfunc_t(const upb_table *t, upb_tabkey key); typedef bool eqlfunc_t(upb_tabkey k1, upb_tabkey k2); /* Base table (shared code) ***************************************************/ // For when we need to cast away const. static upb_tabent *mutable_entries(upb_table *t) { return (upb_tabent*)t->entries; } static bool isfull(upb_table *t) { return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD; } static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) { t->count = 0; t->ctype = ctype; t->size_lg2 = size_lg2; t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; size_t bytes = upb_table_size(t) * sizeof(upb_tabent); if (bytes > 0) { t->entries = malloc(bytes); if (!t->entries) return false; memset(mutable_entries(t), 0, bytes); } else { t->entries = NULL; } return true; } static void uninit(upb_table *t) { free(mutable_entries(t)); } static upb_tabent *emptyent(upb_table *t) { upb_tabent *e = mutable_entries(t) + upb_table_size(t); while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); } } static const upb_tabent *findentry(const upb_table *t, upb_tabkey key, hashfunc_t *hash, eqlfunc_t *eql) { if (t->size_lg2 == 0) return NULL; const upb_tabent *e = hash(t, key); if (upb_tabent_isempty(e)) return NULL; while (1) { if (eql(e->key, key)) return e; if ((e = e->next) == NULL) return NULL; } } static bool lookup(const upb_table *t, upb_tabkey key, upb_value *v, hashfunc_t *hash, eqlfunc_t *eql) { const upb_tabent *e = findentry(t, key, hash, eql); if (e) { if (v) { _upb_value_setval(v, e->val, t->ctype); } return true; } else { return false; } } // The given key must not already exist in the table. static void insert(upb_table *t, upb_tabkey key, upb_value val, hashfunc_t *hash, eqlfunc_t *eql) { assert(findentry(t, key, hash, eql) == NULL); assert(val.ctype == t->ctype); t->count++; upb_tabent *mainpos_e = (upb_tabent*)hash(t, key); upb_tabent *our_e = mainpos_e; if (upb_tabent_isempty(mainpos_e)) { // Our main position is empty; use it. our_e->next = NULL; } else { // Collision. upb_tabent *new_e = emptyent(t); // Head of collider's chain. upb_tabent *chain = (upb_tabent*)hash(t, mainpos_e->key); if (chain == mainpos_e) { // Existing ent is in its main posisiton (it has the same hash as us, and // is the head of our chain). Insert to new ent and append to this chain. new_e->next = mainpos_e->next; mainpos_e->next = new_e; our_e = new_e; } else { // Existing ent is not in its main position (it is a node in some other // chain). This implies that no existing ent in the table has our hash. // Evict it (updating its chain) and use its ent for head of our chain. *new_e = *mainpos_e; // copies next. while (chain->next != mainpos_e) { chain = (upb_tabent*)chain->next; assert(chain); } chain->next = new_e; our_e = mainpos_e; our_e->next = NULL; } } our_e->key = key; our_e->val = val.val; assert(findentry(t, key, hash, eql) == our_e); } static bool rm(upb_table *t, upb_tabkey key, upb_value *val, upb_tabkey *removed, hashfunc_t *hash, eqlfunc_t *eql) { upb_tabent *chain = (upb_tabent*)hash(t, key); if (upb_tabent_isempty(chain)) return false; if (eql(chain->key, key)) { // Element to remove is at the head of its chain. t->count--; if (val) { _upb_value_setval(val, chain->val, t->ctype); } if (chain->next) { upb_tabent *move = (upb_tabent*)chain->next; *chain = *move; if (removed) *removed = move->key; move->key.num = 0; // Make the slot empty. } else { if (removed) *removed = chain->key; chain->key.num = 0; // Make the slot empty. } return true; } else { // Element to remove is either in a non-head position or not in the table. while (chain->next && !eql(chain->next->key, key)) chain = (upb_tabent*)chain->next; if (chain->next) { // Found element to remove. if (val) { _upb_value_setval(val, chain->next->val, t->ctype); } upb_tabent *rm = (upb_tabent*)chain->next; if (removed) *removed = rm->key; rm->key.num = 0; chain->next = rm->next; t->count--; return true; } else { return false; } } } static size_t next(const upb_table *t, size_t i) { do { if (++i >= upb_table_size(t)) return SIZE_MAX; } while(upb_tabent_isempty(&t->entries[i])); return i; } static size_t begin(const upb_table *t) { return next(t, -1); } /* upb_strtable ***************************************************************/ // A simple "subclass" of upb_table that only adds a hash function for strings. static const upb_tabent *strhash(const upb_table *t, upb_tabkey key) { // Could avoid the strlen() by using a hash function that terminates on NULL. return t->entries + (MurmurHash2(key.str, strlen(key.str), 0) & t->mask); } static bool streql(upb_tabkey k1, upb_tabkey k2) { return strcmp(k1.str, k2.str) == 0; } bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) { return init(&t->t, ctype, 2); } void upb_strtable_uninit(upb_strtable *t) { for (size_t i = 0; i < upb_table_size(&t->t); i++) free((void*)t->t.entries[i].key.str); uninit(&t->t); } bool upb_strtable_resize(upb_strtable *t, size_t size_lg2) { upb_strtable new_table; if (!init(&new_table.t, t->t.ctype, size_lg2)) return false; upb_strtable_iter i; upb_strtable_begin(&i, t); for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_strtable_insert( &new_table, upb_strtable_iter_key(&i), upb_strtable_iter_value(&i)); } upb_strtable_uninit(t); *t = new_table; return true; } bool upb_strtable_insert(upb_strtable *t, const char *k, upb_value v) { if (isfull(&t->t)) { // Need to resize. New table of double the size, add old elements to it. if (!upb_strtable_resize(t, t->t.size_lg2 + 1)) { return false; } } if ((k = upb_strdup(k)) == NULL) return false; insert(&t->t, strkey(k), v, &strhash, &streql); return true; } bool upb_strtable_lookup(const upb_strtable *t, const char *key, upb_value *v) { return lookup(&t->t, strkey(key), v, &strhash, &streql); } bool upb_strtable_remove(upb_strtable *t, const char *key, upb_value *val) { upb_tabkey tabkey; if (rm(&t->t, strkey(key), val, &tabkey, &strhash, &streql)) { free((void*)tabkey.str); return true; } else { return false; } } // Iteration static const upb_tabent *str_tabent(const upb_strtable_iter *i) { return &i->t->t.entries[i->index]; } void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { i->t = t; i->index = begin(&t->t); } void upb_strtable_next(upb_strtable_iter *i) { i->index = next(&i->t->t, i->index); } bool upb_strtable_done(const upb_strtable_iter *i) { return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(str_tabent(i)); } const char *upb_strtable_iter_key(upb_strtable_iter *i) { assert(!upb_strtable_done(i)); return str_tabent(i)->key.str; } upb_value upb_strtable_iter_value(const upb_strtable_iter *i) { assert(!upb_strtable_done(i)); return _upb_value_val(str_tabent(i)->val, i->t->t.ctype); } void upb_strtable_iter_setdone(upb_strtable_iter *i) { i->index = SIZE_MAX; } bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, const upb_strtable_iter *i2) { if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index; } /* upb_inttable ***************************************************************/ // For inttables we use a hybrid structure where small keys are kept in an // array and large keys are put in the hash table. static bool inteql(upb_tabkey k1, upb_tabkey k2) { return k1.num == k2.num; } static _upb_value *mutable_array(upb_inttable *t) { return (_upb_value*)t->array; } static _upb_value *inttable_val(upb_inttable *t, uintptr_t key) { if (key < t->array_size) { return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; } else { upb_tabent *e = (upb_tabent*)findentry(&t->t, upb_intkey(key), &upb_inthash, &inteql); return e ? &e->val : NULL; } } static const _upb_value *inttable_val_const(const upb_inttable *t, uintptr_t key) { return inttable_val((upb_inttable*)t, key); } size_t upb_inttable_count(const upb_inttable *t) { return t->t.count + t->array_count; } static void check(upb_inttable *t) { UPB_UNUSED(t); #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) // This check is very expensive (makes inserts/deletes O(N)). size_t count = 0; upb_inttable_iter i; upb_inttable_begin(&i, t); for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); } assert(count == upb_inttable_count(t)); #endif } bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype, size_t asize, int hsize_lg2) { if (!init(&t->t, ctype, hsize_lg2)) return false; // Always make the array part at least 1 long, so that we know key 0 // won't be in the hash part, which simplifies things. t->array_size = UPB_MAX(1, asize); t->array_count = 0; size_t array_bytes = t->array_size * sizeof(upb_value); t->array = malloc(array_bytes); if (!t->array) { uninit(&t->t); return false; } memset(mutable_array(t), 0xff, array_bytes); check(t); return true; } bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) { return upb_inttable_sizedinit(t, ctype, 0, 4); } void upb_inttable_uninit(upb_inttable *t) { uninit(&t->t); free(mutable_array(t)); } bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) { assert(upb_arrhas(val.val)); if (key < t->array_size) { assert(!upb_arrhas(t->array[key])); t->array_count++; mutable_array(t)[key] = val.val; } else { if (isfull(&t->t)) { // Need to resize the hash part, but we re-use the array part. upb_table new_table; if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1)) return false; size_t i; for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { const upb_tabent *e = &t->t.entries[i]; upb_value v; _upb_value_setval(&v, e->val, t->t.ctype); insert(&new_table, e->key, v, &upb_inthash, &inteql); } assert(t->t.count == new_table.count); uninit(&t->t); t->t = new_table; } insert(&t->t, upb_intkey(key), val, &upb_inthash, &inteql); } check(t); return true; } bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { const _upb_value *table_v = inttable_val_const(t, key); if (!table_v) return false; if (v) _upb_value_setval(v, *table_v, t->t.ctype); return true; } bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { _upb_value *table_v = inttable_val(t, key); if (!table_v) return false; *table_v = val.val; return true; } bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { bool success; if (key < t->array_size) { if (upb_arrhas(t->array[key])) { t->array_count--; if (val) { _upb_value_setval(val, t->array[key], t->t.ctype); } _upb_value empty = UPB_ARRAY_EMPTYENT; mutable_array(t)[key] = empty; success = true; } else { success = false; } } else { upb_tabkey removed; success = rm(&t->t, upb_intkey(key), val, &removed, &upb_inthash, &inteql); } check(t); return success; } bool upb_inttable_push(upb_inttable *t, upb_value val) { return upb_inttable_insert(t, upb_inttable_count(t), val); } upb_value upb_inttable_pop(upb_inttable *t) { upb_value val; bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val); UPB_ASSERT_VAR(ok, ok); return val; } bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) { return upb_inttable_insert(t, (uintptr_t)key, val); } bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, upb_value *v) { return upb_inttable_lookup(t, (uintptr_t)key, v); } bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { return upb_inttable_remove(t, (uintptr_t)key, val); } void upb_inttable_compact(upb_inttable *t) { // Create a power-of-two histogram of the table keys. int counts[UPB_MAXARRSIZE + 1] = {0}; uintptr_t max_key = 0; upb_inttable_iter i; upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t key = upb_inttable_iter_key(&i); if (key > max_key) { max_key = key; } counts[log2ceil(key)]++; } int arr_size; int arr_count = upb_inttable_count(t); if (upb_inttable_count(t) >= max_key * MIN_DENSITY) { // We can put 100% of the entries in the array part. arr_size = max_key + 1; } else { // Find the largest power of two that satisfies the MIN_DENSITY definition. for (int size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) { arr_size = 1 << size_lg2; arr_count -= counts[size_lg2]; if (arr_count >= arr_size * MIN_DENSITY) { break; } } } // Array part must always be at least 1 entry large to catch lookups of key // 0. Key 0 must always be in the array part because "0" in the hash part // denotes an empty entry. arr_size = UPB_MAX(arr_size, 1); // Insert all elements into new, perfectly-sized table. int hash_count = upb_inttable_count(t) - arr_count; int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; int hashsize_lg2 = log2ceil(hash_size); assert(hash_count >= 0); upb_inttable new_t; upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2); upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t k = upb_inttable_iter_key(&i); upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i)); } assert(new_t.array_size == arr_size); assert(new_t.t.size_lg2 == hashsize_lg2); upb_inttable_uninit(t); *t = new_t; } // Iteration. static const upb_tabent *int_tabent(const upb_inttable_iter *i) { assert(!i->array_part); return &i->t->t.entries[i->index]; } static _upb_value int_arrent(const upb_inttable_iter *i) { assert(i->array_part); return i->t->array[i->index]; } void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { i->t = t; i->index = -1; i->array_part = true; upb_inttable_next(i); } void upb_inttable_next(upb_inttable_iter *iter) { const upb_inttable *t = iter->t; if (iter->array_part) { while (++iter->index < t->array_size) { if (upb_arrhas(int_arrent(iter))) { return; } } iter->array_part = false; iter->index = begin(&t->t); } else { iter->index = next(&t->t, iter->index); } } bool upb_inttable_done(const upb_inttable_iter *i) { if (i->array_part) { return i->index >= i->t->array_size || !upb_arrhas(int_arrent(i)); } else { return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(int_tabent(i)); } } uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) { assert(!upb_inttable_done(i)); return i->array_part ? i->index : int_tabent(i)->key.num; } upb_value upb_inttable_iter_value(const upb_inttable_iter *i) { assert(!upb_inttable_done(i)); return _upb_value_val( i->array_part ? i->t->array[i->index] : int_tabent(i)->val, i->t->t.ctype); } void upb_inttable_iter_setdone(upb_inttable_iter *i) { i->index = SIZE_MAX; i->array_part = false; } bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, const upb_inttable_iter *i2) { if (upb_inttable_done(i1) && upb_inttable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index && i1->array_part == i2->array_part; } #ifdef UPB_UNALIGNED_READS_OK //----------------------------------------------------------------------------- // MurmurHash2, by Austin Appleby (released as public domain). // Reformatted and C99-ified by Joshua Haberman. // Note - This code makes a few assumptions about how your machine behaves - // 1. We can read a 4-byte value from any address without crashing // 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t // And it has a few limitations - // 1. It will not work incrementally. // 2. It will not produce the same results on little-endian and big-endian // machines. uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) { // 'm' and 'r' are mixing constants generated offline. // They're not really 'magic', they just happen to work well. const uint32_t m = 0x5bd1e995; const int32_t r = 24; // Initialize the hash to a 'random' value uint32_t h = seed ^ len; // Mix 4 bytes at a time into the hash const uint8_t * data = (const uint8_t *)key; while(len >= 4) { uint32_t k = *(uint32_t *)data; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } // Handle the last few bytes of the input array switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; // Do a few final mixes of the hash to ensure the last few // bytes are well-incorporated. h ^= h >> 13; h *= m; h ^= h >> 15; return h; } #else // !UPB_UNALIGNED_READS_OK //----------------------------------------------------------------------------- // MurmurHashAligned2, by Austin Appleby // Same algorithm as MurmurHash2, but only does aligned reads - should be safer // on certain platforms. // Performance will be lower than MurmurHash2 #define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) { const uint32_t m = 0x5bd1e995; const int32_t r = 24; const uint8_t * data = (const uint8_t *)key; uint32_t h = seed ^ len; uint8_t align = (uintptr_t)data & 3; if(align && (len >= 4)) { // Pre-load the temp registers uint32_t t = 0, d = 0; switch(align) { case 1: t |= data[2] << 16; case 2: t |= data[1] << 8; case 3: t |= data[0]; } t <<= (8 * align); data += 4-align; len -= 4-align; int32_t sl = 8 * (4-align); int32_t sr = 8 * align; // Mix while(len >= 4) { d = *(uint32_t *)data; t = (t >> sr) | (d << sl); uint32_t k = t; MIX(h,k,m); t = d; data += 4; len -= 4; } // Handle leftover data in temp registers d = 0; if(len >= align) { switch(align) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; } uint32_t k = (t >> sr) | (d << sl); MIX(h,k,m); data += align; len -= align; //---------- // Handle tail bytes switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; } else { switch(len) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; case 0: h ^= (t >> sr) | (d << sl); h *= m; } } h ^= h >> 13; h *= m; h ^= h >> 15; return h; } else { while(len >= 4) { uint32_t k = *(uint32_t *)data; MIX(h,k,m); data += 4; len -= 4; } //---------- // Handle tail bytes switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } } #undef MIX #endif // UPB_UNALIGNED_READS_OK