/* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2008-2011 Google Inc. See LICENSE for details. * Author: Josh Haberman */ #include #include #include #include "upb/bytestream.h" #include "upb/msg.h" #include "upb/pb/decoder.h" #include "upb/pb/varint.h" /* upb_decoderplan ************************************************************/ #ifdef UPB_USE_JIT_X64 // These defines are necessary for DynASM codegen. // See dynasm/dasm_proto.h for more info. #define Dst_DECL upb_decoderplan *plan #define Dst_REF (plan->dynasm) #define Dst (plan) // In debug mode, make DynASM do internal checks (must be defined before any // dasm header is included. #ifndef NDEBUG #define DASM_CHECKS #endif #include "dynasm/dasm_proto.h" #include "upb/pb/decoder_x64.h" #endif typedef struct { upb_fhandlers base; void (*decode)(struct _upb_decoder *d, struct _upb_fieldent *f); #ifdef UPB_USE_JIT_X64 uint32_t jit_pclabel; uint32_t jit_pclabel_notypecheck; #endif } upb_dplanfield; typedef struct { upb_mhandlers base; #ifdef UPB_USE_JIT_X64 uint32_t jit_startmsg_pclabel; uint32_t jit_endofbuf_pclabel; uint32_t jit_endofmsg_pclabel; uint32_t jit_dyndispatch_pclabel; uint32_t jit_unknownfield_pclabel; int32_t jit_parent_field_done_pclabel; uint32_t max_field_number; // Currently keyed on field number. Could also try keying it // on encoded or decoded tag, or on encoded field number. void **tablearray; #endif } upb_dplanmsg; static void *upb_decoderplan_fptrs[]; void upb_decoderplan_initfhandlers(upb_fhandlers *f) { f->decode = upb_decoderplan_fptrs[f->type]; } upb_decoderplan *upb_decoderplan_new(upb_handlers *h, bool allowjit) { upb_decoderplan *p = malloc(sizeof(*p)); p->handlers = h; upb_handlers_ref(h); h->should_jit = allowjit; #ifdef UPB_USE_JIT_X64 p->jit_code = NULL; if (allowjit) upb_decoderplan_makejit(p); #endif // Set function pointers for each field's decode function. for (int i = 0; i < h->msgs_len; i++) { upb_mhandlers *m = h->msgs[i]; for(upb_inttable_iter i = upb_inttable_begin(&m->fieldtab); !upb_inttable_done(i); i = upb_inttable_next(&m->fieldtab, i)) { upb_itofhandlers_ent *e = upb_inttable_iter_value(i); upb_fhandlers *f = e->f; upb_decoderplan_initfhandlers(f); } } return p; } void upb_decoderplan_unref(upb_decoderplan *p) { // TODO: make truly refcounted. upb_handlers_unref(p->handlers); #ifdef UPB_USE_JIT_X64 if (p->jit_code) upb_decoderplan_freejit(p); #endif free(p); } bool upb_decoderplan_hasjitcode(upb_decoderplan *p) { #ifdef UPB_USE_JIT_X64 return p->jit_code != NULL; #else (void)p; return false; #endif } /* upb_decoder ****************************************************************/ // It's unfortunate that we have to micro-manage the compiler this way, // especially since this tuning is necessarily specific to one hardware // configuration. But emperically on a Core i7, performance increases 30-50% // with these annotations. Every instance where these appear, gcc 4.2.1 made // the wrong decision and degraded performance in benchmarks. #define FORCEINLINE static __attribute__((always_inline)) #define NOINLINE static __attribute__((noinline)) UPB_NORETURN static void upb_decoder_exitjmp(upb_decoder *d) { // Resumable decoder would back out to completed_ptr (and possibly get a // previous buffer). siglongjmp(d->exitjmp, 1); } UPB_NORETURN static void upb_decoder_exitjmp2(void *d) { upb_decoder_exitjmp(d); } UPB_NORETURN static void upb_decoder_abortjmp(upb_decoder *d, const char *msg) { upb_status_seterrliteral(&d->status, msg); upb_decoder_exitjmp(d); } /* Buffering ******************************************************************/ // We operate on one buffer at a time, which may be a subset of the currently // loaded byteregion data. When data for the buffer is completely gone we pull // the next one. When we've committed our progress we discard any previous // buffers' regions. static size_t upb_decoder_bufleft(upb_decoder *d) { assert(d->end >= d->ptr); return d->end - d->ptr; } static void upb_decoder_advance(upb_decoder *d, size_t len) { assert(upb_decoder_bufleft(d) >= len); d->ptr += len; } uint64_t upb_decoder_offset(upb_decoder *d) { return d->bufstart_ofs + (d->ptr - d->buf); } uint64_t upb_decoder_bufendofs(upb_decoder *d) { return d->bufstart_ofs + (d->end - d->buf); } static void upb_decoder_setmsgend(upb_decoder *d) { upb_dispatcher_frame *f = d->dispatcher.top; size_t delimlen = f->end_ofs - d->bufstart_ofs; size_t buflen = d->end - d->buf; d->delim_end = (f->end_ofs != UPB_NONDELIMITED && delimlen <= buflen) ? d->buf + delimlen : NULL; // NULL if not in this buf. d->top_is_packed = f->is_packed; d->dispatch_table = &d->dispatcher.msgent->fieldtab; } static void upb_decoder_skiptonewbuf(upb_decoder *d, uint64_t ofs) { assert(ofs >= upb_decoder_offset(d)); if (ofs > upb_byteregion_endofs(d->input)) upb_decoder_abortjmp(d, "Unexpected EOF"); d->buf = NULL; d->ptr = NULL; d->end = NULL; d->delim_end = NULL; #ifdef UPB_USE_JIT_X64 d->jit_end = NULL; #endif d->bufstart_ofs = ofs; } static bool upb_trypullbuf(upb_decoder *d) { assert(upb_decoder_bufleft(d) == 0); upb_decoder_skiptonewbuf(d, upb_decoder_offset(d)); if (upb_byteregion_available(d->input, d->bufstart_ofs) == 0) { switch (upb_byteregion_fetch(d->input)) { case UPB_BYTE_OK: assert(upb_byteregion_available(d->input, d->bufstart_ofs) > 0); break; case UPB_BYTE_EOF: return false; case UPB_BYTE_ERROR: upb_decoder_abortjmp(d, "I/O error in input"); // Decoder resuming is not yet supported. case UPB_BYTE_WOULDBLOCK: upb_decoder_abortjmp(d, "Input returned WOULDBLOCK"); } } size_t len; d->buf = upb_byteregion_getptr(d->input, d->bufstart_ofs, &len); assert(len > 0); d->ptr = d->buf; d->end = d->buf + len; upb_decoder_setmsgend(d); #ifdef UPB_USE_JIT_X64 // If we start parsing a value, we can parse up to 20 bytes without // having to bounds-check anything (2 10-byte varints). Since the // JIT bounds-checks only *between* values (and for strings), the // JIT bails if there are not 20 bytes available. d->jit_end = d->end - 20; #endif assert(upb_decoder_bufleft(d) > 0); return true; } static void upb_pullbuf(upb_decoder *d) { if (!upb_trypullbuf(d)) upb_decoder_abortjmp(d, "Unexpected EOF"); } void upb_decoder_checkpoint(upb_decoder *d) { upb_byteregion_discard(d->input, upb_decoder_offset(d)); } void upb_decoder_discardto(upb_decoder *d, uint64_t ofs) { if (ofs <= upb_decoder_bufendofs(d)) { upb_decoder_advance(d, ofs - upb_decoder_offset(d)); } else { upb_decoder_skiptonewbuf(d, ofs); } upb_decoder_checkpoint(d); } void upb_decoder_discard(upb_decoder *d, size_t bytes) { upb_decoder_discardto(d, upb_decoder_offset(d) + bytes); } /* Decoding of wire types *****************************************************/ NOINLINE uint64_t upb_decode_varint_slow(upb_decoder *d) { uint8_t byte = 0x80; uint64_t u64 = 0; int bitpos; for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) { if (upb_decoder_bufleft(d) == 0) upb_pullbuf(d); u64 |= ((uint64_t)(byte = *d->ptr) & 0x7F) << bitpos; upb_decoder_advance(d, 1); } if(bitpos == 70 && (byte & 0x80)) upb_decoder_abortjmp(d, "Unterminated varint"); return u64; } // For tags and delimited lengths, which must be <=32bit and are usually small. FORCEINLINE uint32_t upb_decode_varint32(upb_decoder *d) { const char *p = d->ptr; uint32_t ret; uint64_t u64; // Nearly all will be either 1 byte (1-16) or 2 bytes (17-2048). if (upb_decoder_bufleft(d) < 2) goto slow; // unlikely. ret = *p & 0x7f; if ((*(p++) & 0x80) == 0) goto done; // predictable if fields are in order ret |= (*p & 0x7f) << 7; if ((*(p++) & 0x80) == 0) goto done; // likely slow: u64 = upb_decode_varint_slow(d); if (u64 > UINT32_MAX) upb_decoder_abortjmp(d, "Unterminated 32-bit varint"); ret = (uint32_t)u64; p = d->ptr; // Turn the next line into a nop. done: upb_decoder_advance(d, p - d->ptr); return ret; } // Returns true on success or false if we've hit a valid EOF. FORCEINLINE bool upb_trydecode_varint32(upb_decoder *d, uint32_t *val) { if (upb_decoder_bufleft(d) == 0 && upb_dispatcher_islegalend(&d->dispatcher) && !upb_trypullbuf(d)) { return false; } *val = upb_decode_varint32(d); return true; } FORCEINLINE uint64_t upb_decode_varint(upb_decoder *d) { if (upb_decoder_bufleft(d) >= 10) { // Fast case. upb_decoderet r = upb_vdecode_fast(d->ptr); if (r.p == NULL) upb_decoder_abortjmp(d, "Unterminated varint"); upb_decoder_advance(d, r.p - d->ptr); return r.val; } else if (upb_decoder_bufleft(d) > 0) { // Intermediate case -- worth it? char tmpbuf[10]; memset(tmpbuf, 0x80, 10); memcpy(tmpbuf, d->ptr, upb_decoder_bufleft(d)); upb_decoderet r = upb_vdecode_fast(tmpbuf); if (r.p != NULL) { upb_decoder_advance(d, r.p - tmpbuf); return r.val; } } // Slow case -- varint spans buffer seam. return upb_decode_varint_slow(d); } FORCEINLINE void upb_decode_fixed(upb_decoder *d, char *buf, size_t bytes) { if (upb_decoder_bufleft(d) >= bytes) { // Fast case. memcpy(buf, d->ptr, bytes); upb_decoder_advance(d, bytes); } else { // Slow case. size_t read = 0; while (1) { size_t avail = UPB_MIN(upb_decoder_bufleft(d), bytes - read); memcpy(buf + read, d->ptr, avail); upb_decoder_advance(d, avail); read += avail; if (read == bytes) break; upb_pullbuf(d); } } } FORCEINLINE uint32_t upb_decode_fixed32(upb_decoder *d) { uint32_t u32; upb_decode_fixed(d, (char*)&u32, sizeof(uint32_t)); return u32; // TODO: proper byte swapping for big-endian machines. } FORCEINLINE uint64_t upb_decode_fixed64(upb_decoder *d) { uint64_t u64; upb_decode_fixed(d, (char*)&u64, sizeof(uint64_t)); return u64; // TODO: proper byte swapping for big-endian machines. } INLINE upb_byteregion *upb_decode_string(upb_decoder *d) { uint32_t strlen = upb_decode_varint32(d); uint64_t offset = upb_decoder_offset(d); if (offset + strlen > upb_byteregion_endofs(d->input)) upb_decoder_abortjmp(d, "Unexpected EOF"); upb_byteregion_reset(&d->str_byteregion, d->input, offset, strlen); // Could make it an option on the callback whether we fetchall() first or not. if (upb_byteregion_fetchall(&d->str_byteregion) != UPB_BYTE_OK) upb_decoder_abortjmp(d, "Couldn't fetchall() on string."); upb_decoder_discardto(d, offset + strlen); return &d->str_byteregion; } INLINE void upb_push_msg(upb_decoder *d, upb_fhandlers *f, uint64_t end) { upb_dispatch_startsubmsg(&d->dispatcher, f)->end_ofs = end; upb_decoder_setmsgend(d); } /* Decoding of .proto types ***************************************************/ // Technically, we are losing data if we see a 32-bit varint that is not // properly sign-extended. We could detect this and error about the data loss, // but proto2 does not do this, so we pass. #define T(type, wt, valtype, convfunc) \ INLINE void upb_decode_ ## type(upb_decoder *d, upb_fhandlers *f) { \ upb_value val; \ upb_value_set ## valtype(&val, (convfunc)(upb_decode_ ## wt(d))); \ upb_dispatch_value(&d->dispatcher, f, val); \ } \ static double upb_asdouble(uint64_t n) { double d; memcpy(&d, &n, 8); return d; } static float upb_asfloat(uint32_t n) { float f; memcpy(&f, &n, 4); return f; } T(INT32, varint, int32, int32_t) T(INT64, varint, int64, int64_t) T(UINT32, varint, uint32, uint32_t) T(UINT64, varint, uint64, uint64_t) T(FIXED32, fixed32, uint32, uint32_t) T(FIXED64, fixed64, uint64, uint64_t) T(SFIXED32, fixed32, int32, int32_t) T(SFIXED64, fixed64, int64, int64_t) T(BOOL, varint, bool, bool) T(ENUM, varint, int32, int32_t) T(DOUBLE, fixed64, double, upb_asdouble) T(FLOAT, fixed32, float, upb_asfloat) T(SINT32, varint, int32, upb_zzdec_32) T(SINT64, varint, int64, upb_zzdec_64) T(STRING, string, byteregion, upb_byteregion*) #undef T static void upb_decode_GROUP(upb_decoder *d, upb_fhandlers *f) { upb_push_msg(d, f, UPB_NONDELIMITED); } static void upb_endgroup(upb_decoder *d, upb_fhandlers *f) { (void)f; upb_dispatch_endsubmsg(&d->dispatcher); upb_decoder_setmsgend(d); } static void upb_decode_MESSAGE(upb_decoder *d, upb_fhandlers *f) { uint32_t len = upb_decode_varint32(d); upb_push_msg(d, f, upb_decoder_offset(d) + len); } #define F(type) &upb_decode_ ## type static void *upb_decoderplan_fptrs[] = { &upb_endgroup, F(DOUBLE), F(FLOAT), F(INT64), F(UINT64), F(INT32), F(FIXED64), F(FIXED32), F(BOOL), F(STRING), F(GROUP), F(MESSAGE), F(STRING), F(UINT32), F(ENUM), F(SFIXED32), F(SFIXED64), F(SINT32), F(SINT64)}; #undef F /* The main decoding loop *****************************************************/ static void upb_decoder_checkdelim(upb_decoder *d) { // TODO: This doesn't work for the case that no buffer is currently loaded // (ie. d->buf == NULL) because delim_end is NULL even if we are at // end-of-delim. Need to add a test that exercises this by putting a buffer // seam in the middle of the final delimited value in a proto that we skip // for some reason (like because it's unknown and we have no unknown field // handler). while (d->delim_end != NULL && d->ptr >= d->delim_end) { if (d->ptr > d->delim_end) upb_decoder_abortjmp(d, "Bad submessage end"); if (d->dispatcher.top->is_sequence) { upb_dispatch_endseq(&d->dispatcher); } else { upb_dispatch_endsubmsg(&d->dispatcher); } upb_decoder_setmsgend(d); } } INLINE upb_fhandlers *upb_decode_tag(upb_decoder *d) { while (1) { uint32_t tag; if (!upb_trydecode_varint32(d, &tag)) return NULL; uint8_t wire_type = tag & 0x7; uint32_t fieldnum = tag >> 3; upb_itofhandlers_ent *e = upb_inttable_fastlookup( d->dispatch_table, fieldnum, sizeof(upb_itofhandlers_ent)); upb_fhandlers *f = e ? e->f : NULL; if (f) { // Wire type check. if (wire_type == upb_types[f->type].native_wire_type || (wire_type == UPB_WIRE_TYPE_DELIMITED && upb_types[f->type].is_numeric)) { // Wire type is ok. } else { f = NULL; } } // There are no explicit "startseq" or "endseq" markers in protobuf // streams, so we have to infer them by noticing when a repeated field // starts or ends. upb_dispatcher_frame *fr = d->dispatcher.top; if (fr->is_sequence && fr->f != f) { upb_dispatch_endseq(&d->dispatcher); upb_decoder_setmsgend(d); } if (f && f->repeated && (!fr->is_sequence || fr->f != f)) { uint64_t old_end = d->dispatcher.top->end_ofs; upb_dispatcher_frame *fr = upb_dispatch_startseq(&d->dispatcher, f); if (wire_type != UPB_WIRE_TYPE_DELIMITED || upb_issubmsgtype(f->type) || upb_isstringtype(f->type)) { // Non-packed field -- this tag pertains to only a single message. fr->end_ofs = old_end; } else { // Packed primitive field. uint32_t len = upb_decode_varint32(d); fr->end_ofs = upb_decoder_offset(d) + len; fr->is_packed = true; } upb_decoder_setmsgend(d); } if (f) return f; // Unknown field. if (fieldnum == 0 || fieldnum > UPB_MAX_FIELDNUMBER) upb_decoder_abortjmp(d, "Invalid field number"); switch (wire_type) { case UPB_WIRE_TYPE_VARINT: upb_decode_varint(d); break; case UPB_WIRE_TYPE_32BIT: upb_decoder_discard(d, 4); break; case UPB_WIRE_TYPE_64BIT: upb_decoder_discard(d, 8); break; case UPB_WIRE_TYPE_DELIMITED: upb_decoder_discard(d, upb_decode_varint32(d)); break; case UPB_WIRE_TYPE_START_GROUP: upb_decoder_abortjmp(d, "Can't handle unknown groups yet"); case UPB_WIRE_TYPE_END_GROUP: upb_decoder_abortjmp(d, "Unmatched ENDGROUP tag"); default: upb_decoder_abortjmp(d, "Invalid wire type"); } // TODO: deliver to unknown field callback. upb_decoder_checkpoint(d); upb_decoder_checkdelim(d); } } upb_success_t upb_decoder_decode(upb_decoder *d) { assert(d->input); if (sigsetjmp(d->exitjmp, 0)) { assert(!upb_ok(&d->status)); return UPB_ERROR; } upb_dispatch_startmsg(&d->dispatcher); // Prime the buf so we can hit the JIT immediately. upb_trypullbuf(d); upb_fhandlers *f = d->dispatcher.top->f; while(1) { upb_decoder_checkdelim(d); #ifdef UPB_USE_JIT_X64 upb_decoder_enterjit(d); upb_decoder_checkpoint(d); #endif if (!d->top_is_packed) f = upb_decode_tag(d); if (!f) { // Sucessful EOF. We may need to dispatch a top-level implicit frame. if (d->dispatcher.top == d->dispatcher.stack + 1) { assert(d->dispatcher.top->is_sequence); upb_dispatch_endseq(&d->dispatcher); } return UPB_OK; } f->decode(d, f); upb_decoder_checkpoint(d); } } void upb_decoder_init(upb_decoder *d) { upb_status_init(&d->status); upb_dispatcher_init(&d->dispatcher, &d->status, &upb_decoder_exitjmp2, d); d->plan = NULL; d->input = NULL; } void upb_decoder_resetplan(upb_decoder *d, upb_decoderplan *p, int msg_offset) { assert(msg_offset >= 0); assert(msg_offset < p->handlers->msgs_len); d->plan = p; d->msg_offset = msg_offset; d->input = NULL; } void upb_decoder_resetinput(upb_decoder *d, upb_byteregion *input, void *closure) { assert(d->plan); assert(upb_byteregion_discardofs(input) == upb_byteregion_startofs(input)); upb_dispatcher_frame *f = upb_dispatcher_reset(&d->dispatcher, closure, d->plan->handlers->msgs[0]); upb_status_clear(&d->status); f->end_ofs = UPB_NONDELIMITED; d->input = input; d->str_byteregion.bytesrc = input->bytesrc; // Protect against assert in skiptonewbuf(). d->bufstart_ofs = 0; d->ptr = NULL; d->buf = NULL; upb_decoder_skiptonewbuf(d, upb_byteregion_startofs(input)); } void upb_decoder_uninit(upb_decoder *d) { upb_dispatcher_uninit(&d->dispatcher); upb_status_uninit(&d->status); }