/* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * A parser that uses the Ragel State Machine Compiler to generate * the finite automata. * * Ragel only natively handles regular languages, but we can manually * program it a bit to handle context-free languages like JSON, by using * the "fcall" and "fret" constructs. * * This parser can handle the basics, but needs several things to be fleshed * out: * * - handling of unicode escape sequences (including high surrogate pairs). * - properly check and report errors for unknown fields, stack overflow, * improper array nesting (or lack of nesting). * - handling of base64 sequences with padding characters. * - handling of push-back (non-success returns from sink functions). * - handling of keys/escape-sequences/etc that span input buffers. */ #include #include #include #include #include #include #include "upb/json/parser.h" #define PARSER_CHECK_RETURN(x) if (!(x)) return false static upb_selector_t getsel_for_handlertype(upb_json_parser *p, upb_handlertype_t type) { upb_selector_t sel; bool ok = upb_handlers_getselector(p->top->f, type, &sel); UPB_ASSERT_VAR(ok, ok); return sel; } static upb_selector_t parser_getsel(upb_json_parser *p) { return getsel_for_handlertype( p, upb_handlers_getprimitivehandlertype(p->top->f)); } static void start_member(upb_json_parser *p) { assert(!p->top->f); assert(!p->accumulated); p->accumulated_len = 0; } static bool end_member(upb_json_parser *p) { // TODO(haberman): support keys that span buffers or have escape sequences. assert(!p->top->f); assert(p->accumulated); const upb_fielddef *f = upb_msgdef_ntof(p->top->m, p->accumulated, p->accumulated_len); if (!f) { // TODO(haberman): Ignore unknown fields if requested/configured to do so. upb_status_seterrf(p->status, "No such field: %.*s\n", (int)p->accumulated_len, p->accumulated); return false; } p->top->f = f; p->accumulated = NULL; return true; } static void start_object(upb_json_parser *p) { upb_sink_startmsg(&p->top->sink); } static void end_object(upb_json_parser *p) { upb_status status; upb_sink_endmsg(&p->top->sink, &status); } static bool check_stack(upb_json_parser *p) { if ((p->top + 1) == p->limit) { upb_status_seterrmsg(p->status, "Nesting too deep"); return false; } return true; } static bool start_subobject(upb_json_parser *p) { assert(p->top->f); if (!upb_fielddef_issubmsg(p->top->f)) { upb_status_seterrf(p->status, "Object specified for non-message/group field: %s", upb_fielddef_name(p->top->f)); return false; } if (!check_stack(p)) return false; upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); inner->m = upb_fielddef_msgsubdef(p->top->f); inner->f = NULL; p->top = inner; return true; } static void end_subobject(upb_json_parser *p) { p->top--; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG); upb_sink_endsubmsg(&p->top->sink, sel); } static bool start_array(upb_json_parser *p) { assert(p->top->f); if (!upb_fielddef_isseq(p->top->f)) { upb_status_seterrf(p->status, "Array specified for non-repeated field: %s", upb_fielddef_name(p->top->f)); return false; } if (!check_stack(p)) return false; upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); upb_sink_startseq(&p->top->sink, sel, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; p->top = inner; return true; } static void end_array(upb_json_parser *p) { assert(p->top > p->stack); p->top--; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); upb_sink_endseq(&p->top->sink, sel); } static void clear_member(upb_json_parser *p) { p->top->f = NULL; } static bool parser_putbool(upb_json_parser *p, bool val) { if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) { upb_status_seterrf(p->status, "Boolean value specified for non-bool field: %s", upb_fielddef_name(p->top->f)); return false; } bool ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val); UPB_ASSERT_VAR(ok, ok); return true; } static void start_text(upb_json_parser *p, const char *ptr) { p->text_begin = ptr; } static const signed char b64table[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; // Returns the table value sign-extended to 32 bits. Knowing that the upper // bits will be 1 for unrecognized characters makes it easier to check for // this error condition later (see below). int32_t b64lookup(unsigned char ch) { return b64table[ch]; } // Returns true if the given character is not a valid base64 character or // padding. bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; } static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr, size_t len) { const char *limit = ptr + len; for (; ptr < limit; ptr += 4) { if (limit - ptr < 4) { upb_status_seterrf(p->status, "Base64 input for bytes field not a multiple of 4: %s", upb_fielddef_name(p->top->f)); return false; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6 | b64lookup(ptr[3]); // Test the upper bit; returns true if any of the characters returned -1. if (val & 0x80000000) { goto otherchar; } char output[3]; output[0] = val >> 16; output[1] = (val >> 8) & 0xff; output[2] = val & 0xff; upb_sink_putstring(&p->top->sink, sel, output, 3, NULL); } return true; otherchar: if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) || nonbase64(ptr[3]) ) { upb_status_seterrf(p->status, "Non-base64 characters in bytes field: %s", upb_fielddef_name(p->top->f)); return false; } if (ptr[2] == '=') { // Last group contains only two input bytes, one output byte. if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') { goto badpadding; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12; assert(!(val & 0x80000000)); char output = val >> 16; upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL); return true; } else { // Last group contains only three input bytes, two output bytes. if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') { goto badpadding; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6; char output[2]; output[0] = val >> 16; output[1] = (val >> 8) & 0xff; upb_sink_putstring(&p->top->sink, sel, output, 2, NULL); return true; } badpadding: upb_status_seterrf(p->status, "Incorrect base64 padding for field: %s (%.*s)", upb_fielddef_name(p->top->f), 4, ptr); return false; } static bool end_text(upb_json_parser *p, const char *ptr, bool is_num) { assert(!p->accumulated); // TODO: handle this case. p->accumulated = p->text_begin; p->accumulated_len = ptr - p->text_begin; if (p->top->f && upb_fielddef_isstring(p->top->f)) { // This is a string field (as opposed to a member name). upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); if (upb_fielddef_type(p->top->f) == UPB_TYPE_BYTES) { PARSER_CHECK_RETURN(base64_push(p, sel, p->accumulated, p->accumulated_len)); } else { upb_sink_putstring(&p->top->sink, sel, p->accumulated, p->accumulated_len, NULL); } p->accumulated = NULL; } else if (p->top->f && upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM && !is_num) { // Enum case: resolve enum symbolic name to integer value. const upb_enumdef *enumdef = (const upb_enumdef*)upb_fielddef_subdef(p->top->f); int32_t int_val = 0; if (upb_enumdef_ntoi(enumdef, p->accumulated, p->accumulated_len, &int_val)) { upb_selector_t sel = parser_getsel(p); upb_sink_putint32(&p->top->sink, sel, int_val); } else { upb_status_seterrmsg(p->status, "Enum value name unknown"); return false; } p->accumulated = NULL; } return true; } static bool start_stringval(upb_json_parser *p) { assert(p->top->f); if (upb_fielddef_isstring(p->top->f)) { if (!check_stack(p)) return false; // Start a new parser frame: parser frames correspond one-to-one with // handler frames, and string events occur in a sub-frame. upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; p->top = inner; return true; } else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) { // Do nothing -- symbolic enum names in quotes remain in the // current parser frame. return true; } else { upb_status_seterrf(p->status, "String specified for non-string/non-enum field: %s", upb_fielddef_name(p->top->f)); return false; } } static void end_stringval(upb_json_parser *p) { if (upb_fielddef_isstring(p->top->f)) { upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(&p->top->sink, sel); p->top--; } } static void start_number(upb_json_parser *p, const char *ptr) { start_text(p, ptr); assert(p->accumulated == NULL); } static void end_number(upb_json_parser *p, const char *ptr) { end_text(p, ptr, true); const char *myend = p->accumulated + p->accumulated_len; char *end; switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_ENUM: case UPB_TYPE_INT32: { long val = strtol(p->accumulated, &end, 0); if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend) assert(false); else upb_sink_putint32(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_INT64: { long long val = strtoll(p->accumulated, &end, 0); if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend) assert(false); else upb_sink_putint64(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_UINT32: { unsigned long val = strtoul(p->accumulated, &end, 0); if (val > UINT32_MAX || errno == ERANGE || end != myend) assert(false); else upb_sink_putuint32(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_UINT64: { unsigned long long val = strtoull(p->accumulated, &end, 0); if (val > UINT64_MAX || errno == ERANGE || end != myend) assert(false); else upb_sink_putuint64(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_DOUBLE: { double val = strtod(p->accumulated, &end); if (errno == ERANGE || end != myend) assert(false); else upb_sink_putdouble(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_FLOAT: { float val = strtof(p->accumulated, &end); if (errno == ERANGE || end != myend) assert(false); else upb_sink_putfloat(&p->top->sink, parser_getsel(p), val); break; } default: assert(false); } p->accumulated = NULL; } static char escape_char(char in) { switch (in) { case 'r': return '\r'; case 't': return '\t'; case 'n': return '\n'; case 'f': return '\f'; case 'b': return '\b'; case '/': return '/'; case '"': return '"'; case '\\': return '\\'; default: assert(0); return 'x'; } } static void escape(upb_json_parser *p, const char *ptr) { char ch = escape_char(*ptr); upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); upb_sink_putstring(&p->top->sink, sel, &ch, 1, NULL); } static uint8_t hexdigit(char ch) { if (ch >= '0' && ch <= '9') { return ch - '0'; } else if (ch >= 'a' && ch <= 'f') { return ch - 'a' + 10; } else { assert(ch >= 'A' && ch <= 'F'); return ch - 'A' + 10; } } static void start_hex(upb_json_parser *p, const char *ptr) { start_text(p, ptr); } static void hex(upb_json_parser *p, const char *end) { const char *start = p->text_begin; UPB_ASSERT_VAR(end, end - start == 4); uint16_t codepoint = (hexdigit(start[0]) << 12) | (hexdigit(start[1]) << 8) | (hexdigit(start[2]) << 4) | hexdigit(start[3]); // emit the codepoint as UTF-8. char utf8[3]; // support \u0000 -- \uFFFF -- need only three bytes. int length = 0; if (codepoint <= 0x7F) { utf8[0] = codepoint; length = 1; } else if (codepoint <= 0x07FF) { utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x1F) | 0xC0; length = 2; } else /* codepoint <= 0xFFFF */ { utf8[2] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x0F) | 0xE0; length = 3; } // TODO(haberman): Handle high surrogates: if codepoint is a high surrogate // we have to wait for the next escape to get the full code point). upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); upb_sink_putstring(&p->top->sink, sel, utf8, length, NULL); } #define CHECK_RETURN_TOP(x) if (!(x)) goto error // What follows is the Ragel parser itself. The language is specified in Ragel // and the actions call our C functions above. %%{ machine json; ws = space*; integer = "0" | /[1-9]/ /[0-9]/*; decimal = "." /[0-9]/+; exponent = /[eE]/ /[+\-]/? /[0-9]/+; number_machine := ("-"? integer decimal? exponent?) <: any >{ fhold; fret; }; number = /[0-9\-]/ >{ fhold; fcall number_machine; }; text = /[^\\"]/+ >{ start_text(parser, p); } %{ CHECK_RETURN_TOP(end_text(parser, p, false)); } ; unicode_char = "\\u" /[0-9A-Fa-f]/{4} >{ start_hex(parser, p); } %{ hex(parser, p); } ; escape_char = "\\" /[rtbfn"\/\\]/ >{ escape(parser, p); } ; string_machine := (text | unicode_char | escape_char)** '"' @{ fret; } ; string = '"' @{ fcall string_machine; }; value2 = ^(space | "]" | "}") >{ fhold; fcall value_machine; } ; member = ws string >{ start_member(parser); } %{ CHECK_RETURN_TOP(end_member(parser)); } ws ":" ws value2 %{ clear_member(parser); } ws; object = "{" ws >{ start_object(parser); } (member ("," member)*)? "}" >{ end_object(parser); } ; element = ws value2 ws; array = "[" >{ CHECK_RETURN_TOP(start_array(parser)); } ws (element ("," element)*)? "]" >{ end_array(parser); } ; value = number >{ start_number(parser, p); } %{ end_number(parser, p); } | string >{ CHECK_RETURN_TOP(start_stringval(parser)); } %{ end_stringval(parser); } | "true" %{ CHECK_RETURN_TOP(parser_putbool(parser, true)); } | "false" %{ CHECK_RETURN_TOP(parser_putbool(parser, false)); } | "null" %{ /* null value */ } | object >{ CHECK_RETURN_TOP(start_subobject(parser)); } %{ end_subobject(parser); } | array; value_machine := value <: any >{ fhold; fret; } ; main := ws object ws; }%% %% write data; size_t parse(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_json_parser *parser = closure; // Variables used by Ragel's generated code. int cs = parser->current_state; int *stack = parser->parser_stack; int top = parser->parser_top; const char *p = buf; const char *pe = buf + size; %% write exec; if (p != pe) { upb_status_seterrf(parser->status, "Parse error at %s\n", p); } error: // Save parsing state back to parser. parser->current_state = cs; parser->parser_top = top; return p - buf; } bool end(void *closure, const void *hd) { UPB_UNUSED(closure); UPB_UNUSED(hd); return true; } void upb_json_parser_init(upb_json_parser *p, upb_status *status) { p->limit = p->stack + UPB_JSON_MAX_DEPTH; upb_byteshandler_init(&p->input_handler_); upb_byteshandler_setstring(&p->input_handler_, parse, NULL); upb_byteshandler_setendstr(&p->input_handler_, end, NULL); upb_bytessink_reset(&p->input_, &p->input_handler_, p); p->status = status; } void upb_json_parser_uninit(upb_json_parser *p) { upb_byteshandler_uninit(&p->input_handler_); } void upb_json_parser_reset(upb_json_parser *p) { p->top = p->stack; p->top->f = NULL; int cs; int top; // Emit Ragel initialization of the parser. %% write init; p->current_state = cs; p->parser_top = top; p->text_begin = NULL; p->accumulated = NULL; p->accumulated_len = 0; } void upb_json_parser_resetoutput(upb_json_parser *p, upb_sink *sink) { upb_json_parser_reset(p); upb_sink_reset(&p->top->sink, sink->handlers, sink->closure); p->top->m = upb_handlers_msgdef(sink->handlers); p->accumulated = NULL; } upb_bytessink *upb_json_parser_input(upb_json_parser *p) { return &p->input_; }