/* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * A parser that uses the Ragel State Machine Compiler to generate * the finite automata. * * Ragel only natively handles regular languages, but we can manually * program it a bit to handle context-free languages like JSON, by using * the "fcall" and "fret" constructs. * * This parser can handle the basics, but needs several things to be fleshed * out: * * - handling of unicode escape sequences (including high surrogate pairs). * - properly check and report errors for unknown fields, stack overflow, * improper array nesting (or lack of nesting). * - handling of base64 sequences with padding characters. * - handling of push-back (non-success returns from sink functions). * - handling of keys/escape-sequences/etc that span input buffers. */ #include #include #include #include #include #include #include "upb/json/parser.h" #define PARSER_CHECK_RETURN(x) if (!(x)) return false // Used to signal that a capture has been suspended. static char suspend_capture; static upb_selector_t getsel_for_handlertype(upb_json_parser *p, upb_handlertype_t type) { upb_selector_t sel; bool ok = upb_handlers_getselector(p->top->f, type, &sel); UPB_ASSERT_VAR(ok, ok); return sel; } static upb_selector_t parser_getsel(upb_json_parser *p) { return getsel_for_handlertype( p, upb_handlers_getprimitivehandlertype(p->top->f)); } static bool check_stack(upb_json_parser *p) { if ((p->top + 1) == p->limit) { upb_status_seterrmsg(p->status, "Nesting too deep"); return false; } return true; } // There are GCC/Clang built-ins for overflow checking which we could start // using if there was any performance benefit to it. static bool checked_add(size_t a, size_t b, size_t *c) { if (SIZE_MAX - a < b) return false; *c = a + b; return true; } static size_t saturating_multiply(size_t a, size_t b) { // size_t is unsigned, so this is defined behavior even on overflow. size_t ret = a * b; if (b != 0 && ret / b != a) { ret = SIZE_MAX; } return ret; } /* Base64 decoding ************************************************************/ // TODO(haberman): make this streaming. static const signed char b64table[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; // Returns the table value sign-extended to 32 bits. Knowing that the upper // bits will be 1 for unrecognized characters makes it easier to check for // this error condition later (see below). int32_t b64lookup(unsigned char ch) { return b64table[ch]; } // Returns true if the given character is not a valid base64 character or // padding. bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; } static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr, size_t len) { const char *limit = ptr + len; for (; ptr < limit; ptr += 4) { if (limit - ptr < 4) { upb_status_seterrf(p->status, "Base64 input for bytes field not a multiple of 4: %s", upb_fielddef_name(p->top->f)); return false; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6 | b64lookup(ptr[3]); // Test the upper bit; returns true if any of the characters returned -1. if (val & 0x80000000) { goto otherchar; } char output[3]; output[0] = val >> 16; output[1] = (val >> 8) & 0xff; output[2] = val & 0xff; upb_sink_putstring(&p->top->sink, sel, output, 3, NULL); } return true; otherchar: if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) || nonbase64(ptr[3]) ) { upb_status_seterrf(p->status, "Non-base64 characters in bytes field: %s", upb_fielddef_name(p->top->f)); return false; } if (ptr[2] == '=') { // Last group contains only two input bytes, one output byte. if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') { goto badpadding; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12; assert(!(val & 0x80000000)); char output = val >> 16; upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL); return true; } else { // Last group contains only three input bytes, two output bytes. if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') { goto badpadding; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6; char output[2]; output[0] = val >> 16; output[1] = (val >> 8) & 0xff; upb_sink_putstring(&p->top->sink, sel, output, 2, NULL); return true; } badpadding: upb_status_seterrf(p->status, "Incorrect base64 padding for field: %s (%.*s)", upb_fielddef_name(p->top->f), 4, ptr); return false; } /* Accumulate buffer **********************************************************/ // Functionality for accumulating a buffer. // // Some parts of the parser need an entire value as a contiguous string. For // example, to look up a member name in a hash table, or to turn a string into // a number, the relevant library routines need the input string to be in // contiguous memory, even if the value spanned two or more buffers in the // input. These routines handle that. // // In the common case we can just point to the input buffer to get this // contiguous string and avoid any actual copy. So we optimistically begin // this way. But there are a few cases where we must instead copy into a // separate buffer: // // 1. The string was not contiguous in the input (it spanned buffers). // // 2. The string included escape sequences that need to be interpreted to get // the true value in a contiguous buffer. static void assert_accumulate_empty(upb_json_parser *p) { UPB_UNUSED(p); assert(p->accumulated == NULL); assert(p->accumulated_len == 0); } static void accumulate_clear(upb_json_parser *p) { p->accumulated = NULL; p->accumulated_len = 0; } // Used internally by accumulate_append(). static bool accumulate_realloc(upb_json_parser *p, size_t need) { size_t new_size = UPB_MAX(p->accumulate_buf_size, 128); while (new_size < need) { new_size = saturating_multiply(new_size, 2); } void *mem = realloc(p->accumulate_buf, new_size); if (!mem) { upb_status_seterrmsg(p->status, "Out of memory allocating buffer."); return false; } p->accumulate_buf = mem; p->accumulate_buf_size = new_size; return true; } // Logically appends the given data to the append buffer. // If "can_alias" is true, we will try to avoid actually copying, but the buffer // must be valid until the next accumulate_append() call (if any). static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len, bool can_alias) { if (!p->accumulated && can_alias) { p->accumulated = buf; p->accumulated_len = len; return true; } size_t need; if (!checked_add(p->accumulated_len, len, &need)) { upb_status_seterrmsg(p->status, "Integer overflow."); return false; } if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) { return false; } if (p->accumulated != p->accumulate_buf) { memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len); p->accumulated = p->accumulate_buf; } memcpy(p->accumulate_buf + p->accumulated_len, buf, len); p->accumulated_len += len; return true; } // Returns a pointer to the data accumulated since the last accumulate_clear() // call, and writes the length to *len. This with point either to the input // buffer or a temporary accumulate buffer. static const char *accumulate_getptr(upb_json_parser *p, size_t *len) { assert(p->accumulated); *len = p->accumulated_len; return p->accumulated; } /* Mult-part text data ********************************************************/ // When we have text data in the input, it can often come in multiple segments. // For example, there may be some raw string data followed by an escape // sequence. The two segments are processed with different logic. Also buffer // seams in the input can cause multiple segments. // // As we see segments, there are two main cases for how we want to process them: // // 1. we want to push the captured input directly to string handlers. // // 2. we need to accumulate all the parts into a contiguous buffer for further // processing (field name lookup, string->number conversion, etc). // This is the set of states for p->multipart_state. enum { // We are not currently processing multipart data. MULTIPART_INACTIVE = 0, // We are processing multipart data by accumulating it into a contiguous // buffer. MULTIPART_ACCUMULATE = 1, // We are processing multipart data by pushing each part directly to the // current string handlers. MULTIPART_PUSHEAGERLY = 2 }; // Start a multi-part text value where we accumulate the data for processing at // the end. static void multipart_startaccum(upb_json_parser *p) { assert_accumulate_empty(p); assert(p->multipart_state == MULTIPART_INACTIVE); p->multipart_state = MULTIPART_ACCUMULATE; } // Start a multi-part text value where we immediately push text data to a string // value with the given selector. static void multipart_start(upb_json_parser *p, upb_selector_t sel) { assert_accumulate_empty(p); assert(p->multipart_state == MULTIPART_INACTIVE); p->multipart_state = MULTIPART_PUSHEAGERLY; p->string_selector = sel; } static bool multipart_text(upb_json_parser *p, const char *buf, size_t len, bool can_alias) { switch (p->multipart_state) { case MULTIPART_INACTIVE: upb_status_seterrmsg( p->status, "Internal error: unexpected state MULTIPART_INACTIVE"); return false; case MULTIPART_ACCUMULATE: if (!accumulate_append(p, buf, len, can_alias)) { return false; } break; case MULTIPART_PUSHEAGERLY: { const upb_bufhandle *handle = can_alias ? p->handle : NULL; upb_sink_putstring(&p->top->sink, p->string_selector, buf, len, handle); break; } } return true; } // Note: this invalidates the accumulate buffer! Call only after reading its // contents. static void multipart_end(upb_json_parser *p) { assert(p->multipart_state != MULTIPART_INACTIVE); p->multipart_state = MULTIPART_INACTIVE; accumulate_clear(p); } /* Input capture **************************************************************/ // Functionality for capturing a region of the input as text. Gracefully // handles the case where a buffer seam occurs in the middle of the captured // region. static void capture_begin(upb_json_parser *p, const char *ptr) { assert(p->multipart_state != MULTIPART_INACTIVE); assert(p->capture == NULL); p->capture = ptr; } static bool capture_end(upb_json_parser *p, const char *ptr) { assert(p->capture); if (multipart_text(p, p->capture, ptr - p->capture, true)) { p->capture = NULL; return true; } else { return false; } } // This is called at the end of each input buffer (ie. when we have hit a // buffer seam). If we are in the middle of capturing the input, this // processes the unprocessed capture region. static void capture_suspend(upb_json_parser *p, const char **ptr) { if (!p->capture) return; if (multipart_text(p, p->capture, *ptr - p->capture, false)) { // We use this as a signal that we were in the middle of capturing, and // that capturing should resume at the beginning of the next buffer. // // We can't use *ptr here, because we have no guarantee that this pointer // will be valid when we resume (if the underlying memory is freed, then // using the pointer at all, even to compare to NULL, is likely undefined // behavior). p->capture = &suspend_capture; } else { // Need to back up the pointer to the beginning of the capture, since // we were not able to actually preserve it. *ptr = p->capture; } } static void capture_resume(upb_json_parser *p, const char *ptr) { if (p->capture) { assert(p->capture == &suspend_capture); p->capture = ptr; } } /* Callbacks from the parser **************************************************/ // These are the functions called directly from the parser itself. // We define these in the same order as their declarations in the parser. static char escape_char(char in) { switch (in) { case 'r': return '\r'; case 't': return '\t'; case 'n': return '\n'; case 'f': return '\f'; case 'b': return '\b'; case '/': return '/'; case '"': return '"'; case '\\': return '\\'; default: assert(0); return 'x'; } } static bool escape(upb_json_parser *p, const char *ptr) { char ch = escape_char(*ptr); return multipart_text(p, &ch, 1, false); } static void start_hex(upb_json_parser *p) { p->digit = 0; } static void hexdigit(upb_json_parser *p, const char *ptr) { char ch = *ptr; p->digit <<= 4; if (ch >= '0' && ch <= '9') { p->digit += (ch - '0'); } else if (ch >= 'a' && ch <= 'f') { p->digit += ((ch - 'a') + 10); } else { assert(ch >= 'A' && ch <= 'F'); p->digit += ((ch - 'A') + 10); } } static bool end_hex(upb_json_parser *p) { uint32_t codepoint = p->digit; // emit the codepoint as UTF-8. char utf8[3]; // support \u0000 -- \uFFFF -- need only three bytes. int length = 0; if (codepoint <= 0x7F) { utf8[0] = codepoint; length = 1; } else if (codepoint <= 0x07FF) { utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x1F) | 0xC0; length = 2; } else /* codepoint <= 0xFFFF */ { utf8[2] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x0F) | 0xE0; length = 3; } // TODO(haberman): Handle high surrogates: if codepoint is a high surrogate // we have to wait for the next escape to get the full code point). return multipart_text(p, utf8, length, false); } static void start_text(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_text(upb_json_parser *p, const char *ptr) { return capture_end(p, ptr); } static void start_number(upb_json_parser *p, const char *ptr) { multipart_startaccum(p); capture_begin(p, ptr); } static bool end_number(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } // strtol() and friends unfortunately do not support specifying the length of // the input string, so we need to force a copy into a NULL-terminated buffer. if (!multipart_text(p, "\0", 1, false)) { return false; } size_t len; const char *buf = accumulate_getptr(p, &len); const char *myend = buf + len - 1; // One for NULL. char *end; switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_ENUM: case UPB_TYPE_INT32: { long val = strtol(p->accumulated, &end, 0); if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend) goto err; else upb_sink_putint32(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_INT64: { long long val = strtoll(p->accumulated, &end, 0); if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend) goto err; else upb_sink_putint64(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_UINT32: { unsigned long val = strtoul(p->accumulated, &end, 0); if (val > UINT32_MAX || errno == ERANGE || end != myend) goto err; else upb_sink_putuint32(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_UINT64: { unsigned long long val = strtoull(p->accumulated, &end, 0); if (val > UINT64_MAX || errno == ERANGE || end != myend) goto err; else upb_sink_putuint64(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_DOUBLE: { double val = strtod(p->accumulated, &end); if (errno == ERANGE || end != myend) goto err; else upb_sink_putdouble(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_FLOAT: { float val = strtof(p->accumulated, &end); if (errno == ERANGE || end != myend) goto err; else upb_sink_putfloat(&p->top->sink, parser_getsel(p), val); break; } default: assert(false); } multipart_end(p); return true; err: upb_status_seterrf(p->status, "error parsing number: %s", buf); multipart_end(p); return false; } static bool parser_putbool(upb_json_parser *p, bool val) { if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) { upb_status_seterrf(p->status, "Boolean value specified for non-bool field: %s", upb_fielddef_name(p->top->f)); return false; } bool ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val); UPB_ASSERT_VAR(ok, ok); return true; } static bool start_stringval(upb_json_parser *p) { assert(p->top->f); if (upb_fielddef_isstring(p->top->f)) { if (!check_stack(p)) return false; // Start a new parser frame: parser frames correspond one-to-one with // handler frames, and string events occur in a sub-frame. upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; p->top = inner; if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) { // For STRING fields we push data directly to the handlers as it is // parsed. We don't do this yet for BYTES fields, because our base64 // decoder is not streaming. // // TODO(haberman): make base64 decoding streaming also. multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING)); return true; } else { multipart_startaccum(p); return true; } } else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) { // No need to push a frame -- symbolic enum names in quotes remain in the // current parser frame. // // Enum string values must accumulate so we can look up the value in a table // once it is complete. multipart_startaccum(p); return true; } else { upb_status_seterrf(p->status, "String specified for non-string/non-enum field: %s", upb_fielddef_name(p->top->f)); return false; } } static bool end_stringval(upb_json_parser *p) { bool ok = true; switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_BYTES: if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING), p->accumulated, p->accumulated_len)) { return false; } // Fall through. case UPB_TYPE_STRING: { upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(&p->top->sink, sel); p->top--; break; } case UPB_TYPE_ENUM: { // Resolve enum symbolic name to integer value. const upb_enumdef *enumdef = (const upb_enumdef*)upb_fielddef_subdef(p->top->f); size_t len; const char *buf = accumulate_getptr(p, &len); int32_t int_val = 0; ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val); if (ok) { upb_selector_t sel = parser_getsel(p); upb_sink_putint32(&p->top->sink, sel, int_val); } else { upb_status_seterrf(p->status, "Enum value unknown: '%.*s'", len, buf); } break; } default: assert(false); upb_status_seterrmsg(p->status, "Internal error in JSON decoder"); ok = false; break; } multipart_end(p); return ok; } static void start_member(upb_json_parser *p) { assert(!p->top->f); multipart_startaccum(p); } static bool end_member(upb_json_parser *p) { assert(!p->top->f); size_t len; const char *buf = accumulate_getptr(p, &len); const upb_fielddef *f = upb_msgdef_ntof(p->top->m, buf, len); if (!f) { // TODO(haberman): Ignore unknown fields if requested/configured to do so. upb_status_seterrf(p->status, "No such field: %.*s\n", (int)len, buf); return false; } p->top->f = f; multipart_end(p); return true; } static void clear_member(upb_json_parser *p) { p->top->f = NULL; } static bool start_subobject(upb_json_parser *p) { assert(p->top->f); if (!upb_fielddef_issubmsg(p->top->f)) { upb_status_seterrf(p->status, "Object specified for non-message/group field: %s", upb_fielddef_name(p->top->f)); return false; } if (!check_stack(p)) return false; upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); inner->m = upb_fielddef_msgsubdef(p->top->f); inner->f = NULL; p->top = inner; return true; } static void end_subobject(upb_json_parser *p) { p->top--; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG); upb_sink_endsubmsg(&p->top->sink, sel); } static bool start_array(upb_json_parser *p) { assert(p->top->f); if (!upb_fielddef_isseq(p->top->f)) { upb_status_seterrf(p->status, "Array specified for non-repeated field: %s", upb_fielddef_name(p->top->f)); return false; } if (!check_stack(p)) return false; upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); upb_sink_startseq(&p->top->sink, sel, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; p->top = inner; return true; } static void end_array(upb_json_parser *p) { assert(p->top > p->stack); p->top--; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); upb_sink_endseq(&p->top->sink, sel); } static void start_object(upb_json_parser *p) { upb_sink_startmsg(&p->top->sink); } static void end_object(upb_json_parser *p) { upb_status status; upb_sink_endmsg(&p->top->sink, &status); } #define CHECK_RETURN_TOP(x) if (!(x)) goto error /* The actual parser **********************************************************/ // What follows is the Ragel parser itself. The language is specified in Ragel // and the actions call our C functions above. // // Ragel has an extensive set of functionality, and we use only a small part of // it. There are many action types but we only use a few: // // ">" -- transition into a machine // "%" -- transition out of a machine // "@" -- transition into a final state of a machine. // // "@" transitions are tricky because a machine can transition into a final // state repeatedly. But in some cases we know this can't happen, for example // a string which is delimited by a final '"' can only transition into its // final state once, when the closing '"' is seen. %%{ machine json; ws = space*; integer = "0" | /[1-9]/ /[0-9]/*; decimal = "." /[0-9]/+; exponent = /[eE]/ /[+\-]/? /[0-9]/+; number_machine := ("-"? integer decimal? exponent?) <: any >{ fhold; fret; }; number = /[0-9\-]/ >{ fhold; fcall number_machine; }; text = /[^\\"]/+ >{ start_text(parser, p); } %{ CHECK_RETURN_TOP(end_text(parser, p)); } ; unicode_char = "\\u" /[0-9A-Fa-f]/{4} >{ start_hex(parser); } ${ hexdigit(parser, p); } %{ CHECK_RETURN_TOP(end_hex(parser)); } ; escape_char = "\\" /[rtbfn"\/\\]/ >{ CHECK_RETURN_TOP(escape(parser, p)); } ; string_machine := (text | unicode_char | escape_char)** '"' @{ fhold; fret; } ; string = '"' @{ fcall string_machine; } '"'; value2 = ^(space | "]" | "}") >{ fhold; fcall value_machine; } ; member = ws string >{ start_member(parser); } @{ CHECK_RETURN_TOP(end_member(parser)); } ws ":" ws value2 %{ clear_member(parser); } ws; object = "{" ws >{ start_object(parser); } (member ("," member)*)? "}" >{ end_object(parser); } ; element = ws value2 ws; array = "[" >{ CHECK_RETURN_TOP(start_array(parser)); } ws (element ("," element)*)? "]" >{ end_array(parser); } ; value = number >{ start_number(parser, p); } %{ CHECK_RETURN_TOP(end_number(parser, p)); } | string >{ CHECK_RETURN_TOP(start_stringval(parser)); } @{ CHECK_RETURN_TOP(end_stringval(parser)); } | "true" %{ CHECK_RETURN_TOP(parser_putbool(parser, true)); } | "false" %{ CHECK_RETURN_TOP(parser_putbool(parser, false)); } | "null" %{ /* null value */ } | object >{ CHECK_RETURN_TOP(start_subobject(parser)); } %{ end_subobject(parser); } | array; value_machine := value <: any >{ fhold; fret; } ; main := ws object ws; }%% %% write data; size_t parse(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_json_parser *parser = closure; parser->handle = handle; // Variables used by Ragel's generated code. int cs = parser->current_state; int *stack = parser->parser_stack; int top = parser->parser_top; const char *p = buf; const char *pe = buf + size; capture_resume(parser, buf); %% write exec; if (p != pe) { upb_status_seterrf(parser->status, "Parse error at %s\n", p); } else { capture_suspend(parser, &p); } error: // Save parsing state back to parser. parser->current_state = cs; parser->parser_top = top; return p - buf; } bool end(void *closure, const void *hd) { UPB_UNUSED(closure); UPB_UNUSED(hd); return true; } /* Public API *****************************************************************/ void upb_json_parser_init(upb_json_parser *p, upb_status *status) { p->limit = p->stack + UPB_JSON_MAX_DEPTH; p->accumulate_buf = NULL; p->accumulate_buf_size = 0; upb_byteshandler_init(&p->input_handler_); upb_byteshandler_setstring(&p->input_handler_, parse, NULL); upb_byteshandler_setendstr(&p->input_handler_, end, NULL); upb_bytessink_reset(&p->input_, &p->input_handler_, p); p->status = status; } void upb_json_parser_uninit(upb_json_parser *p) { upb_byteshandler_uninit(&p->input_handler_); free(p->accumulate_buf); } void upb_json_parser_reset(upb_json_parser *p) { p->top = p->stack; p->top->f = NULL; int cs; int top; // Emit Ragel initialization of the parser. %% write init; p->current_state = cs; p->parser_top = top; accumulate_clear(p); p->multipart_state = MULTIPART_INACTIVE; p->capture = NULL; } void upb_json_parser_resetoutput(upb_json_parser *p, upb_sink *sink) { upb_json_parser_reset(p); upb_sink_reset(&p->top->sink, sink->handlers, sink->closure); p->top->m = upb_handlers_msgdef(sink->handlers); p->accumulated = NULL; } upb_bytessink *upb_json_parser_input(upb_json_parser *p) { return &p->input_; }