/* ** upb::Handlers (upb_handlers) ** ** A upb_handlers is like a virtual table for a upb_msgdef. Each field of the ** message can have associated functions that will be called when we are ** parsing or visiting a stream of data. This is similar to how handlers work ** in SAX (the Simple API for XML). ** ** The handlers have no idea where the data is coming from, so a single set of ** handlers could be used with two completely different data sources (for ** example, a parser and a visitor over in-memory objects). This decoupling is ** the most important feature of upb, because it allows parsers and serializers ** to be highly reusable. ** ** This is a mixed C/C++ interface that offers a full API to both languages. ** See the top-level README for more information. */ #ifndef UPB_HANDLERS_H #define UPB_HANDLERS_H #include "upb/def.h" #include "upb/table.int.h" #include "upb/port_def.inc" #ifdef __cplusplus namespace upb { class HandlersPtr; class HandlerCache; template class Handler; template struct CanonicalType; } /* namespace upb */ #endif /* The maximum depth that the handler graph can have. This is a resource limit * for the C stack since we sometimes need to recursively traverse the graph. * Cycles are ok; the traversal will stop when it detects a cycle, but we must * hit the cycle before the maximum depth is reached. * * If having a single static limit is too inflexible, we can add another variant * of Handlers::Freeze that allows specifying this as a parameter. */ #define UPB_MAX_HANDLER_DEPTH 64 /* All the different types of handlers that can be registered. * Only needed for the advanced functions in upb::Handlers. */ typedef enum { UPB_HANDLER_INT32, UPB_HANDLER_INT64, UPB_HANDLER_UINT32, UPB_HANDLER_UINT64, UPB_HANDLER_FLOAT, UPB_HANDLER_DOUBLE, UPB_HANDLER_BOOL, UPB_HANDLER_STARTSTR, UPB_HANDLER_STRING, UPB_HANDLER_ENDSTR, UPB_HANDLER_STARTSUBMSG, UPB_HANDLER_ENDSUBMSG, UPB_HANDLER_STARTSEQ, UPB_HANDLER_ENDSEQ } upb_handlertype_t; #define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1) #define UPB_BREAK NULL /* A convenient definition for when no closure is needed. */ extern char _upb_noclosure; #define UPB_NO_CLOSURE &_upb_noclosure /* A selector refers to a specific field handler in the Handlers object * (for example: the STARTSUBMSG handler for field "field15"). */ typedef int32_t upb_selector_t; /* Static selectors for upb::Handlers. */ #define UPB_STARTMSG_SELECTOR 0 #define UPB_ENDMSG_SELECTOR 1 #define UPB_UNKNOWN_SELECTOR 2 #define UPB_STATIC_SELECTOR_COUNT 3 /* Warning: also in upb/def.c. */ /* Static selectors for upb::BytesHandler. */ #define UPB_STARTSTR_SELECTOR 0 #define UPB_STRING_SELECTOR 1 #define UPB_ENDSTR_SELECTOR 2 #ifdef __cplusplus template const void *UniquePtrForType() { static const char ch = 0; return &ch; } #endif /* upb_handlers ************************************************************/ /* Handler attributes, to be registered with the handler itself. */ typedef struct { const void *handler_data; const void *closure_type; const void *return_closure_type; bool alwaysok; } upb_handlerattr; #define UPB_HANDLERATTR_INIT {NULL, NULL, NULL, false} /* Bufhandle, data passed along with a buffer to indicate its provenance. */ typedef struct { /* The beginning of the buffer. This may be different than the pointer * passed to a StringBuf handler because the handler may receive data * that is from the middle or end of a larger buffer. */ const char *buf; /* The offset within the attached object where this buffer begins. Only * meaningful if there is an attached object. */ size_t objofs; /* The attached object (if any) and a pointer representing its type. */ const void *obj; const void *objtype; #ifdef __cplusplus template void SetAttachedObject(const T* _obj) { obj = _obj; objtype = UniquePtrForType(); } template const T *GetAttachedObject() const { return objtype == UniquePtrForType() ? static_cast(obj) : NULL; } #endif } upb_bufhandle; #define UPB_BUFHANDLE_INIT {NULL, 0, NULL, NULL} /* Handler function typedefs. */ typedef void upb_handlerfree(void *d); typedef bool upb_unknown_handlerfunc(void *c, const void *hd, const char *buf, size_t n); typedef bool upb_startmsg_handlerfunc(void *c, const void*); typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status); typedef void* upb_startfield_handlerfunc(void *c, const void *hd); typedef bool upb_endfield_handlerfunc(void *c, const void *hd); typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val); typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val); typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val); typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val); typedef bool upb_float_handlerfunc(void *c, const void *hd, float val); typedef bool upb_double_handlerfunc(void *c, const void *hd, double val); typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val); typedef void *upb_startstr_handlerfunc(void *c, const void *hd, size_t size_hint); typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf, size_t n, const upb_bufhandle* handle); struct upb_handlers; typedef struct upb_handlers upb_handlers; #ifdef __cplusplus extern "C" { #endif /* Mutating accessors. */ const upb_status *upb_handlers_status(upb_handlers *h); void upb_handlers_clearerr(upb_handlers *h); const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h); bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree); bool upb_handlers_setunknown(upb_handlers *h, upb_unknown_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f, upb_int32_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f, upb_int64_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f, upb_uint32_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f, upb_uint64_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f, upb_float_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f, upb_double_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f, upb_bool_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f, upb_startstr_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f, upb_string_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f, upb_startfield_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f, upb_startfield_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, const upb_handlerattr *attr); bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, const upb_handlerattr *attr); /* Read-only accessors. */ const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, const upb_fielddef *f); const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, upb_selector_t sel); upb_func *upb_handlers_gethandler(const upb_handlers *h, upb_selector_t s, const void **handler_data); bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s, upb_handlerattr *attr); /* "Static" methods */ upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f); bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, upb_selector_t *s); UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) { return start + 1; } #ifdef __cplusplus } /* extern "C" */ namespace upb { typedef upb_handlers Handlers; } /* Convenience macros for creating a Handler object that is wrapped with a * type-safe wrapper function that converts the "void*" parameters/returns * of the underlying C API into nice C++ function. * * Sample usage: * void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) { * // do stuff ... * } * * // Handler that doesn't need any data bound to it. * void OnValue2(MyClosure* c, int32_t val) { * // do stuff ... * } * * // Handler that returns bool so it can return failure if necessary. * bool OnValue3(MyClosure* c, int32_t val) { * // do stuff ... * return ok; * } * * // Member function handler. * class MyClosure { * public: * void OnValue(int32_t val) { * // do stuff ... * } * }; * * // Takes ownership of the MyHandlerData. * handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...))); * handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2)); * handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3)); * handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue)); */ /* In C++11, the "template" disambiguator can appear even outside templates, * so all calls can safely use this pair of macros. */ #define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc() /* We have to be careful to only evaluate "d" once. */ #define UpbBind(f, d) upb::MatchFunc(f).template GetFunc((d)) /* Handler: a struct that contains the (handler, data, deleter) tuple that is * used to register all handlers. Users can Make() these directly but it's * more convenient to use the UpbMakeHandler/UpbBind macros above. */ template class upb::Handler { public: /* The underlying, handler function signature that upb uses internally. */ typedef T FuncPtr; /* Intentionally implicit. */ template Handler(F func); ~Handler() { UPB_ASSERT(registered_); } void AddCleanup(upb_handlers* h) const; FuncPtr handler() const { return handler_; } const upb_handlerattr& attr() const { return attr_; } private: Handler(const Handler&) = delete; Handler& operator=(const Handler&) = delete; FuncPtr handler_; mutable upb_handlerattr attr_; mutable bool registered_; void *cleanup_data_; upb_handlerfree *cleanup_func_; }; /* A upb::Handlers object represents the set of handlers associated with a * message in the graph of messages. You can think of it as a big virtual * table with functions corresponding to all the events that can fire while * parsing or visiting a message of a specific type. * * Any handlers that are not set behave as if they had successfully consumed * the value. Any unset Start* handlers will propagate their closure to the * inner frame. * * The easiest way to create the *Handler objects needed by the Set* methods is * with the UpbBind() and UpbMakeHandler() macros; see below. */ class upb::HandlersPtr { public: HandlersPtr(upb_handlers* ptr) : ptr_(ptr) {} upb_handlers* ptr() const { return ptr_; } typedef upb_selector_t Selector; typedef upb_handlertype_t Type; typedef Handler StartFieldHandler; typedef Handler EndFieldHandler; typedef Handler StartMessageHandler; typedef Handler EndMessageHandler; typedef Handler StartStringHandler; typedef Handler StringHandler; template struct ValueHandler { typedef Handler H; }; typedef ValueHandler::H Int32Handler; typedef ValueHandler::H Int64Handler; typedef ValueHandler::H UInt32Handler; typedef ValueHandler::H UInt64Handler; typedef ValueHandler::H FloatHandler; typedef ValueHandler::H DoubleHandler; typedef ValueHandler::H BoolHandler; /* Any function pointer can be converted to this and converted back to its * correct type. */ typedef void GenericFunction(); typedef void HandlersCallback(const void *closure, upb_handlers *h); /* Returns the msgdef associated with this handlers object. */ MessageDefPtr message_def() const { return MessageDefPtr(upb_handlers_msgdef(ptr())); } /* Adds the given pointer and function to the list of cleanup functions that * will be run when these handlers are freed. If this pointer has previously * been registered, the function returns false and does nothing. */ bool AddCleanup(void *ptr, upb_handlerfree *cleanup) { return upb_handlers_addcleanup(ptr_, ptr, cleanup); } /* Sets the startmsg handler for the message, which is defined as follows: * * bool startmsg(MyType* closure) { * // Called when the message begins. Returns true if processing should * // continue. * return true; * } */ bool SetStartMessageHandler(const StartMessageHandler &h) { h.AddCleanup(ptr()); return upb_handlers_setstartmsg(ptr(), h.handler(), &h.attr()); } /* Sets the endmsg handler for the message, which is defined as follows: * * bool endmsg(MyType* closure, upb_status *status) { * // Called when processing of this message ends, whether in success or * // failure. "status" indicates the final status of processing, and * // can also be modified in-place to update the final status. * } */ bool SetEndMessageHandler(const EndMessageHandler& h) { h.AddCleanup(ptr()); return upb_handlers_setendmsg(ptr(), h.handler(), &h.attr()); } /* Sets the value handler for the given field, which is defined as follows * (this is for an int32 field; other field types will pass their native * C/C++ type for "val"): * * bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) { * // Called when the field's value is encountered. "d" contains * // whatever data was bound to this field when it was registered. * // Returns true if processing should continue. * return true; * } * * handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...))); * * The value type must exactly match f->type(). * For example, a handler that takes an int32_t parameter may only be used for * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM. * * Returns false if the handler failed to register; in this case the cleanup * handler (if any) will be called immediately. */ bool SetInt32Handler(FieldDefPtr f, const Int32Handler &h) { h.AddCleanup(ptr()); return upb_handlers_setint32(ptr(), f.ptr(), h.handler(), &h.attr()); } bool SetInt64Handler (FieldDefPtr f, const Int64Handler& h) { h.AddCleanup(ptr()); return upb_handlers_setint64(ptr(), f.ptr(), h.handler(), &h.attr()); } bool SetUInt32Handler(FieldDefPtr f, const UInt32Handler& h) { h.AddCleanup(ptr()); return upb_handlers_setuint32(ptr(), f.ptr(), h.handler(), &h.attr()); } bool SetUInt64Handler(FieldDefPtr f, const UInt64Handler& h) { h.AddCleanup(ptr()); return upb_handlers_setuint64(ptr(), f.ptr(), h.handler(), &h.attr()); } bool SetFloatHandler (FieldDefPtr f, const FloatHandler& h) { h.AddCleanup(ptr()); return upb_handlers_setfloat(ptr(), f.ptr(), h.handler(), &h.attr()); } bool SetDoubleHandler(FieldDefPtr f, const DoubleHandler& h) { h.AddCleanup(ptr()); return upb_handlers_setdouble(ptr(), f.ptr(), h.handler(), &h.attr()); } bool SetBoolHandler(FieldDefPtr f, const BoolHandler &h) { h.AddCleanup(ptr()); return upb_handlers_setbool(ptr(), f.ptr(), h.handler(), &h.attr()); } /* Like the previous, but templated on the type on the value (ie. int32). * This is mostly useful to call from other templates. To call this you must * specify the template parameter explicitly, ie: * h->SetValueHandler(f, UpbBind(MyHandler, MyData)); */ template bool SetValueHandler( FieldDefPtr f, const typename ValueHandler::Type>::H &handler); /* Sets handlers for a string field, which are defined as follows: * * MySubClosure* startstr(MyClosure* c, const MyHandlerData* d, * size_t size_hint) { * // Called when a string value begins. The return value indicates the * // closure for the string. "size_hint" indicates the size of the * // string if it is known, however if the string is length-delimited * // and the end-of-string is not available size_hint will be zero. * // This case is indistinguishable from the case where the size is * // known to be zero. * // * // TODO(haberman): is it important to distinguish these cases? * // If we had ssize_t as a type we could make -1 "unknown", but * // ssize_t is POSIX (not ANSI) and therefore less portable. * // In practice I suspect it won't be important to distinguish. * return closure; * } * * size_t str(MyClosure* closure, const MyHandlerData* d, * const char *str, size_t len) { * // Called for each buffer of string data; the multiple physical buffers * // are all part of the same logical string. The return value indicates * // how many bytes were consumed. If this number is less than "len", * // this will also indicate that processing should be halted for now, * // like returning false or UPB_BREAK from any other callback. If * // number is greater than "len", the excess bytes will be skipped over * // and not passed to the callback. * return len; * } * * bool endstr(MyClosure* c, const MyHandlerData* d) { * // Called when a string value ends. Return value indicates whether * // processing should continue. * return true; * } */ bool SetStartStringHandler(FieldDefPtr f, const StartStringHandler &h) { h.AddCleanup(ptr()); return upb_handlers_setstartstr(ptr(), f.ptr(), h.handler(), &h.attr()); } bool SetStringHandler(FieldDefPtr f, const StringHandler& h) { h.AddCleanup(ptr()); return upb_handlers_setstring(ptr(), f.ptr(), h.handler(), &h.attr()); } bool SetEndStringHandler(FieldDefPtr f, const EndFieldHandler& h) { h.AddCleanup(ptr()); return upb_handlers_setendstr(ptr(), f.ptr(), h.handler(), &h.attr()); } /* Sets the startseq handler, which is defined as follows: * * MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) { * // Called when a sequence (repeated field) begins. The returned * // pointer indicates the closure for the sequence (or UPB_BREAK * // to interrupt processing). * return closure; * } * * h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...))); * * Returns "false" if "f" does not belong to this message or is not a * repeated field. */ bool SetStartSequenceHandler(FieldDefPtr f, const StartFieldHandler &h) { h.AddCleanup(ptr()); return upb_handlers_setstartseq(ptr(), f.ptr(), h.handler(), &h.attr()); } /* Sets the startsubmsg handler for the given field, which is defined as * follows: * * MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) { * // Called when a submessage begins. The returned pointer indicates the * // closure for the sequence (or UPB_BREAK to interrupt processing). * return closure; * } * * h->SetStartSubMessageHandler(f, UpbBind(startsubmsg, * new MyHandlerData(...))); * * Returns "false" if "f" does not belong to this message or is not a * submessage/group field. */ bool SetStartSubMessageHandler(FieldDefPtr f, const StartFieldHandler& h) { h.AddCleanup(ptr()); return upb_handlers_setstartsubmsg(ptr(), f.ptr(), h.handler(), &h.attr()); } /* Sets the endsubmsg handler for the given field, which is defined as * follows: * * bool endsubmsg(MyClosure* c, const MyHandlerData* d) { * // Called when a submessage ends. Returns true to continue processing. * return true; * } * * Returns "false" if "f" does not belong to this message or is not a * submessage/group field. */ bool SetEndSubMessageHandler(FieldDefPtr f, const EndFieldHandler &h) { h.AddCleanup(ptr()); return upb_handlers_setendsubmsg(ptr(), f.ptr(), h.handler(), &h.attr()); } /* Starts the endsubseq handler for the given field, which is defined as * follows: * * bool endseq(MyClosure* c, const MyHandlerData* d) { * // Called when a sequence ends. Returns true continue processing. * return true; * } * * Returns "false" if "f" does not belong to this message or is not a * repeated field. */ bool SetEndSequenceHandler(FieldDefPtr f, const EndFieldHandler &h) { h.AddCleanup(ptr()); return upb_handlers_setendseq(ptr(), f.ptr(), h.handler(), &h.attr()); } private: upb_handlers* ptr_; }; #endif /* __cplusplus */ /* upb_handlercache ***********************************************************/ /* A upb_handlercache lazily builds and caches upb_handlers. You pass it a * function (with optional closure) that can build handlers for a given * message on-demand, and the cache maintains a map of msgdef->handlers. */ #ifdef __cplusplus extern "C" { #endif struct upb_handlercache; typedef struct upb_handlercache upb_handlercache; typedef void upb_handlers_callback(const void *closure, upb_handlers *h); upb_handlercache *upb_handlercache_new(upb_handlers_callback *callback, const void *closure); void upb_handlercache_free(upb_handlercache *cache); const upb_handlers *upb_handlercache_get(upb_handlercache *cache, const upb_msgdef *md); bool upb_handlercache_addcleanup(upb_handlercache *h, void *p, upb_handlerfree *hfree); #ifdef __cplusplus } /* extern "C" */ class upb::HandlerCache { public: HandlerCache(upb_handlers_callback *callback, const void *closure) : ptr_(upb_handlercache_new(callback, closure), upb_handlercache_free) {} HandlerCache(HandlerCache&&) = default; HandlerCache& operator=(HandlerCache&&) = default; HandlerCache(upb_handlercache* c) : ptr_(c, upb_handlercache_free) {} upb_handlercache* ptr() { return ptr_.get(); } const upb_handlers *Get(MessageDefPtr md) { return upb_handlercache_get(ptr_.get(), md.ptr()); } private: std::unique_ptr ptr_; }; #endif /* __cplusplus */ /* upb_byteshandler ***********************************************************/ typedef struct { upb_func *func; /* It is wasteful to include the entire attributes here: * * * Some of the information is redundant (like storing the closure type * separately for each handler that must match). * * Some of the info is only needed prior to freeze() (like closure types). * * alignment padding wastes a lot of space for alwaysok_. * * If/when the size and locality of handlers is an issue, we can optimize this * not to store the entire attr like this. We do not expose the table's * layout to allow this optimization in the future. */ upb_handlerattr attr; } upb_handlers_tabent; #define UPB_TABENT_INIT {NULL, UPB_HANDLERATTR_INIT} typedef struct { upb_handlers_tabent table[3]; } upb_byteshandler; #define UPB_BYTESHANDLER_INIT \ { \ { UPB_TABENT_INIT, UPB_TABENT_INIT, UPB_TABENT_INIT } \ } UPB_INLINE void upb_byteshandler_init(upb_byteshandler *handler) { upb_byteshandler init = UPB_BYTESHANDLER_INIT; *handler = init; } #ifdef __cplusplus extern "C" { #endif /* Caller must ensure that "d" outlives the handlers. */ bool upb_byteshandler_setstartstr(upb_byteshandler *h, upb_startstr_handlerfunc *func, void *d); bool upb_byteshandler_setstring(upb_byteshandler *h, upb_string_handlerfunc *func, void *d); bool upb_byteshandler_setendstr(upb_byteshandler *h, upb_endfield_handlerfunc *func, void *d); #ifdef __cplusplus } /* extern "C" */ namespace upb { typedef upb_byteshandler BytesHandler; } #endif /** Message handlers ******************************************************************/ #ifdef __cplusplus extern "C" { #endif /* These are the handlers used internally by upb_msgfactory_getmergehandlers(). * They write scalar data to a known offset from the message pointer. * * These would be trivial for anyone to implement themselves, but it's better * to use these because some JITs will recognize and specialize these instead * of actually calling the function. */ /* Sets a handler for the given primitive field that will write the data at the * given offset. If hasbit > 0, also sets a hasbit at the given bit offset * (addressing each byte low to high). */ bool upb_msg_setscalarhandler(upb_handlers *h, const upb_fielddef *f, size_t offset, int32_t hasbit); /* If the given handler is a msghandlers_primitive field, returns true and sets * *type, *offset and *hasbit. Otherwise returns false. */ bool upb_msg_getscalarhandlerdata(const upb_handlers *h, upb_selector_t s, upb_fieldtype_t *type, size_t *offset, int32_t *hasbit); #ifdef __cplusplus } /* extern "C" */ #endif #include "upb/port_undef.inc" #include "upb/handlers-inl.h" #endif /* UPB_HANDLERS_H */