/* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2008-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman */ #include #include #include #include "upb/bytestream.h" #include "upb/def.h" // isalpha() etc. from are locale-dependent, which we don't want. static bool upb_isbetween(char c, char low, char high) { return c >= low && c <= high; } static bool upb_isletter(char c) { return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_'; } static bool upb_isalphanum(char c) { return upb_isletter(c) || upb_isbetween(c, '0', '9'); } static bool upb_isident(const char *str, size_t len, bool full) { bool start = true; for (size_t i = 0; i < len; i++) { char c = str[i]; if (c == '.') { if (start || !full) return false; start = true; } else if (start) { if (!upb_isletter(c)) return false; start = false; } else { if (!upb_isalphanum(c)) return false; } } return !start; } /* upb_def ********************************************************************/ static void upb_msgdef_free(upb_msgdef *m); static void upb_fielddef_free(upb_fielddef *f); static void upb_enumdef_free(upb_enumdef *e); bool upb_def_ismutable(const upb_def *def) { return !def->is_finalized; } bool upb_def_isfinalized(const upb_def *def) { return def->is_finalized; } bool upb_def_setfullname(upb_def *def, const char *fullname) { assert(upb_def_ismutable(def)); if (!upb_isident(fullname, strlen(fullname), true)) return false; free(def->fullname); def->fullname = strdup(fullname); return true; } upb_def *upb_def_dup(const upb_def *def, void *o) { switch (def->type) { case UPB_DEF_MSG: return UPB_UPCAST(upb_msgdef_dup(upb_downcast_msgdef_const(def), o)); case UPB_DEF_FIELD: return UPB_UPCAST(upb_fielddef_dup(upb_downcast_fielddef_const(def), o)); case UPB_DEF_ENUM: return UPB_UPCAST(upb_enumdef_dup(upb_downcast_enumdef_const(def), o)); default: assert(false); return NULL; } } void upb_def_ref(const upb_def *_def, void *owner) { upb_def *def = (upb_def*)_def; upb_refcount_ref(&def->refcount, owner); } void upb_def_unref(const upb_def *_def, void *owner) { upb_def *def = (upb_def*)_def; if (!def) return; if (!upb_refcount_unref(&def->refcount, owner)) return; upb_def *base = def; // Free all defs in the SCC. do { upb_def *next = (upb_def*)def->refcount.next; switch (def->type) { case UPB_DEF_MSG: upb_msgdef_free(upb_downcast_msgdef(def)); break; case UPB_DEF_FIELD: upb_fielddef_free(upb_downcast_fielddef(def)); break; case UPB_DEF_ENUM: upb_enumdef_free(upb_downcast_enumdef(def)); break; default: assert(false); } def = next; } while(def != base); } static bool upb_def_init(upb_def *def, upb_deftype_t type, void *owner) { def->type = type; def->is_finalized = false; def->fullname = NULL; return upb_refcount_init(&def->refcount, owner); } static void upb_def_uninit(upb_def *def) { upb_refcount_uninit(&def->refcount); free(def->fullname); } void upb_def_donateref(const upb_def *_def, void *from, void *to) { upb_def *def = (upb_def*)_def; upb_refcount_donateref(&def->refcount, from, to); } static void upb_def_getsuccessors(upb_refcount *refcount, void *closure) { upb_def *def = (upb_def*)refcount; switch (def->type) { case UPB_DEF_MSG: { upb_msgdef *m = upb_downcast_msgdef(def); upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); upb_refcount_visit(refcount, &f->base.refcount, closure); } break; } case UPB_DEF_FIELD: { upb_fielddef *f = upb_downcast_fielddef(def); assert(f->msgdef); upb_refcount_visit(refcount, &f->msgdef->base.refcount, closure); upb_def *subdef = f->sub.def; if (subdef) upb_refcount_visit(refcount, &subdef->refcount, closure); break; } case UPB_DEF_ENUM: case UPB_DEF_SERVICE: case UPB_DEF_ANY: break; } } static bool upb_validate_field(const upb_fielddef *f, upb_status *s) { if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == -1) { upb_status_seterrliteral(s, "fielddef must have name and number set"); return false; } if (upb_hassubdef(f)) { if (f->subdef_is_symbolic) { upb_status_seterrf(s, "field %s has not been resolved", upb_fielddef_name(f)); return false; } else if (upb_fielddef_subdef(f) == NULL) { upb_status_seterrf(s, "field is %s missing required subdef", upb_fielddef_name(f)); return false; } else if (!upb_def_isfinalized(upb_fielddef_subdef(f))) { upb_status_seterrf(s, "field %s subtype is not being finalized", upb_fielddef_name(f)); return false; } } return true; } bool upb_finalize(upb_def *const*defs, int n, upb_status *s) { if (n >= UINT16_MAX - 1) { upb_status_seterrliteral(s, "too many defs (max is 64k at a time)"); return false; } // First perform validation, in two passes so we can check that we have a // transitive closure without needing to search. for (int i = 0; i < n; i++) { upb_def *def = defs[i]; if (upb_def_isfinalized(def)) { // Could relax this requirement if it's annoying. upb_status_seterrliteral(s, "def is already finalized"); goto err; } else if (def->type == UPB_DEF_FIELD) { upb_status_seterrliteral(s, "standalone fielddefs can not be finalized"); goto err; } else { // Set now to detect transitive closure in the second pass. def->is_finalized = true; } } for (int i = 0; i < n; i++) { upb_msgdef *m = upb_dyncast_msgdef(defs[i]); if (!m) continue; upb_inttable_compact(&m->itof); upb_msg_iter j; for(upb_msg_begin(&j, m); !upb_msg_done(&j); upb_msg_next(&j)) { upb_fielddef *f = upb_msg_iter_field(&j); assert(f->msgdef == m); if (!upb_validate_field(f, s)) goto err; } } // Validation all passed, now find strongly-connected components so that // our refcounting works with cycles. upb_refcount_findscc((upb_refcount**)defs, n, &upb_def_getsuccessors); // Now that ref cycles have been removed it is safe to have each fielddef // take a ref on its subdef (if any), but only if it's a member of another // SCC. for (int i = 0; i < n; i++) { upb_msgdef *m = upb_dyncast_msgdef(defs[i]); if (!m) continue; upb_msg_iter j; for(upb_msg_begin(&j, m); !upb_msg_done(&j); upb_msg_next(&j)) { upb_fielddef *f = upb_msg_iter_field(&j); f->base.is_finalized = true; // Release the ref taken in upb_msgdef_addfields(). upb_fielddef_unref(f, m); if (!upb_hassubdef(f)) continue; assert(upb_fielddef_subdef(f)); if (!upb_refcount_merged(&f->base.refcount, &f->sub.def->refcount)) { // Subdef is part of a different strongly-connected component. upb_def_ref(f->sub.def, &f->sub.def); f->subdef_is_owned = true; } } } return true; err: for (int i = 0; i < n; i++) { defs[i]->is_finalized = false; } return false; } /* upb_enumdef ****************************************************************/ upb_enumdef *upb_enumdef_new(void *owner) { upb_enumdef *e = malloc(sizeof(*e)); if (!e) return NULL; if (!upb_def_init(&e->base, UPB_DEF_ENUM, owner)) goto err2; if (!upb_strtable_init(&e->ntoi)) goto err2; if (!upb_inttable_init(&e->iton)) goto err1; return e; err1: upb_strtable_uninit(&e->ntoi); err2: free(e); return NULL; } static void upb_enumdef_free(upb_enumdef *e) { upb_inttable_iter i; upb_inttable_begin(&i, &e->iton); for( ; !upb_inttable_done(&i); upb_inttable_next(&i)) { // To clean up the strdup() from upb_enumdef_addval(). free(upb_value_getptr(upb_inttable_iter_value(&i))); } upb_strtable_uninit(&e->ntoi); upb_inttable_uninit(&e->iton); upb_def_uninit(&e->base); free(e); } upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, void *owner) { upb_enumdef *new_e = upb_enumdef_new(owner); if (!new_e) return NULL; upb_enum_iter i; for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) { bool success = upb_enumdef_addval( new_e, upb_enum_iter_name(&i),upb_enum_iter_number(&i)); if (!success) { upb_enumdef_unref(new_e, owner); return NULL; } } return new_e; } bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num) { if (!upb_isident(name, strlen(name), false)) return false; if (upb_enumdef_ntoi(e, name, NULL)) return false; if (!upb_strtable_insert(&e->ntoi, name, upb_value_int32(num))) return false; if (!upb_inttable_lookup(&e->iton, num) && !upb_inttable_insert(&e->iton, num, upb_value_ptr(strdup(name)))) return false; return true; } void upb_enumdef_setdefault(upb_enumdef *e, int32_t val) { assert(upb_def_ismutable(UPB_UPCAST(e))); e->defaultval = val; } void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) { // We iterate over the ntoi table, to account for duplicate numbers. upb_strtable_begin(i, &e->ntoi); } void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); } bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); } bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name, int32_t *num) { const upb_value *v = upb_strtable_lookup(&def->ntoi, name); if (!v) return false; if (num) *num = upb_value_getint32(*v); return true; } const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) { const upb_value *v = upb_inttable_lookup32(&def->iton, num); return v ? upb_value_getptr(*v) : NULL; } /* upb_fielddef ***************************************************************/ #define alignof(t) offsetof(struct { char c; t x; }, x) #define TYPE_INFO(ctype, inmemory_type) \ {alignof(ctype), sizeof(ctype), UPB_CTYPE_ ## inmemory_type} const upb_typeinfo upb_types[UPB_NUM_TYPES] = { // END_GROUP is not real, but used to signify the pseudo-field that // ends a group from within the group. TYPE_INFO(void*, PTR), // ENDGROUP TYPE_INFO(double, DOUBLE), // DOUBLE TYPE_INFO(float, FLOAT), // FLOAT TYPE_INFO(int64_t, INT64), // INT64 TYPE_INFO(uint64_t, UINT64), // UINT64 TYPE_INFO(int32_t, INT32), // INT32 TYPE_INFO(uint64_t, UINT64), // FIXED64 TYPE_INFO(uint32_t, UINT32), // FIXED32 TYPE_INFO(bool, BOOL), // BOOL TYPE_INFO(void*, BYTEREGION), // STRING TYPE_INFO(void*, PTR), // GROUP TYPE_INFO(void*, PTR), // MESSAGE TYPE_INFO(void*, BYTEREGION), // BYTES TYPE_INFO(uint32_t, UINT32), // UINT32 TYPE_INFO(uint32_t, INT32), // ENUM TYPE_INFO(int32_t, INT32), // SFIXED32 TYPE_INFO(int64_t, INT64), // SFIXED64 TYPE_INFO(int32_t, INT32), // SINT32 TYPE_INFO(int64_t, INT64), // SINT64 }; static void upb_fielddef_init_default(upb_fielddef *f); upb_fielddef *upb_fielddef_new(void *owner) { upb_fielddef *f = malloc(sizeof(*f)); if (!f) return NULL; if (!upb_def_init(UPB_UPCAST(f), UPB_DEF_FIELD, owner)) { free(f); return NULL; } f->msgdef = NULL; f->sub.def = NULL; f->subdef_is_symbolic = false; f->subdef_is_owned = false; f->label = UPB_LABEL(OPTIONAL); f->hasbit = -1; f->offset = 0; f->accessor = NULL; upb_value_setfielddef(&f->fval, f); // These are initialized to be invalid; the user must set them explicitly. // Could relax this later if it's convenient and non-confusing to have a // defaults for them. f->type = UPB_TYPE_NONE; f->number = 0; upb_fielddef_init_default(f); return f; } static void upb_fielddef_uninit_default(upb_fielddef *f) { if (f->default_is_string) upb_byteregion_free(upb_value_getbyteregion(f->defaultval)); } static void upb_fielddef_free(upb_fielddef *f) { if (f->subdef_is_owned) upb_def_unref(f->sub.def, &f->sub.def); upb_fielddef_uninit_default(f); upb_def_uninit(UPB_UPCAST(f)); free(f); } upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, void *owner) { upb_fielddef *newf = upb_fielddef_new(owner); if (!newf) return NULL; upb_fielddef_settype(newf, upb_fielddef_type(f)); upb_fielddef_setlabel(newf, upb_fielddef_label(f)); upb_fielddef_setnumber(newf, upb_fielddef_number(f)); upb_fielddef_setname(newf, upb_fielddef_name(f)); upb_fielddef_sethasbit(newf, upb_fielddef_hasbit(f)); upb_fielddef_setoffset(newf, upb_fielddef_offset(f)); upb_fielddef_setaccessor(newf, upb_fielddef_accessor(f)); upb_fielddef_setfval(newf, upb_fielddef_fval(f)); if (f->default_is_string) { upb_byteregion *r = upb_value_getbyteregion(upb_fielddef_default(f)); size_t len; const char *ptr = upb_byteregion_getptr(r, 0, &len); assert(len == upb_byteregion_len(r)); upb_fielddef_setdefaultstr(newf, ptr, len); } else { upb_fielddef_setdefault(newf, upb_fielddef_default(f)); } const char *srcname; if (f->subdef_is_symbolic) { srcname = f->sub.name; // Might be NULL. } else { srcname = f->sub.def ? upb_def_fullname(f->sub.def) : NULL; } if (srcname) { char *newname = malloc(strlen(f->sub.def->fullname) + 2); if (!newname) { upb_fielddef_unref(newf, owner); return NULL; } strcpy(newname, "."); strcat(newname, f->sub.def->fullname); upb_fielddef_setsubtypename(newf, newname); free(newname); } return newf; } static void upb_fielddef_init_default(upb_fielddef *f) { f->default_is_string = false; switch (upb_fielddef_type(f)) { case UPB_TYPE(DOUBLE): upb_value_setdouble(&f->defaultval, 0); break; case UPB_TYPE(FLOAT): upb_value_setfloat(&f->defaultval, 0); break; case UPB_TYPE(UINT64): case UPB_TYPE(FIXED64): upb_value_setuint64(&f->defaultval, 0); break; case UPB_TYPE(INT64): case UPB_TYPE(SFIXED64): case UPB_TYPE(SINT64): upb_value_setint64(&f->defaultval, 0); break; case UPB_TYPE(ENUM): case UPB_TYPE(INT32): case UPB_TYPE(SINT32): case UPB_TYPE(SFIXED32): upb_value_setint32(&f->defaultval, 0); break; case UPB_TYPE(UINT32): case UPB_TYPE(FIXED32): upb_value_setuint32(&f->defaultval, 0); break; case UPB_TYPE(BOOL): upb_value_setbool(&f->defaultval, false); break; case UPB_TYPE(STRING): case UPB_TYPE(BYTES): upb_value_setbyteregion(&f->defaultval, upb_byteregion_new("")); f->default_is_string = true; break; case UPB_TYPE(GROUP): case UPB_TYPE(MESSAGE): upb_value_setptr(&f->defaultval, NULL); break; case UPB_TYPE_ENDGROUP: assert(false); case UPB_TYPE_NONE: break; } } const upb_def *upb_fielddef_subdef(const upb_fielddef *f) { if (upb_hassubdef(f) && upb_fielddef_isfinalized(f)) { assert(f->sub.def); return f->sub.def; } else { return f->subdef_is_symbolic ? NULL : f->sub.def; } } upb_def *upb_fielddef_subdef_mutable(upb_fielddef *f) { return (upb_def*)upb_fielddef_subdef(f); } const char *upb_fielddef_subtypename(upb_fielddef *f) { assert(upb_fielddef_ismutable(f)); return f->subdef_is_symbolic ? f->sub.name : NULL; } // Could expose this to clients if a client wants to call it independently // of upb_resolve() for whatever reason. static bool upb_fielddef_resolvedefault(upb_fielddef *f, upb_status *s) { if (!f->default_is_string) return true; // Resolve the enum's default from a string to an integer. upb_byteregion *bytes = upb_value_getbyteregion(f->defaultval); assert(bytes); // Points to either a real default or the empty string. upb_enumdef *e = upb_downcast_enumdef(upb_fielddef_subdef_mutable(f)); int32_t val = 0; if (upb_byteregion_len(bytes) == 0) { upb_value_setint32(&f->defaultval, e->defaultval); } else { size_t len; // ptr is guaranteed to be NULL-terminated because the byteregion was // created with upb_byteregion_newl(). const char *ptr = upb_byteregion_getptr( bytes, upb_byteregion_startofs(bytes), &len); assert(len == upb_byteregion_len(bytes)); // Should all be in one chunk. bool success = upb_enumdef_ntoi(e, ptr, &val); if (!success) { upb_status_seterrf( s, "Default enum value (%s) is not a member of the enum", ptr); return false; } upb_value_setint32(&f->defaultval, val); } f->default_is_string = false; upb_byteregion_free(bytes); return true; } bool upb_fielddef_setnumber(upb_fielddef *f, int32_t number) { assert(f->msgdef == NULL); f->number = number; return true; } bool upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type) { assert(upb_fielddef_ismutable(f)); upb_fielddef_uninit_default(f); f->type = type; upb_fielddef_init_default(f); return true; } bool upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label) { assert(upb_fielddef_ismutable(f)); f->label = label; return true; } void upb_fielddef_setdefault(upb_fielddef *f, upb_value value) { assert(upb_fielddef_ismutable(f)); assert(!upb_isstring(f) && !upb_issubmsg(f)); if (f->default_is_string) { upb_byteregion *bytes = upb_value_getbyteregion(f->defaultval); assert(bytes); upb_byteregion_free(bytes); } f->defaultval = value; f->default_is_string = false; } bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len) { assert(upb_isstring(f) || f->type == UPB_TYPE(ENUM)); if (f->default_is_string) { upb_byteregion *bytes = upb_value_getbyteregion(f->defaultval); assert(bytes); upb_byteregion_free(bytes); } else { assert(f->type == UPB_TYPE(ENUM)); } if (f->type == UPB_TYPE(ENUM) && !upb_isident(str, len, false)) return false; upb_byteregion *r = upb_byteregion_newl(str, len); upb_value_setbyteregion(&f->defaultval, r); upb_bytesuccess_t ret = upb_byteregion_fetch(r); (void)ret; assert(ret == (len == 0 ? UPB_BYTE_EOF : UPB_BYTE_OK)); assert(upb_byteregion_available(r, 0) == upb_byteregion_len(r)); f->default_is_string = true; return true; } void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str) { upb_fielddef_setdefaultstr(f, str, str ? strlen(str) : 0); } void upb_fielddef_setfval(upb_fielddef *f, upb_value fval) { assert(upb_fielddef_ismutable(f)); // TODO: we need an ownership/freeing mechanism for dynamically-allocated // fvals. One possibility is to let the user supply a free() function // and call it when the fval is no longer referenced. Would have to // ensure that no common use cases need cycles. // // For now the fval has no ownership; the caller must simply guarantee // somehow that it outlives any handlers/plan. f->fval = fval; } void upb_fielddef_sethasbit(upb_fielddef *f, int16_t hasbit) { assert(upb_fielddef_ismutable(f)); f->hasbit = hasbit; } void upb_fielddef_setoffset(upb_fielddef *f, uint16_t offset) { assert(upb_fielddef_ismutable(f)); f->offset = offset; } void upb_fielddef_setaccessor(upb_fielddef *f, struct _upb_accessor_vtbl *tbl) { assert(upb_fielddef_ismutable(f)); f->accessor = tbl; } static bool upb_subtype_typecheck(upb_fielddef *f, const upb_def *subdef) { if (f->type == UPB_TYPE(MESSAGE) || f->type == UPB_TYPE(GROUP)) return upb_dyncast_msgdef_const(subdef) != NULL; else if (f->type == UPB_TYPE(ENUM)) return upb_dyncast_enumdef_const(subdef) != NULL; else { assert(false); return false; } } bool upb_fielddef_setsubdef(upb_fielddef *f, upb_def *subdef) { assert(upb_fielddef_ismutable(f)); assert(upb_hassubdef(f)); assert(subdef); if (!upb_subtype_typecheck(f, subdef)) return false; if (f->subdef_is_symbolic) free(f->sub.name); f->sub.def = subdef; f->subdef_is_symbolic = false; return true; } bool upb_fielddef_setsubtypename(upb_fielddef *f, const char *name) { assert(upb_fielddef_ismutable(f)); assert(upb_hassubdef(f)); if (f->subdef_is_symbolic) free(f->sub.name); f->sub.name = strdup(name); f->subdef_is_symbolic = true; return true; } /* upb_msgdef *****************************************************************/ upb_msgdef *upb_msgdef_new(void *owner) { upb_msgdef *m = malloc(sizeof(*m)); if (!m) return NULL; if (!upb_def_init(&m->base, UPB_DEF_MSG, owner)) goto err2; if (!upb_inttable_init(&m->itof)) goto err2; if (!upb_strtable_init(&m->ntof)) goto err1; m->size = 0; m->hasbit_bytes = 0; m->extstart = 0; m->extend = 0; return m; err1: upb_inttable_uninit(&m->itof); err2: free(m); return NULL; } static void upb_msgdef_free(upb_msgdef *m) { upb_strtable_uninit(&m->ntof); upb_inttable_uninit(&m->itof); upb_def_uninit(&m->base); free(m); } upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, void *owner) { upb_msgdef *newm = upb_msgdef_new(owner); if (!newm) return NULL; upb_msgdef_setsize(newm, upb_msgdef_size(m)); upb_msgdef_sethasbit_bytes(newm, upb_msgdef_hasbit_bytes(m)); upb_msgdef_setextrange(newm, upb_msgdef_extstart(m), upb_msgdef_extend(m)); upb_def_setfullname(UPB_UPCAST(newm), upb_def_fullname(UPB_UPCAST(m))); upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_fielddef_dup(upb_msg_iter_field(&i), &f); if (!f || !upb_msgdef_addfield(newm, f, &f)) { upb_msgdef_unref(newm, owner); return NULL; } } return newm; } void upb_msgdef_setsize(upb_msgdef *m, uint16_t size) { assert(upb_def_ismutable(UPB_UPCAST(m))); m->size = size; } void upb_msgdef_sethasbit_bytes(upb_msgdef *m, uint16_t bytes) { assert(upb_def_ismutable(UPB_UPCAST(m))); m->hasbit_bytes = bytes; } bool upb_msgdef_setextrange(upb_msgdef *m, uint32_t start, uint32_t end) { assert(upb_def_ismutable(UPB_UPCAST(m))); if (start == 0 && end == 0) { // Clearing the extension range -- ok to fall through. } else if (start >= end || start < 1 || end > UPB_MAX_FIELDNUMBER) { return false; } m->extstart = start; m->extend = start; return true; } bool upb_msgdef_addfields(upb_msgdef *m, upb_fielddef *const *fields, int n, void *ref_donor) { // Check constraints for all fields before performing any action. for (int i = 0; i < n; i++) { upb_fielddef *f = fields[i]; if (f->msgdef != NULL || upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0 || upb_msgdef_itof(m, upb_fielddef_number(f)) || upb_msgdef_ntof(m, upb_fielddef_name(f))) return false; } // Constraint checks ok, perform the action. for (int i = 0; i < n; i++) { upb_fielddef *f = fields[i]; f->msgdef = m; upb_inttable_insert(&m->itof, upb_fielddef_number(f), upb_value_ptr(f)); upb_strtable_insert(&m->ntof, upb_fielddef_name(f), upb_value_ptr(f)); upb_fielddef_ref(f, m); if (ref_donor) upb_fielddef_unref(f, ref_donor); } return true; } void upb_msg_begin(upb_msg_iter *iter, const upb_msgdef *m) { upb_inttable_begin(iter, &m->itof); } void upb_msg_next(upb_msg_iter *iter) { upb_inttable_next(iter); } /* upb_symtab *****************************************************************/ static void upb_symtab_free(upb_symtab *s) { upb_strtable_iter i; upb_strtable_begin(&i, &s->symtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) upb_def_unref(upb_value_getptr(upb_strtable_iter_value(&i)), s); upb_strtable_uninit(&s->symtab); free(s); } void upb_symtab_ref(const upb_symtab *_s) { upb_symtab *s = (upb_symtab*)_s; s->refcount++; } void upb_symtab_unref(const upb_symtab *_s) { upb_symtab *s = (upb_symtab*)_s; if(s && --s->refcount == 0) { upb_symtab_free(s); } } upb_symtab *upb_symtab_new() { upb_symtab *s = malloc(sizeof(*s)); s->refcount = 1; upb_strtable_init(&s->symtab); return s; } const upb_def **upb_symtab_getdefs(const upb_symtab *s, int *count, upb_deftype_t type, void *owner) { int total = upb_strtable_count(&s->symtab); // We may only use part of this, depending on how many symbols are of the // correct type. const upb_def **defs = malloc(sizeof(*defs) * total); upb_strtable_iter iter; upb_strtable_begin(&iter, &s->symtab); int i = 0; for(; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); assert(def); if(type == UPB_DEF_ANY || def->type == type) defs[i++] = def; } *count = i; if (owner) for(i = 0; i < *count; i++) upb_def_ref(defs[i], owner); return defs; } const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym, void *owner) { const upb_value *v = upb_strtable_lookup(&s->symtab, sym); upb_def *ret = v ? upb_value_getptr(*v) : NULL; if (ret) upb_def_ref(ret, owner); return ret; } const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym, void *owner) { const upb_value *v = upb_strtable_lookup(&s->symtab, sym); upb_def *def = v ? upb_value_getptr(*v) : NULL; upb_msgdef *ret = NULL; if(def && def->type == UPB_DEF_MSG) { ret = upb_downcast_msgdef(def); upb_def_ref(def, owner); } return ret; } // Given a symbol and the base symbol inside which it is defined, find the // symbol's definition in t. static upb_def *upb_resolvename(const upb_strtable *t, const char *base, const char *sym) { if(strlen(sym) == 0) return NULL; if(sym[0] == UPB_SYMBOL_SEPARATOR) { // Symbols starting with '.' are absolute, so we do a single lookup. // Slice to omit the leading '.' const upb_value *v = upb_strtable_lookup(t, sym + 1); return v ? upb_value_getptr(*v) : NULL; } else { // Remove components from base until we find an entry or run out. // TODO: This branch is totally broken, but currently not used. (void)base; assert(false); return NULL; } } const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base, const char *sym, void *owner) { upb_def *ret = upb_resolvename(&s->symtab, base, sym); if (ret) upb_def_ref(ret, owner); return ret; } // Adds dups of any existing def that can reach a def with the same name as one // of "defs." This is to provide a consistent output graph as documented in // the header file. We use a modified depth-first traversal that traverses // each SCC (which we already computed) as if it were a single node. This // allows us to traverse the possibly-cyclic graph as if it were a DAG and to // easily dup the correct set of nodes with O(n) time. // // Returns true if defs that can reach "def" need to be duplicated into deftab. static bool upb_resolve_dfs(const upb_def *def, upb_strtable *deftab, void *new_owner, upb_inttable *seen, upb_status *s) { // Memoize results of this function for efficiency (since we're traversing a // DAG this is not needed to limit the depth of the search). upb_value *v = upb_inttable_lookup(seen, (uintptr_t)def); if (v) return upb_value_getbool(*v); // Visit submessages for all messages in the SCC. bool need_dup = false; const upb_def *base = def; do { assert(upb_def_isfinalized(def)); if (def->type == UPB_DEF_FIELD) continue; upb_value *v = upb_strtable_lookup(deftab, upb_def_fullname(def)); if (v) { upb_def *add_def = upb_value_getptr(*v); if (add_def->refcount.next && add_def->refcount.next != &def->refcount) { upb_status_seterrf(s, "conflicting existing defs for name: '%s'", upb_def_fullname(def)); return false; } need_dup = true; } const upb_msgdef *m = upb_dyncast_msgdef_const(def); if (m) { upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); if (!upb_hassubdef(f)) continue; // |= to avoid short-circuit; we need its side-effects. need_dup |= upb_resolve_dfs( upb_fielddef_subdef_mutable(f), deftab, new_owner, seen, s); if (!upb_ok(s)) return false; } } } while ((def = (upb_def*)def->refcount.next) != base); if (need_dup) { // Dup any defs that don't already have entries in deftab. def = base; do { if (def->type == UPB_DEF_FIELD) continue; const char *name = upb_def_fullname(def); if (upb_strtable_lookup(deftab, name) == NULL) { upb_def *newdef = upb_def_dup(def, new_owner); if (!newdef) goto oom; // We temporarily use this field to track who we were dup'd from. newdef->refcount.next = (upb_refcount*)def; if (!upb_strtable_insert(deftab, name, upb_value_ptr(newdef))) goto oom; } } while ((def = (upb_def*)def->refcount.next) != base); } upb_inttable_insert(seen, (uintptr_t)def, upb_value_bool(need_dup)); return need_dup; oom: upb_status_seterrliteral(s, "out of memory"); return false; } bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor, upb_status *status) { upb_def **add_defs = NULL; upb_strtable addtab; if (!upb_strtable_init(&addtab)) { upb_status_seterrliteral(status, "out of memory"); return false; } // Add new defs to table. for (int i = 0; i < n; i++) { upb_def *def = defs[i]; assert(upb_def_ismutable(def)); const char *fullname = upb_def_fullname(def); if (!fullname) { upb_status_seterrliteral( status, "Anonymous defs cannot be added to a symtab"); goto err; } if (upb_strtable_lookup(&addtab, fullname) != NULL) { upb_status_seterrf(status, "Conflicting defs named '%s'", fullname); goto err; } if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def))) goto oom_err; // We temporarily use this field to indicate that we came from the user's // list rather than being dup'd. def->refcount.next = NULL; } // Add dups of any existing def that can reach a def with the same name as // one of "defs." upb_inttable seen; if (!upb_inttable_init(&seen)) goto oom_err; upb_strtable_iter i; upb_strtable_begin(&i, &s->symtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); upb_resolve_dfs(def, &addtab, ref_donor, &seen, status); if (!upb_ok(status)) goto err; } upb_inttable_uninit(&seen); // Now using the table, resolve symbolic references. upb_strtable_begin(&i, &addtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); upb_msgdef *m = upb_dyncast_msgdef(def); if (!m) continue; // Type names are resolved relative to the message in which they appear. const char *base = upb_def_fullname(UPB_UPCAST(m)); upb_msg_iter j; for(upb_msg_begin(&j, m); !upb_msg_done(&j); upb_msg_next(&j)) { upb_fielddef *f = upb_msg_iter_field(&j); const char *name = upb_fielddef_subtypename(f); if (name) { upb_def *subdef = upb_resolvename(&addtab, base, name); if (subdef == NULL) { upb_status_seterrf( status, "couldn't resolve name '%s' in message '%s'", name, base); goto err; } else if (!upb_fielddef_setsubdef(f, subdef)) { upb_status_seterrf( status, "def '%s' had the wrong type for field '%s'", upb_def_fullname(subdef), upb_fielddef_name(f)); goto err; } } if (upb_fielddef_type(f) == UPB_TYPE(ENUM) && upb_fielddef_subdef(f) && !upb_fielddef_resolvedefault(f, status)) goto err; } } // We need an array of the defs in addtab, for passing to upb_finalize. add_defs = malloc(sizeof(void*) * upb_strtable_count(&addtab)); if (add_defs == NULL) goto oom_err; upb_strtable_begin(&i, &addtab); for (n = 0; !upb_strtable_done(&i); upb_strtable_next(&i)) add_defs[n++] = upb_value_getptr(upb_strtable_iter_value(&i)); // Restore the next pointer that we stole. for (int i = 0; i < n; i++) add_defs[i]->refcount.next = &add_defs[i]->refcount; if (!upb_finalize(add_defs, n, status)) goto err; upb_strtable_uninit(&addtab); for (int i = 0; i < n; i++) { upb_def *def = add_defs[i]; const char *name = upb_def_fullname(def); upb_def_donateref(def, ref_donor, s); upb_value *v = upb_strtable_lookup(&s->symtab, name); if(v) { upb_def_unref(upb_value_getptr(*v), s); upb_value_setptr(v, def); } else { upb_strtable_insert(&s->symtab, name, upb_value_ptr(def)); } } free(add_defs); return true; oom_err: upb_status_seterrliteral(status, "out of memory"); err: { // Need to unref any defs we dup'd (we can distinguish them from defs that // the user passed in by their def->refcount.next pointers). upb_strtable_iter i; upb_strtable_begin(&i, &addtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); if (def->refcount.next) upb_def_unref(def, s); } } upb_strtable_uninit(&addtab); free(add_defs); return false; }