/* ** upb (prototype) extension for Ruby. */ #include "ruby/ruby.h" #include "ruby/vm.h" #include "upb/def.h" #include "upb/handlers.h" #include "upb/pb/decoder.h" #include "upb/pb/encoder.h" #include "upb/pb/glue.h" #include "upb/shim/shim.h" #include "upb/symtab.h" // References to global state. // // Ruby does not have multi-VM support and it is common practice to store // references to classes and other per-VM state in global variables. static VALUE cSymbolTable; static VALUE cMessageDef; static VALUE cMessage; static VALUE message_map; static upb_inttable objcache; static bool objcache_initialized = false; struct rupb_Message; struct rupb_MessageDef; typedef struct rupb_Message rupb_Message; typedef struct rupb_MessageDef rupb_MessageDef; #define DEREF_RAW(ptr, ofs, type) *(type*)((char*)ptr + ofs) #define DEREF(msg, ofs, type) *(type*)(&msg->data[ofs]) void rupb_checkstatus(upb_status *s) { if (!upb_ok(s)) { rb_raise(rb_eRuntimeError, "%s", upb_status_errmsg(s)); } } static rupb_MessageDef *msgdef_get(VALUE self); static rupb_Message *msg_get(VALUE self); static const rupb_MessageDef *get_rbmsgdef(const upb_msgdef *md); static const upb_handlers *new_fill_handlers(const rupb_MessageDef *rmd, const void *owner); static void putmsg(rupb_Message *msg, const rupb_MessageDef *rmd, upb_sink *sink); static VALUE msgdef_getwrapper(const upb_msgdef *md); static VALUE new_message_class(VALUE message_def); static VALUE get_message_class(VALUE klass, VALUE message); static VALUE msg_new(VALUE msgdef); /* Ruby VALUE <-> C primitive conversions *************************************/ // Ruby VALUE -> C. // TODO(haberman): add type/range/precision checks. static float value_to_float(VALUE val) { return NUM2DBL(val); } static double value_to_double(VALUE val) { return NUM2DBL(val); } static bool value_to_bool(VALUE val) { return RTEST(val); } static int32_t value_to_int32(VALUE val) { return NUM2INT(val); } static uint32_t value_to_uint32(VALUE val) { return NUM2LONG(val); } static int64_t value_to_int64(VALUE val) { return NUM2LONG(val); } static uint64_t value_to_uint64(VALUE val) { return NUM2ULL(val); } // C -> Ruby VALUE static VALUE float_to_value(float val) { return rb_float_new(val); } static VALUE double_to_value(double val) { return rb_float_new(val); } static VALUE bool_to_value(bool val) { return val ? Qtrue : Qfalse; } static VALUE int32_to_value(int32_t val) { return INT2NUM(val); } static VALUE uint32_to_value(uint32_t val) { return LONG2NUM(val); } static VALUE int64_to_value(int64_t val) { return LONG2NUM(val); } static VALUE uint64_to_value(uint64_t val) { return ULL2NUM(val); } /* stringsink *****************************************************************/ // This should probably be factored into a common upb component. typedef struct { upb_byteshandler handler; upb_bytessink sink; char *ptr; size_t len, size; } stringsink; static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { stringsink *sink = _sink; sink->len = 0; return sink; } static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, size_t len, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); stringsink *sink = _sink; size_t new_size = sink->size; while (sink->len + len > new_size) { new_size *= 2; } if (new_size != sink->size) { sink->ptr = realloc(sink->ptr, new_size); sink->size = new_size; } memcpy(sink->ptr + sink->len, ptr, len); sink->len += len; return len; } void stringsink_init(stringsink *sink) { upb_byteshandler_init(&sink->handler); upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); upb_bytessink_reset(&sink->sink, &sink->handler, sink); sink->size = 32; sink->ptr = malloc(sink->size); } void stringsink_uninit(stringsink *sink) { free(sink->ptr); } /* object cache ***************************************************************/ // The object cache is a singleton mapping of void* -> Ruby Object. // It caches Ruby objects that wrap C objects. // // When we are wrapping C objects it is desirable to give them identity // semantics. In other words, if you reach the same C object via two different // paths, it is desirable (and sometimes even required) that you get the same // wrapper object both times. If we instead just created a new wrapper object // every time you ask for one, we could end up with unexpected results like: // // f1 = msgdef.field("request_id") // f2 = msgdef.field("request_id") // // # equal? tests identity equality. Returns false without a cache. // f1.equal?(f2) // // We do not register the cache with Ruby's GC, so being in this map will not // keep the object alive. This is the desired behavior, because it lets objects // be freed if they have no references from Ruby. We do require, though, that // objects remove themselves from the map when they are freed. In this respect // the cache operates like a weak map where the values are weak. typedef VALUE createfunc(const void *obj); // Call to initialize the cache. Should be done once on process startup. static void objcache_init() { upb_inttable_init(&objcache, UPB_CTYPE_UINT64); objcache_initialized = true; } // Call to uninitialize the cache. Should be done once on process shutdown. static void objcache_uninit(ruby_vm_t *vm) { UPB_ASSERT(objcache_initialized); UPB_ASSERT(upb_inttable_count(&objcache) == 0); objcache_initialized = false; upb_inttable_uninit(&objcache); } // Looks up the given object in the cache. If the corresponding Ruby wrapper // object is found, returns it, otherwise creates the wrapper and returns that. static VALUE objcache_getorcreate(const void *obj, createfunc *func) { UPB_ASSERT(objcache_initialized); upb_value v; if (!upb_inttable_lookupptr(&objcache, obj, &v)) { v = upb_value_uint64(func(obj)); upb_inttable_insertptr(&objcache, obj, v); } return upb_value_getuint64(v); } // Removes the given object from the cache. Should only be called by the code // that is freeing the wrapper object. static void objcache_remove(const void *obj) { UPB_ASSERT(objcache_initialized); bool removed = upb_inttable_removeptr(&objcache, obj, NULL); UPB_ASSERT(removed); } /* message layout *************************************************************/ // We layout Ruby messages using a raw block of C memory. We assign offsets for // each member so that instances are laid out like a C struct instead of as // instance variables. This saves both memory and CPU. typedef struct { // The size of the block of memory we should allocate for instances. size_t size; // Prototype to memcpy() onto new message instances. Size is "size" above. void *prototype; // An offset for each member, indexed by upb_fielddef_index(f). uint32_t *field_offsets; } rb_msglayout; // Returns true for fields where the field value we store is a Ruby VALUE (ie. a // direct pointer to another Ruby object) instead of storing the value directly // in the message. static bool is_ruby_value(const upb_fielddef *f) { if (upb_fielddef_isseq(f)) { // Repeated fields are pointers to arrays. return true; } if (upb_fielddef_issubmsg(f)) { // Submessage fields are pointers to submessages. return true; } if (upb_fielddef_isstring(f)) { // String fields are pointers to string objects. return true; } return false; } // General alignment rules are that each type needs to be stored at an address // that is a multiple of its size. static size_t align_up(size_t val, size_t align) { return val % align == 0 ? val : val + align - (val % align); } // Byte size to store each upb type. static size_t rupb_sizeof(const upb_fielddef *f) { if (is_ruby_value(f)) { return sizeof(VALUE); } switch (upb_fielddef_type(f)) { case UPB_TYPE_BOOL: return 1; case UPB_TYPE_INT32: case UPB_TYPE_UINT32: case UPB_TYPE_ENUM: case UPB_TYPE_FLOAT: return 4; case UPB_TYPE_INT64: case UPB_TYPE_UINT64: case UPB_TYPE_DOUBLE: return 8; default: break; } UPB_ASSERT(false); return 0; } // Calculates offsets for each field. // // This lets us pack protos like structs instead of storing them like // dictionaries. This speeds up a parsing a lot and also saves memory // (unless messages are very sparse). static void assign_offsets(rb_msglayout *layout, const upb_msgdef *md) { layout->field_offsets = ALLOC_N(uint32_t, upb_msgdef_numfields(md)); size_t ofs = 0; upb_msg_field_iter i; for (upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); size_t field_size = rupb_sizeof(f); // Align field properly. // // TODO(haberman): optimize layout? For example we could sort fields // big-to-small. ofs = align_up(ofs, field_size); layout->field_offsets[upb_fielddef_index(f)] = ofs; ofs += field_size; } layout->size = ofs; } // Creates a prototype; a buffer we can memcpy() onto new instances to // initialize them. static void make_prototype(rb_msglayout *layout, const upb_msgdef *md) { void *prototype = ALLOC_N(char, layout->size); // Most members default to zero, so we'll start from that and then overwrite // more specific initialization. memset(prototype, 0, layout->size); upb_msg_field_iter i; for (upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); if (is_ruby_value(f)) { size_t ofs = layout->field_offsets[upb_fielddef_index(f)]; // Default all Ruby pointers to nil. DEREF_RAW(prototype, ofs, VALUE) = Qnil; } } layout->prototype = prototype; } static void msglayout_init(rb_msglayout *layout, const upb_msgdef *m) { assign_offsets(layout, m); make_prototype(layout, m); } static void msglayout_uninit(rb_msglayout *layout) { free(layout->field_offsets); free(layout->prototype); } /* Upb::MessageDef ************************************************************/ // C representation for Upb::MessageDef. // // Contains a reference to the underlying upb_msgdef, as well as associated data // like a reference to the corresponding Ruby class. struct rupb_MessageDef { // We own refs on all of these. // The upb_msgdef we are wrapping. const upb_msgdef *md; // A DecoderMethod for parsing a protobuf into this type. const upb_pbdecodermethod *fill_method; // Handlers for serializing into a protobuf of this type. const upb_handlers *serialize_handlers; // The Ruby class for instances of this type. VALUE klass; // Layout for messages of this type. rb_msglayout layout; }; // Called by the Ruby GC when a Upb::MessageDef is being freed. static void msgdef_free(void *_rmd) { rupb_MessageDef *rmd = _rmd; objcache_remove(rmd->md); upb_msgdef_unref(rmd->md, &rmd->md); if (rmd->fill_method) { upb_pbdecodermethod_unref(rmd->fill_method, &rmd->fill_method); } if (rmd->serialize_handlers) { upb_handlers_unref(rmd->serialize_handlers, &rmd->serialize_handlers); } msglayout_uninit(&rmd->layout); free(rmd); } // Called by the Ruby GC during the "mark" phase to decide what is still alive. // We call rb_gc_mark on all Ruby VALUE pointers we reference. static void msgdef_mark(void *_rmd) { rupb_MessageDef *rmd = _rmd; rb_gc_mark(rmd->klass); // Mark all submessage types. upb_msg_field_iter i; for (upb_msg_field_begin(&i, rmd->md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); if (upb_fielddef_issubmsg(f)) { // If we were trying to be more aggressively lazy, the submessage might // not be created and we only mark ones that are. rb_gc_mark(msgdef_getwrapper(upb_fielddef_msgsubdef(f))); } } } static const rb_data_type_t msgdef_type = {"Upb::MessageDef", {msgdef_mark, msgdef_free, NULL}}; // TODO(haberman): do we need an alloc func? We want to prohibit dup and // probably subclassing too. static rupb_MessageDef *msgdef_get(VALUE self) { rupb_MessageDef *msgdef; TypedData_Get_Struct(self, rupb_MessageDef, &msgdef_type, msgdef); return msgdef; } // Constructs the upb decoder method for parsing messages of this type. const upb_pbdecodermethod *new_fillmsg_decodermethod(const rupb_MessageDef *rmd, const void *owner) { const upb_handlers *fill_handlers = new_fill_handlers(rmd, &fill_handlers); upb_pbdecodermethodopts opts; upb_pbdecodermethodopts_init(&opts, fill_handlers); const upb_pbdecodermethod *ret = upb_pbdecodermethod_new(&opts, owner); upb_handlers_unref(fill_handlers, &fill_handlers); return ret; } // Constructs a new Ruby wrapper object around the given msgdef. static VALUE make_msgdef(const void *_md) { const upb_msgdef *md = _md; rupb_MessageDef *rmd; VALUE ret = TypedData_Make_Struct(cMessageDef, rupb_MessageDef, &msgdef_type, rmd); upb_msgdef_ref(md, &rmd->md); rmd->md = md; rmd->fill_method = NULL; // OPT: most of these things could be built lazily, when they are first // needed. msglayout_init(&rmd->layout, md); rmd->fill_method = NULL; rmd->klass = new_message_class(ret); rmd->serialize_handlers = upb_pb_encoder_newhandlers(md, &rmd->serialize_handlers); return ret; } // Accessor to get a decoder method for this message type. // Constructs the decoder method lazily. static const upb_pbdecodermethod *msgdef_decodermethod(rupb_MessageDef *rmd) { if (!rmd->fill_method) { rmd->fill_method = new_fillmsg_decodermethod(rmd, &rmd->fill_method); } return rmd->fill_method; } static VALUE msgdef_getwrapper(const upb_msgdef *md) { return objcache_getorcreate(md, make_msgdef); } static const rupb_MessageDef *get_rbmsgdef(const upb_msgdef *md) { return msgdef_get(msgdef_getwrapper(md)); } /* Upb::Message ***************************************************************/ // Code to implement the Upb::Message object. // // A unique Ruby class is generated for each message type, but all message types // share Upb::Message as their base class. Upb::Message contains all of the // actual functionality; the only reason the derived class exists at all is // for convenience. It lets Ruby users do things like: // // message = MyMessage.new // if message.kind_of?(MyMessage) // // ... and other similar things that Ruby users expect they can do. // C representation of Upb::Message. // // Represents a message instance, laid out like a C struct in a type-specific // layout. // // This will be sized according to what fields are actually present. struct rupb_Message { VALUE rbmsgdef; char data[]; }; // Returns the size of a message instance. size_t msg_size(const rupb_MessageDef *rmd) { return sizeof(rupb_Message) + rmd->layout.size; } static void msg_free(void *msg) { free(msg); } // Invoked by the Ruby GC whenever it is doing a mark-and-sweep. static void msg_mark(void *p) { rupb_Message *msg = p; rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef); // Mark the msgdef to keep it alive. rb_gc_mark(msg->rbmsgdef); // We need to mark all references to other Ruby values: strings, arrays, and // submessages that we point to. upb_msg_field_iter i; for (upb_msg_field_begin(&i, rmd->md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); if (is_ruby_value(f)) { size_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)]; rb_gc_mark(DEREF(msg, ofs, VALUE)); } } } static const rb_data_type_t msg_type = {"Upb::Message", {msg_mark, msg_free, NULL}}; static rupb_Message *msg_get(VALUE self) { rupb_Message *msg; TypedData_Get_Struct(self, rupb_Message, &msg_type, msg); return msg; } // Instance variable name that we use to store a reference from the Ruby class // for a message and its Upb::MessageDef. // // We avoid prefixing this by "@" to make it inaccessible by Ruby. static const char *kMessageDefMemberName = "msgdef"; static VALUE msg_getmsgdef(VALUE klass) { VALUE msgdef = rb_iv_get(klass, kMessageDefMemberName); if (msgdef == Qnil) { // TODO(haberman): If we want to allow subclassing, we might want to walk up // the hierarchy looking for this member. rb_raise(rb_eRuntimeError, "Can't call on Upb::Message directly, only subclasses"); } return msgdef; } // Called by the Ruby VM when it wants to create a new message instance. static VALUE msg_alloc(VALUE klass) { VALUE msgdef = msg_getmsgdef(klass); const rupb_MessageDef *rmd = msgdef_get(msgdef); rupb_Message *msg = (rupb_Message*)ALLOC_N(char, msg_size(rmd)); msg->rbmsgdef = msgdef; memcpy(&msg->data, rmd->layout.prototype, rmd->layout.size); VALUE ret = TypedData_Wrap_Struct(klass, &msg_type, msg); return ret; } // Creates a new Ruby class for the given Upb::MessageDef. The new class // derives from Upb::Message but also stores a reference to the Upb::MessageDef. static VALUE new_message_class(VALUE message_def) { msgdef_get(message_def); // Check type. VALUE klass = rb_class_new(cMessage); rb_iv_set(klass, kMessageDefMemberName, message_def); // This shouldn't be necessary because we should inherit the alloc func from // the base class of Message. For some reason this is not working properly // and we are having to define it manually. rb_define_alloc_func(klass, msg_alloc); return klass; } // Call to create a new Message instance. static VALUE msg_new(VALUE msgdef) { return rb_class_new_instance(0, NULL, get_message_class(Qnil, msgdef)); } // Looks up the given field. On success returns the upb_fielddef and stores the // offset in *ofs. Otherwise raises a Ruby exception. static const upb_fielddef *lookup_field(rupb_Message *msg, const char *field, size_t len, size_t *ofs) { const rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef); const upb_fielddef *f = upb_msgdef_ntof(rmd->md, field, len); if (!f) { rb_raise(rb_eArgError, "Message %s does not contain field %s", upb_msgdef_fullname(rmd->md), field); } *ofs = rmd->layout.field_offsets[upb_fielddef_index(f)]; return f; } // Sets the given field to the given value. static void setprimitive(rupb_Message *m, size_t ofs, const upb_fielddef *f, VALUE val) { switch (upb_fielddef_type(f)) { case UPB_TYPE_FLOAT: DEREF(m, ofs, float) = value_to_float(val); break; case UPB_TYPE_DOUBLE: DEREF(m, ofs, double) = value_to_double(val); break; case UPB_TYPE_BOOL: DEREF(m, ofs, bool) = value_to_bool(val); break; case UPB_TYPE_ENUM: case UPB_TYPE_INT32: DEREF(m, ofs, int32_t) = value_to_int32(val); break; case UPB_TYPE_UINT32: DEREF(m, ofs, uint32_t) = value_to_uint32(val); break; case UPB_TYPE_INT64: DEREF(m, ofs, int64_t) = value_to_int64(val); break; case UPB_TYPE_UINT64: DEREF(m, ofs, uint64_t) = value_to_uint64(val); break; default: rb_bug("Unexpected type"); } } // Returns the Ruby VALUE for the given field. static VALUE getprimitive(rupb_Message *m, size_t ofs, const upb_fielddef *f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_FLOAT: return float_to_value(DEREF(m, ofs, float)); case UPB_TYPE_DOUBLE: return double_to_value(DEREF(m, ofs, double)); case UPB_TYPE_BOOL: return bool_to_value(DEREF(m, ofs, bool)); case UPB_TYPE_ENUM: case UPB_TYPE_INT32: return int32_to_value(DEREF(m, ofs, int32_t)); case UPB_TYPE_UINT32: return uint32_to_value(DEREF(m, ofs, uint32_t)); case UPB_TYPE_INT64: return int64_to_value(DEREF(m, ofs, int64_t)); case UPB_TYPE_UINT64: return uint64_to_value(DEREF(m, ofs, uint64_t)); default: rb_bug("Unexpected type"); } } static VALUE msg_setter(rupb_Message *msg, VALUE field, VALUE val) { size_t ofs; // fieldp is a string like "id=". But we want to look up "id". const upb_fielddef *f = lookup_field(msg, RSTRING_PTR(field), RSTRING_LEN(field) - 1, &ofs); // Possibly introduce stricter type checking. if (is_ruby_value(f)) { DEREF(msg, ofs, VALUE) = val; } else { setprimitive(msg, ofs, f, val); } return val; } static VALUE msg_getter(rupb_Message *msg, VALUE field) { size_t ofs; const upb_fielddef *f = lookup_field(msg, RSTRING_PTR(field), RSTRING_LEN(field), &ofs); if (is_ruby_value(f)) { return DEREF(msg, ofs, VALUE); } else { return getprimitive(msg, ofs, f); } } // This is the Message object's "method_missing" method, so it receives calls // for any method whose name was not recognized. We use it to implement getters // and setters for every field // // call-seq: // message.field -> current value of "field" // message.field = new_value static VALUE msg_accessor(int argc, VALUE *argv, VALUE obj) { rupb_Message *msg = msg_get(obj); // method_missing protocol: (method [, arg1, arg2, ...]) UPB_ASSERT(argc >= 1 && SYMBOL_P(argv[0])); // OPT(haberman): find a better way to get the method name. // This is allocating a new string each time, which should not be necessary. VALUE method = rb_id2str(SYM2ID(argv[0])); const char *method_str = RSTRING_PTR(method); size_t method_len = RSTRING_LEN(method); if (method_str[method_len - 1] == '=') { // Call was: // foo.bar = x // // Ruby should guarantee that we have exactly one more argument (x) UPB_ASSERT(argc == 2); return msg_setter(msg, method, argv[1]); } else { // Call was: // foo.bar // // ...but may have had arguments. We want to disallow arguments. if (argc > 1) { rb_raise(rb_eArgError, "Accessor %s takes no arguments", method_str); } return msg_getter(msg, method); } } // Called when Ruby wants to turn this value into a string. // TODO(haberman): implement. static VALUE msg_tostring(VALUE self) { return rb_str_new2("tostring!"); } // call-seq: // MessageClass.parse(binary_protobuf) -> message instance // // Parses a binary protobuf according to this message class and returns a new // message instance of this class type. static VALUE msg_parse(VALUE klass, VALUE binary_protobuf) { Check_Type(binary_protobuf, T_STRING); rupb_MessageDef *rmd = msgdef_get(msg_getmsgdef(klass)); VALUE msg = rb_class_new_instance(0, NULL, klass); rupb_Message *msgp = msg_get(msg); const upb_pbdecodermethod *method = msgdef_decodermethod(rmd); const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); upb_pbdecoder decoder; upb_sink sink; upb_status status = UPB_STATUS_INIT; upb_pbdecoder_init(&decoder, method, &status); upb_sink_reset(&sink, h, msgp); upb_pbdecoder_resetoutput(&decoder, &sink); upb_bufsrc_putbuf(RSTRING_PTR(binary_protobuf), RSTRING_LEN(binary_protobuf), upb_pbdecoder_input(&decoder)); // TODO(haberman): make uninit optional if custom allocator for parsing // returns GC-rooted memory. That will make decoding longjmp-safe (required // if parsing triggers any VM errors like OOM or errors in user handlers). upb_pbdecoder_uninit(&decoder); rupb_checkstatus(&status); return msg; } // call-seq: // Message.serialize(message instance) -> serialized string // // Serializes the given message instance to a string. static VALUE msg_serialize(VALUE klass, VALUE message) { rupb_Message *msg = msg_get(message); const rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef); stringsink sink; stringsink_init(&sink); upb_pb_encoder encoder; upb_pb_encoder_init(&encoder, rmd->serialize_handlers); upb_pb_encoder_resetoutput(&encoder, &sink.sink); putmsg(msg, rmd, upb_pb_encoder_input(&encoder)); VALUE ret = rb_str_new(sink.ptr, sink.len); upb_pb_encoder_uninit(&encoder); stringsink_uninit(&sink); return ret; } /* Upb::SymbolTable ***********************************************************/ // Ruby wrapper around a SymbolTable. Allows loading of descriptors and turning // them into MessageDef objects. void symtab_free(void *s) { upb_symtab_unref(s, UPB_UNTRACKED_REF); } static const rb_data_type_t symtab_type = {"Upb::SymbolTable", {NULL, symtab_free, NULL}}; // Called by the Ruby VM to allocate a SymbolTable object. static VALUE symtab_alloc(VALUE klass) { upb_symtab *symtab = upb_symtab_new(UPB_UNTRACKED_REF); VALUE ret = TypedData_Wrap_Struct(klass, &symtab_type, symtab); return ret; } static upb_symtab *symtab_get(VALUE self) { upb_symtab *symtab; TypedData_Get_Struct(self, upb_symtab, &symtab_type, symtab); return symtab; } // call-seq: // symtab.load_descriptor(descriptor) // // Parses a FileDescriptorSet from the given string and adds the defs to the // SymbolTable. Raises if there was an error. static VALUE symtab_load_descriptor(VALUE self, VALUE descriptor) { upb_symtab *symtab = symtab_get(self); Check_Type(descriptor, T_STRING); upb_status status = UPB_STATUS_INIT; upb_load_descriptor_into_symtab( symtab, RSTRING_PTR(descriptor), RSTRING_LEN(descriptor), &status); if (!upb_ok(&status)) { rb_raise(rb_eRuntimeError, "Error loading descriptor: %s", upb_status_errmsg(&status)); } return Qnil; } // call-seq: // symtab.lookup(name) // // Returns the def for this name, or nil if none. // TODO(haberman): only support messages right now, not enums. static VALUE symtab_lookup(VALUE self, VALUE name) { upb_symtab *symtab = symtab_get(self); Check_Type(name, T_STRING); const char *cname = RSTRING_PTR(name); const upb_msgdef *m = upb_symtab_lookupmsg(symtab, cname); if (!m) { rb_raise(rb_eRuntimeError, "Message name '%s' not found", cname); } return msgdef_getwrapper(m); } /* handlers *******************************************************************/ // These are handlers for populating a Ruby protobuf message (rupb_Message) when // parsing. // Creates a handlerdata that simply contains the offset for this field. static const void *newhandlerdata(upb_handlers *h, uint32_t ofs) { size_t *hd_ofs = ALLOC(size_t); *hd_ofs = ofs; upb_handlers_addcleanup(h, hd_ofs, free); return hd_ofs; } typedef struct { size_t ofs; const upb_msgdef *md; } submsg_handlerdata_t; // Creates a handlerdata that contains offset and submessage type information. static const void *newsubmsghandlerdata(upb_handlers *h, uint32_t ofs, const upb_fielddef *f) { submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); hd->ofs = ofs; hd->md = upb_fielddef_msgsubdef(f); upb_handlers_addcleanup(h, hd, free); return hd; } // A handler that starts a repeated field. Gets or creates a Ruby array for the // field. static void *startseq_handler(void *closure, const void *hd) { rupb_Message *msg = closure; const size_t *ofs = hd; if (DEREF(msg, *ofs, VALUE) == Qnil) { DEREF(msg, *ofs, VALUE) = rb_ary_new(); } return (void*)DEREF(msg, *ofs, VALUE); } // Handlers that append primitive values to a repeated field (a regular Ruby // array for now). #define DEFINE_APPEND_HANDLER(type, ctype) \ static bool append##type##_handler(void *closure, const void *hd, \ ctype val) { \ VALUE ary = (VALUE)closure; \ rb_ary_push(ary, type##_to_value(val)); \ return true; \ } DEFINE_APPEND_HANDLER(bool, bool) DEFINE_APPEND_HANDLER(int32, int32_t) DEFINE_APPEND_HANDLER(uint32, uint32_t) DEFINE_APPEND_HANDLER(float, float) DEFINE_APPEND_HANDLER(int64, int64_t) DEFINE_APPEND_HANDLER(uint64, uint64_t) DEFINE_APPEND_HANDLER(double, double) // Appends a string to a repeated field (a regular Ruby array for now). static size_t appendstr_handler(void *closure, const void *hd, const char *str, size_t len, const upb_bufhandle *handle) { VALUE ary = (VALUE)closure; rb_ary_push(ary, rb_str_new(str, len)); return len; } // Sets a non-repeated string field in a message. static size_t str_handler(void *closure, const void *hd, const char *str, size_t len, const upb_bufhandle *handle) { rupb_Message *msg = closure; const size_t *ofs = hd; DEREF(msg, *ofs, VALUE) = rb_str_new(str, len); return len; } // Appends a submessage to a repeated field (a regular Ruby array for now). static void *appendsubmsg_handler(void *closure, const void *hd) { VALUE ary = (VALUE)closure; const submsg_handlerdata_t *submsgdata = hd; VALUE submsg = msg_new(msgdef_getwrapper(submsgdata->md)); rb_ary_push(ary, submsg); return msg_get(submsg); } // Sets a non-repeated submessage field in a message. static void *submsg_handler(void *closure, const void *hd) { rupb_Message *msg = closure; const submsg_handlerdata_t *submsgdata = hd; if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) { DEREF(msg, submsgdata->ofs, VALUE) = msg_new(msgdef_getwrapper(submsgdata->md)); } VALUE submsg = DEREF(msg, submsgdata->ofs, VALUE); return msg_get(submsg); } static void add_handlers_for_message(const void *closure, upb_handlers *h) { const rupb_MessageDef *rmd = get_rbmsgdef(upb_handlers_msgdef(h)); upb_msg_field_iter i; for (upb_msg_field_begin(&i, rmd->md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); size_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)]; if (upb_fielddef_isseq(f)) { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, ofs)); upb_handlers_setstartseq(h, f, startseq_handler, &attr); upb_handlerattr_uninit(&attr); switch (upb_fielddef_type(f)) { #define SET_HANDLER(utype, ltype) \ case utype: \ upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ break; SET_HANDLER(UPB_TYPE_BOOL, bool); SET_HANDLER(UPB_TYPE_INT32, int32); SET_HANDLER(UPB_TYPE_UINT32, uint32); SET_HANDLER(UPB_TYPE_ENUM, int32); SET_HANDLER(UPB_TYPE_FLOAT, float); SET_HANDLER(UPB_TYPE_INT64, int64); SET_HANDLER(UPB_TYPE_UINT64, uint64); SET_HANDLER(UPB_TYPE_DOUBLE, double); #undef SET_HANDLER case UPB_TYPE_STRING: case UPB_TYPE_BYTES: // XXX: does't currently handle split buffers. upb_handlers_setstring(h, f, appendstr_handler, NULL); break; case UPB_TYPE_MESSAGE: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); upb_handlerattr_uninit(&attr); break; } } } switch (upb_fielddef_type(f)) { case UPB_TYPE_BOOL: case UPB_TYPE_INT32: case UPB_TYPE_UINT32: case UPB_TYPE_ENUM: case UPB_TYPE_FLOAT: case UPB_TYPE_INT64: case UPB_TYPE_UINT64: case UPB_TYPE_DOUBLE: // The shim writes directly at the given offset (instead of using // DEREF()) so we need to add the msg overhead. upb_shim_set(h, f, ofs + sizeof(rupb_Message), -1); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, ofs)); // XXX: does't currently handle split buffers. upb_handlers_setstring(h, f, str_handler, &attr); upb_handlerattr_uninit(&attr); break; } case UPB_TYPE_MESSAGE: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, ofs, f)); upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); upb_handlerattr_uninit(&attr); break; } } } } // Creates upb handlers for populating a message. static const upb_handlers *new_fill_handlers(const rupb_MessageDef *rmd, const void *owner) { return upb_handlers_newfrozen(rmd->md, owner, add_handlers_for_message, NULL); } /* msgvisitor *****************************************************************/ // This is code to push the contents of a Ruby message (rupb_Message) to a upb // sink. static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t ret; bool ok = upb_handlers_getselector(f, type, &ret); UPB_ASSERT(ok); return ret; } static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { if (str == Qnil) return; UPB_ASSERT(BUILTIN_TYPE(str) == RUBY_T_STRING); upb_sink subsink; upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), &subsink); upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), RSTRING_LEN(str), NULL); upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); } static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink) { if (submsg == Qnil) return; upb_sink subsink; const rupb_MessageDef *sub_rmd = get_rbmsgdef(upb_fielddef_msgsubdef(f)); upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); putmsg(msg_get(submsg), sub_rmd, &subsink); upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); } static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink) { if (ary == Qnil) return; UPB_ASSERT(BUILTIN_TYPE(ary) == RUBY_T_ARRAY); upb_sink subsink; upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); upb_fieldtype_t type = upb_fielddef_type(f); upb_selector_t sel = 0; if (upb_fielddef_isprimitive(f)) { sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); } int i; for (i = 0; i < RARRAY_LEN(ary); i++) { VALUE val = rb_ary_entry(ary, i); switch (type) { #define T(upbtypeconst, upbtype, ctype) \ case upbtypeconst: \ upb_sink_put##upbtype(&subsink, sel, value_to_##upbtype(val)); \ break; T(UPB_TYPE_FLOAT, float, float) T(UPB_TYPE_DOUBLE, double, double) T(UPB_TYPE_BOOL, bool, bool) case UPB_TYPE_ENUM: T(UPB_TYPE_INT32, int32, int32_t) T(UPB_TYPE_UINT32, uint32, uint32_t) T(UPB_TYPE_INT64, int64, int64_t) T(UPB_TYPE_UINT64, uint64, uint64_t) case UPB_TYPE_STRING: case UPB_TYPE_BYTES: putstr(val, f, &subsink); break; case UPB_TYPE_MESSAGE: putsubmsg(val, f, &subsink); break; #undef T } } upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); } static void putmsg(rupb_Message *msg, const rupb_MessageDef *rmd, upb_sink *sink) { upb_sink_startmsg(sink); upb_msg_field_iter i; for (upb_msg_field_begin(&i, rmd->md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); uint32_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)]; if (upb_fielddef_isseq(f)) { VALUE ary = DEREF(msg, ofs, VALUE); if (ary != Qnil) { putary(ary, f, sink); } } else if (upb_fielddef_isstring(f)) { putstr(DEREF(msg, ofs, VALUE), f, sink); } else if (upb_fielddef_issubmsg(f)) { putsubmsg(DEREF(msg, ofs, VALUE), f, sink); } else { upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); #define T(upbtypeconst, upbtype, ctype) \ case upbtypeconst: \ upb_sink_put##upbtype(sink, sel, DEREF(msg, ofs, ctype)); \ break; switch (upb_fielddef_type(f)) { T(UPB_TYPE_FLOAT, float, float) T(UPB_TYPE_DOUBLE, double, double) T(UPB_TYPE_BOOL, bool, bool) case UPB_TYPE_ENUM: T(UPB_TYPE_INT32, int32, int32_t) T(UPB_TYPE_UINT32, uint32, uint32_t) T(UPB_TYPE_INT64, int64, int64_t) T(UPB_TYPE_UINT64, uint64, uint64_t) case UPB_TYPE_STRING: case UPB_TYPE_BYTES: case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); } #undef T } } upb_status status; upb_sink_endmsg(sink, &status); } /* top level ******************************************************************/ static VALUE get_message_class(VALUE klass, VALUE message) { rupb_MessageDef *rmd = msgdef_get(message); return rmd->klass; } void Init_upb() { VALUE upb = rb_define_module("Upb"); rb_define_singleton_method(upb, "get_message_class", get_message_class, 1); rb_gc_register_address(&message_map); cSymbolTable = rb_define_class_under(upb, "SymbolTable", rb_cObject); rb_define_alloc_func(cSymbolTable, symtab_alloc); rb_define_method(cSymbolTable, "load_descriptor", symtab_load_descriptor, 1); rb_define_method(cSymbolTable, "lookup", symtab_lookup, 1); cMessageDef = rb_define_class_under(upb, "MessageDef", rb_cObject); cMessage = rb_define_class_under(upb, "Message", rb_cObject); rb_define_alloc_func(cMessage, msg_alloc); rb_define_method(cMessage, "method_missing", msg_accessor, -1); rb_define_method(cMessage, "to_s", msg_tostring, 0); rb_define_singleton_method(cMessage, "parse", msg_parse, 1); rb_define_singleton_method(cMessage, "serialize", msg_serialize, 1); objcache_init(); // This causes atexit crashes for unknown reasons. :( // ruby_vm_at_exit(objcache_uninit); }