/* * * Tests for upb_table. */ #include #include #include #include #include #include #include #include #include #include "tests/upb_test.h" #include "upb/table.int.h" bool benchmark = false; #define CPU_TIME_PER_TEST 0.5 using std::vector; double get_usertime() { struct rusage usage; getrusage(RUSAGE_SELF, &usage); return usage.ru_utime.tv_sec + (usage.ru_utime.tv_usec/1000000.0); } /* num_entries must be a power of 2. */ void test_strtable(const vector& keys, uint32_t num_to_insert) { /* Initialize structures. */ upb_strtable table; std::map m; upb_strtable_init(&table, UPB_CTYPE_INT32); std::set all; for(size_t i = 0; i < num_to_insert; i++) { const std::string& key = keys[i]; all.insert(key); upb_strtable_insert(&table, key.c_str(), upb_value_int32(key[0])); m[key] = key[0]; } /* Test correctness. */ for(uint32_t i = 0; i < keys.size(); i++) { const std::string& key = keys[i]; upb_value v; bool found = upb_strtable_lookup(&table, key.c_str(), &v); if(m.find(key) != m.end()) { /* Assume map implementation is correct. */ ASSERT(found); ASSERT(upb_value_getint32(v) == key[0]); ASSERT(m[key] == key[0]); } else { ASSERT(!found); } } upb_strtable_iter iter; for(upb_strtable_begin(&iter, &table); !upb_strtable_done(&iter); upb_strtable_next(&iter)) { const char *key = upb_strtable_iter_key(&iter); std::string tmp(key, strlen(key)); ASSERT(strlen(key) == upb_strtable_iter_keylength(&iter)); std::set::iterator i = all.find(tmp); ASSERT(i != all.end()); all.erase(i); } ASSERT(all.empty()); // Test iteration with resizes. for (int i = 0; i < 10; i++) { for(upb_strtable_begin(&iter, &table); !upb_strtable_done(&iter); upb_strtable_next(&iter)) { // Even if we invalidate the iterator it should only return real elements. const char *key = upb_strtable_iter_key(&iter); std::string tmp(key, strlen(key)); ASSERT(upb_value_getint32(upb_strtable_iter_value(&iter)) == m[tmp]); // Force a resize even though the size isn't changing. // Also forces the table size to grow so some new buckets end up empty. int new_lg2 = table.t.size_lg2 + 1; // Don't use more than 64k tables, to avoid exhausting memory. new_lg2 = UPB_MIN(new_lg2, 16); upb_strtable_resize(&table, new_lg2); } } upb_strtable_uninit(&table); } /* num_entries must be a power of 2. */ void test_inttable(int32_t *keys, uint16_t num_entries, const char *desc) { /* Initialize structures. */ upb_inttable table; uint32_t largest_key = 0; std::map m; __gnu_cxx::hash_map hm; upb_inttable_init(&table, UPB_CTYPE_UINT32); for(size_t i = 0; i < num_entries; i++) { int32_t key = keys[i]; largest_key = UPB_MAX((int32_t)largest_key, key); upb_inttable_insert(&table, key, upb_value_uint32(key * 2)); m[key] = key*2; hm[key] = key*2; } /* Test correctness. */ for(uint32_t i = 0; i <= largest_key; i++) { upb_value v; bool found = upb_inttable_lookup(&table, i, &v); if(m.find(i) != m.end()) { /* Assume map implementation is correct. */ ASSERT(found); ASSERT(upb_value_getuint32(v) == i*2); ASSERT(m[i] == i*2); ASSERT(hm[i] == i*2); } else { ASSERT(!found); } } for(uint16_t i = 0; i < num_entries; i += 2) { upb_value val; bool ret = upb_inttable_remove(&table, keys[i], &val); ASSERT(ret == (m.erase(keys[i]) == 1)); if (ret) ASSERT(upb_value_getuint32(val) == (uint32_t)keys[i] * 2); hm.erase(keys[i]); m.erase(keys[i]); } ASSERT(upb_inttable_count(&table) == hm.size()); /* Test correctness. */ for(uint32_t i = 0; i <= largest_key; i++) { upb_value v; bool found = upb_inttable_lookup(&table, i, &v); if(m.find(i) != m.end()) { /* Assume map implementation is correct. */ ASSERT(found); ASSERT(upb_value_getuint32(v) == i*2); ASSERT(m[i] == i*2); ASSERT(hm[i] == i*2); } else { ASSERT(!found); } } // Test replace. for(uint32_t i = 0; i <= largest_key; i++) { upb_value v = upb_value_uint32(i*3); bool replaced = upb_inttable_replace(&table, i, v); if(m.find(i) != m.end()) { /* Assume map implementation is correct. */ ASSERT(replaced); m[i] = i * 3; hm[i] = i * 3; } else { ASSERT(!replaced); } } // Compact and test correctness again. upb_inttable_compact(&table); for(uint32_t i = 0; i <= largest_key; i++) { upb_value v; bool found = upb_inttable_lookup(&table, i, &v); if(m.find(i) != m.end()) { /* Assume map implementation is correct. */ ASSERT(found); ASSERT(upb_value_getuint32(v) == i*3); ASSERT(m[i] == i*3); ASSERT(hm[i] == i*3); } else { ASSERT(!found); } } if(!benchmark) { upb_inttable_uninit(&table); return; } printf("%s\n", desc); /* Test performance. We only test lookups for keys that are known to exist. */ uint16_t *rand_order = new uint16_t[num_entries]; for(uint16_t i = 0; i < num_entries; i++) { rand_order[i] = i; } for(uint16_t i = num_entries - 1; i >= 1; i--) { uint16_t rand_i = (random() / (double)RAND_MAX) * i; ASSERT(rand_i <= i); uint16_t tmp = rand_order[rand_i]; rand_order[rand_i] = rand_order[i]; rand_order[i] = tmp; } uintptr_t x = 0; const int mask = num_entries - 1; int time_mask = 0xffff; printf("upb_inttable(seq): "); fflush(stdout); double before = get_usertime(); unsigned int i; #define MAYBE_BREAK \ if ((i & time_mask) == 0 && (get_usertime() - before) > CPU_TIME_PER_TEST) \ break; for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[i & mask]; upb_value v; bool ok = upb_inttable_lookup32(&table, key, &v); x += (uintptr_t)ok; } double total = get_usertime() - before; printf("%ld/s\n", (long)(i/total)); double upb_seq_i = i / 100; // For later percentage calcuation. printf("upb_inttable(rand): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[rand_order[i & mask]]; upb_value v; bool ok = upb_inttable_lookup32(&table, key, &v); x += (uintptr_t)ok; } total = get_usertime() - before; printf("%ld/s\n", (long)(i/total)); double upb_rand_i = i / 100; // For later percentage calculation. printf("std::map(seq): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[i & mask]; x += m[key]; } total = get_usertime() - before; printf("%ld/s (%0.1f%% of upb)\n", (long)(i/total), i / upb_seq_i); printf("std::map(rand): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[rand_order[i & mask]]; x += m[key]; } total = get_usertime() - before; printf("%ld/s (%0.1f%% of upb)\n", (long)(i/total), i / upb_rand_i); printf("__gnu_cxx::hash_map(seq): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[rand_order[i & mask]]; x += hm[key]; } total = get_usertime() - before; printf("%ld/s (%0.1f%% of upb)\n", (long)(i/total), i / upb_seq_i); printf("__gnu_cxx::hash_map(rand): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[rand_order[i & mask]]; x += hm[key]; } total = get_usertime() - before; if (x == INT_MAX) abort(); printf("%ld/s (%0.1f%% of upb)\n\n", (long)(i/total), i / upb_rand_i); upb_inttable_uninit(&table); delete[] rand_order; } int32_t *get_contiguous_keys(int32_t num) { int32_t *buf = new int32_t[num]; for(int32_t i = 0; i < num; i++) buf[i] = i; return buf; } void test_delete() { upb_inttable t; upb_inttable_init(&t, UPB_CTYPE_BOOL); upb_inttable_insert(&t, 0, upb_value_bool(true)); upb_inttable_insert(&t, 2, upb_value_bool(true)); upb_inttable_insert(&t, 4, upb_value_bool(true)); upb_inttable_compact(&t); upb_inttable_remove(&t, 0, NULL); upb_inttable_remove(&t, 2, NULL); upb_inttable_remove(&t, 4, NULL); upb_inttable_iter iter; for (upb_inttable_begin(&iter, &t); !upb_inttable_done(&iter); upb_inttable_next(&iter)) { ASSERT(false); } upb_inttable_uninit(&t); } extern "C" { int run_tests(int argc, char *argv[]) { for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "benchmark") == 0) benchmark = true; } vector keys; keys.push_back("google.protobuf.FileDescriptorSet"); keys.push_back("google.protobuf.FileDescriptorProto"); keys.push_back("google.protobuf.DescriptorProto"); keys.push_back("google.protobuf.DescriptorProto.ExtensionRange"); keys.push_back("google.protobuf.FieldDescriptorProto"); keys.push_back("google.protobuf.EnumDescriptorProto"); keys.push_back("google.protobuf.EnumValueDescriptorProto"); keys.push_back("google.protobuf.ServiceDescriptorProto"); keys.push_back("google.protobuf.MethodDescriptorProto"); keys.push_back("google.protobuf.FileOptions"); keys.push_back("google.protobuf.MessageOptions"); keys.push_back("google.protobuf.FieldOptions"); keys.push_back("google.protobuf.EnumOptions"); keys.push_back("google.protobuf.EnumValueOptions"); keys.push_back("google.protobuf.ServiceOptions"); keys.push_back("google.protobuf.MethodOptions"); keys.push_back("google.protobuf.UninterpretedOption"); keys.push_back("google.protobuf.UninterpretedOption.NamePart"); for (int i = 0; i < 10; i++) { test_strtable(keys, 18); } int32_t *keys1 = get_contiguous_keys(8); test_inttable(keys1, 8, "Table size: 8, keys: 1-8 ===="); delete[] keys1; int32_t *keys2 = get_contiguous_keys(64); test_inttable(keys2, 64, "Table size: 64, keys: 1-64 ====\n"); delete[] keys2; int32_t *keys3 = get_contiguous_keys(512); test_inttable(keys3, 512, "Table size: 512, keys: 1-512 ====\n"); delete[] keys3; int32_t *keys4 = new int32_t[64]; for(int32_t i = 0; i < 64; i++) { if(i < 32) keys4[i] = i+1; else keys4[i] = 10101+i; } test_inttable(keys4, 64, "Table size: 64, keys: 1-32 and 10133-10164 ====\n"); delete[] keys4; test_delete(); return 0; } }