/* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * This file defines very fast int->struct (inttable) and string->struct * (strtable) hash tables. The struct can be of any size, and it is stored * in the table itself, for cache-friendly performance. * * The table uses internal chaining with Brent's variation (inspired by the * Lua implementation of hash tables). The hash function for strings is * Austin Appleby's "MurmurHash." */ #ifndef UPB_TABLE_H_ #define UPB_TABLE_H_ #include #include "upb.h" #include "upb_string.h" #ifdef __cplusplus extern "C" { #endif typedef uint32_t upb_inttable_key_t; #define UPB_END_OF_CHAIN (uint32_t)-1 typedef struct { bool has_entry:1; // The rest of the bits are the user's. } upb_inttable_value; typedef struct { upb_inttable_key_t key; uint32_t next; // Internal chaining. } upb_inttable_header; typedef struct { upb_inttable_header hdr; upb_inttable_value val; } upb_inttable_entry; // TODO: consider storing the hash in the entry. This would avoid the need to // rehash on table resizes, but more importantly could possibly improve lookup // performance by letting us compare hashes before comparing lengths or the // strings themselves. typedef struct { upb_string *key; // We own a ref. uint32_t next; // Internal chaining. } upb_strtable_entry; typedef struct { void *entries; // Hash table. uint32_t count; // Number of entries in the hash part. uint32_t mask; // Mask to turn hash value -> bucket. uint16_t entry_size; // Size of each entry. uint16_t value_size; // Size of each value. uint8_t size_lg2; // Size of the hash table part is 2^size_lg2 entries. } upb_table; typedef struct { upb_table t; } upb_strtable; typedef struct { upb_table t; void *array; // Array part of the table. uint32_t array_size; // Array part size. uint32_t array_count; // Array part number of elements. } upb_inttable; // Initialize and free a table, respectively. Specify the initial size // with 'size' (the size will be increased as necessary). Value size // specifies how many bytes each value in the table is. // // WARNING! The lowest bit of every entry is reserved by the hash table. // It will always be overwritten when you insert, and must not be modified // when looked up! void upb_inttable_init(upb_inttable *table, uint32_t size, uint16_t value_size); void upb_inttable_free(upb_inttable *table); void upb_strtable_init(upb_strtable *table, uint32_t size, uint16_t entry_size); // TODO: update void upb_strtable_free(upb_strtable *table); // Number of values in the hash table. INLINE uint32_t upb_table_count(upb_table *t) { return t->count; } INLINE uint32_t upb_inttable_count(upb_inttable *t) { return t->array_count + upb_table_count(&t->t); } INLINE uint32_t upb_strtable_count(upb_strtable *t) { return upb_table_count(&t->t); } // Inserts the given key into the hashtable with the given value. The key must // not already exist in the hash table. The data will be copied from val into // the hashtable (the amount of data copied comes from value_size when the // table was constructed). Therefore the data at val may be freed once the // call returns. For string tables, the table takes a ref on str. // // WARNING: the lowest bit of val is reserved and will be overwritten! void upb_inttable_insert(upb_inttable *t, upb_inttable_key_t key, void *val); void upb_strtable_insert(upb_strtable *t, upb_strtable_entry *ent); // TODO: update void upb_inttable_compact(upb_inttable *t); INLINE uint32_t _upb_inttable_bucket(upb_inttable *t, upb_inttable_key_t k) { uint32_t bucket = k & t->t.mask; // Identity hash for ints. assert(bucket != UPB_END_OF_CHAIN); return bucket; } // Returns true if this key belongs in the array part of the table. INLINE bool _upb_inttable_isarrkey(upb_inttable *t, upb_inttable_key_t k) { return (k < t->array_size); } // Looks up key in this table, returning a pointer to the user's inserted data. // We have the caller specify the entry_size because fixing this as a literal // (instead of reading table->entry_size) gives the compiler more ability to // optimize. INLINE void *_upb_inttable_fastlookup(upb_inttable *t, uint32_t key, size_t entry_size, size_t value_size) { upb_inttable_value *arrval = (upb_inttable_value*)UPB_INDEX(t->array, key, value_size); if (_upb_inttable_isarrkey(t, key)) { //DEBUGPRINTF("array lookup for key %d, &val=%p, has_entry=%d\n", key, val, val->has_entry); return (arrval->has_entry) ? arrval : NULL; } uint32_t bucket = _upb_inttable_bucket(t, key); upb_inttable_entry *e = (upb_inttable_entry*)UPB_INDEX(t->t.entries, bucket, entry_size); //DEBUGPRINTF("looking in first bucket %d, entry size=%zd, addr=%p\n", bucket, entry_size, e); while (1) { //DEBUGPRINTF("%d, %d, %d\n", e->val.has_entry, e->hdr.key, key); if (e->hdr.key == key) { //DEBUGPRINTF("returning val from hash part\n"); return &e->val; } if ((bucket = e->hdr.next) == UPB_END_OF_CHAIN) return NULL; //DEBUGPRINTF("looking in bucket %d\n", bucket); e = (upb_inttable_entry*)UPB_INDEX(t->t.entries, bucket, entry_size); } } INLINE size_t _upb_inttable_entrysize(size_t value_size) { return upb_align_up(sizeof(upb_inttable_header) + value_size, 8); } INLINE void *upb_inttable_fastlookup(upb_inttable *t, uint32_t key, uint32_t value_size) { return _upb_inttable_fastlookup(t, key, _upb_inttable_entrysize(value_size), value_size); } INLINE void *upb_inttable_lookup(upb_inttable *t, uint32_t key) { return _upb_inttable_fastlookup(t, key, t->t.entry_size, t->t.value_size); } void *upb_strtable_lookup(upb_strtable *t, upb_string *key); // Provides iteration over the table. The order in which the entries are // returned is undefined. Insertions invalidate iterators. void *upb_strtable_begin(upb_strtable *t); void *upb_strtable_next(upb_strtable *t, upb_strtable_entry *cur); // Inttable iteration (should update strtable iteration to use this scheme too). // The order is undefined. // for(upb_inttable_iter i = upb_inttable_begin(t); !upb_inttable_done(i); // i = upb_inttable_next(t, i)) { // // ... // } typedef struct { upb_inttable_key_t key; upb_inttable_value *value; bool array_part; } upb_inttable_iter; upb_inttable_iter upb_inttable_begin(upb_inttable *t); upb_inttable_iter upb_inttable_next(upb_inttable *t, upb_inttable_iter iter); INLINE bool upb_inttable_done(upb_inttable_iter iter) { return iter.value == NULL; } INLINE upb_inttable_key_t upb_inttable_iter_key(upb_inttable_iter iter) { return iter.key; } INLINE void *upb_inttable_iter_value(upb_inttable_iter iter) { return iter.value; } #ifdef __cplusplus } /* extern "C" */ #endif #endif /* UPB_TABLE_H_ */