// // upb - a minimalist implementation of protocol buffers. // // Copyright (c) 2011-2012 Google Inc. See LICENSE for details. // Author: Josh Haberman // // The set of upb::*Def classes and upb::SymbolTable allow for defining and // manipulating schema information (as defined in .proto files). // // Defs go through two distinct phases of life: // // 1. MUTABLE: when first created, the properties of the def can be set freely // (for example a message's name, its list of fields, the name/number of // fields, etc). During this phase the def is *not* thread-safe, and may // not be used for any purpose except to set its properties (it can't be // used to parse anything, create any messages in memory, etc). // // 2. FINALIZED: the Def::Finzlie() operation finalizes a set of defs, // which makes them thread-safe and immutable. Finalized defs may only be // accessed through a CONST POINTER. If you want to modify an existing // immutable def, copy it with Dup() and modify and finalize the copy. // // The refcounting of defs works properly no matter what state the def is in. // Once the def is finalized it is guaranteed that any def reachable from a // live def is also live (so a ref on the base of a message tree keeps the // whole tree alive). // // You can test for which stage of life a def is in by calling IsMutable(). // This is particularly useful for dynamic language bindings, which must // properly guarantee that the dynamic language cannot break the rules laid out // above. // // It would be possible to make the defs thread-safe during stage 1 by using // mutexes internally and changing any methods returning pointers to return // copies instead. This could be important if we are integrating with a VM or // interpreter that does not naturally serialize access to wrapped objects (for // example, in the case of Python this is not necessary because of the GIL). #ifndef UPB_DEF_HPP #define UPB_DEF_HPP #include #include #include #include "upb/def.h" #include "upb/upb.hpp" namespace upb { class Def; class MessageDef; typedef upb_fieldtype_t FieldType; typedef upb_label_t Label; class FieldDef : public upb_fielddef { public: static FieldDef* Cast(upb_fielddef *f) { return static_cast(f); } static const FieldDef* Cast(const upb_fielddef *f) { return static_cast(f); } static FieldDef* New(void *owner) { return Cast(upb_fielddef_new(owner)); } FieldDef* Dup(void *owner) const { return Cast(upb_fielddef_dup(this, owner)); } void Ref(void *owner) { upb_fielddef_ref(this, owner); } void Unref(void *owner) { upb_fielddef_unref(this, owner); } bool IsMutable() const { return upb_fielddef_ismutable(this); } bool IsFinalized() const { return upb_fielddef_isfinalized(this); } bool IsString() const { return upb_isstring(this); } bool IsSequence() const { return upb_isseq(this); } bool IsSubmessage() const { return upb_issubmsg(this); } // Simple accessors. ///////////////////////////////////////////////////////// FieldType type() const { return upb_fielddef_type(this); } Label label() const { return upb_fielddef_label(this); } int32_t number() const { return upb_fielddef_number(this); } std::string name() const { return std::string(upb_fielddef_name(this)); } Value default_() const { return upb_fielddef_default(this); } Value bound_value() const { return upb_fielddef_fval(this); } uint16_t offset() const { return upb_fielddef_offset(this); } int16_t hasbit() const { return upb_fielddef_hasbit(this); } bool set_type(FieldType type) { return upb_fielddef_settype(this, type); } bool set_label(Label label) { return upb_fielddef_setlabel(this, label); } void set_offset(uint16_t offset) { upb_fielddef_setoffset(this, offset); } void set_hasbit(int16_t hasbit) { upb_fielddef_sethasbit(this, hasbit); } void set_fval(Value fval) { upb_fielddef_setfval(this, fval); } void set_accessor(struct _upb_accessor_vtbl* vtbl) { upb_fielddef_setaccessor(this, vtbl); } MessageDef* message(); const MessageDef* message() const; struct _upb_accessor_vtbl *accessor() const { return upb_fielddef_accessor(this); } // "Number" and "name" must be set before the fielddef is added to a msgdef. // For the moment we do not allow these to be set once the fielddef is added // to a msgdef -- this could be relaxed in the future. bool set_number(int32_t number) { return upb_fielddef_setnumber(this, number); } bool set_name(const char *name) { return upb_fielddef_setname(this, name); } bool set_name(const std::string& name) { return set_name(name.c_str()); } // Default value. //////////////////////////////////////////////////////////// // Returns the default value for this fielddef, which may either be something // the client set explicitly or the "default default" (0 for numbers, empty // for strings). The field's type indicates the type of the returned value, // except for enum fields that are still mutable. // // For enums the default can be set either numerically or symbolically -- the // upb_fielddef_default_is_symbolic() function below will indicate which it // is. For string defaults, the value will be a upb_byteregion which is // invalidated by any other non-const call on this object. Once the fielddef // is finalized, symbolic enum defaults are resolved, so finalized enum // fielddefs always have a default of type int32. Value defaultval() { return upb_fielddef_default(this); } // Sets default value for the field. For numeric types, use // upb_fielddef_setdefault(), and "value" must match the type of the field. // For string/bytes types, use upb_fielddef_setdefaultstr(). Enum types may // use either, since the default may be set either numerically or // symbolically. // // NOTE: May only be called for fields whose type has already been set. // Also, will be reset to default if the field's type is set again. void set_default(Value value) { upb_fielddef_setdefault(this, value); } void set_default(const char *str) { upb_fielddef_setdefaultcstr(this, str); } void set_default(const char *str, size_t len) { upb_fielddef_setdefaultstr(this, str, len); } void set_default(const std::string& str) { upb_fielddef_setdefaultstr(this, str.c_str(), str.size()); } // The results of this function are only meaningful for mutable enum fields, // which can have a default specified either as an integer or as a string. // If this returns true, the default returned from upb_fielddef_default() is // a string, otherwise it is an integer. bool DefaultIsSymbolic() { return upb_fielddef_default_is_symbolic(this); } // Subdef. /////////////////////////////////////////////////////////////////// // Submessage and enum fields must reference a "subdef", which is the // MessageDef or EnumDef that defines their type. Note that when the // FieldDef is mutable it may not have a subdef *yet*, but this still returns // true to indicate that the field's type requires a subdef. bool HasSubDef() { return upb_hassubdef(this); } // Before a FieldDef is finalized, its subdef may be set either directly // (with a Def*) or symbolically. Symbolic refs must be resolved by the // client before the containing msgdef can be finalized. // // Both methods require that HasSubDef() (so the type must be set prior to // calling these methods). Returns false if this is not the case, or if the // given subdef is not of the correct type. The subtype is reset if the // field's type is changed. bool set_subdef(Def* def); bool set_subtype_name(const char *name) { return upb_fielddef_setsubtypename(this, name); } bool set_subtype_name(const std::string& str) { return set_subtype_name(str.c_str()); } // Returns the enum or submessage def or symbolic name for this field, if // any. May only be called for fields where HasSubDef() is true. Returns // NULL if the subdef has not been set or if you ask for a subtype name when // the subtype is currently set symbolically (or vice-versa). // // Caller does *not* own a ref on the returned def or string. // subtypename_name() is non-const because only mutable defs can have the // subtype name set symbolically (symbolic references must be resolved before // the MessageDef can be finalized). const Def* subdef() const; const char *subtype_name() { return upb_fielddef_subtypename(this); } private: UPB_DISALLOW_CONSTRUCT_AND_DESTRUCT(FieldDef); }; class Def : public upb_def { public: // Converting from C types to C++ wrapper types. static Def* Cast(upb_def *def) { return static_cast(def); } static const Def* Cast(const upb_def *def) { return static_cast(def); } void Ref(void *owner) const { upb_def_ref(this, owner); } void Unref(void *owner) const { upb_def_unref(this, owner); } void set_full_name(const char *name) { upb_def_setfullname(this, name); } void set_full_name(const std::string& name) { upb_def_setfullname(this, name.c_str()); } const char *full_name() const { return upb_def_fullname(this); } // Finalizes the given list of defs (as well as the fielddefs for the given // msgdefs). All defs reachable from any def in this list must either be // already finalized or elsewhere in the list. Any symbolic references to // enums or submessages must already have been resolved. Returns true on // success, otherwise false is returned and status contains details. In the // error case the input defs are unmodified. See the comment at the top of // this file for the semantics of finalized defs. // // n is currently limited to 64k defs, if more are required break them into // batches of 64k (or we could raise this limit, at the cost of a bigger // upb_def structure or complexity in upb_def_finalize()). static bool Finalize(Def*const* defs, int n, Status* status) { return upb_finalize(reinterpret_cast(defs), n, status); } static bool Finalize(const std::vector& defs, Status* status) { return Finalize(&defs[0], defs.size(), status); } }; class MessageDef : public upb_msgdef { public: // Converting from C types to C++ wrapper types. static MessageDef* Cast(upb_msgdef *md) { return static_cast(md); } static const MessageDef* Cast(const upb_msgdef *md) { return static_cast(md); } static MessageDef* DynamicCast(Def* def) { return Cast(upb_dyncast_msgdef(def)); } static const MessageDef* DynamicCast(const Def* def) { return Cast(upb_dyncast_msgdef_const(def)); } Def* AsDef() { return Def::Cast(UPB_UPCAST(this)); } const Def* AsDef() const { return Def::Cast(UPB_UPCAST(this)); } static MessageDef* New(void *owner) { return Cast(upb_msgdef_new(owner)); } MessageDef* Dup(void *owner) const { return Cast(upb_msgdef_dup(this, owner)); } void Ref(void *owner) const { upb_msgdef_ref(this, owner); } void Unref(void *owner) const { upb_msgdef_unref(this, owner); } // Read accessors -- may be called at any time. const char *full_name() const { return AsDef()->full_name(); } // The total size of in-memory messages created with this MessageDef. uint16_t instance_size() const { return upb_msgdef_size(this); } // The number of "hasbit" bytes in a message instance. uint8_t hasbit_bytes() const { return upb_msgdef_hasbit_bytes(this); } uint32_t extension_start() const { return upb_msgdef_extstart(this); } uint32_t extension_end() const { return upb_msgdef_extend(this); } // Write accessors. May only be called before the msgdef is in a symtab. void set_full_name(const char *name) { AsDef()->set_full_name(name); } void set_full_name(const std::string& name) { AsDef()->set_full_name(name); } void set_instance_size(uint16_t size) { upb_msgdef_setsize(this, size); } void set_hasbit_bytes(uint16_t size) { upb_msgdef_setsize(this, size); } bool SetExtensionRange(uint32_t start, uint32_t end) { return upb_msgdef_setextrange(this, start, end); } // Adds a set of fields (FieldDef objects) to a MessageDef. Caller passes a // ref on the FieldDef to the MessageDef in both success and failure cases. // May only be done before the MessageDef is in a SymbolTable (requires // m->IsMutable() for the MessageDef). The FieldDef's name and number must // be set, and the message may not already contain any field with this name // or number, and this FieldDef may not be part of another message, otherwise // false is returned and the MessageDef is unchanged. bool AddField(FieldDef* f, void *owner) { return AddFields(&f, 1, owner); } bool AddFields(FieldDef*const * f, int n, void *owner) { return upb_msgdef_addfields(this, (upb_fielddef*const*)f, n, owner); } bool AddFields(const std::vector& fields, void *owner) { return AddFields(&fields[0], fields.size(), owner); } int field_count() const { return upb_msgdef_numfields(this); } // Lookup fields by name or number, returning NULL if no such field exists. FieldDef* FindFieldByName(const char *name) { return FieldDef::Cast(upb_msgdef_ntof(this, name)); } FieldDef* FindFieldByName(const std::string& name) { return FieldDef::Cast(upb_msgdef_ntof(this, name.c_str())); } FieldDef* FindFieldByNumber(uint32_t num) { return FieldDef::Cast(upb_msgdef_itof(this, num)); } const FieldDef* FindFieldByName(const char *name) const { return FindFieldByName(name); } const FieldDef* FindFieldByName(const std::string& name) const { return FindFieldByName(name); } const FieldDef* FindFieldByNumber(uint32_t num) const { return FindFieldByNumber(num); } class Iterator : public upb_msg_iter { public: explicit Iterator(MessageDef* md) { upb_msg_begin(this, md); } Iterator() {} FieldDef* field() { return FieldDef::Cast(upb_msg_iter_field(this)); } bool Done() { return upb_msg_done(this); } void Next() { return upb_msg_next(this); } }; class ConstIterator : public upb_msg_iter { public: explicit ConstIterator(const MessageDef* md) { upb_msg_begin(this, md); } ConstIterator() {} const FieldDef* field() { return FieldDef::Cast(upb_msg_iter_field(this)); } bool Done() { return upb_msg_done(this); } void Next() { return upb_msg_next(this); } }; private: UPB_DISALLOW_CONSTRUCT_AND_DESTRUCT(MessageDef); }; class EnumDef : public upb_enumdef { public: // Converting from C types to C++ wrapper types. static EnumDef* Cast(upb_enumdef *e) { return static_cast(e); } static const EnumDef* Cast(const upb_enumdef *e) { return static_cast(e); } static EnumDef* New(void *owner) { return Cast(upb_enumdef_new(owner)); } void Ref(void *owner) { upb_enumdef_ref(this, owner); } void Unref(void *owner) { upb_enumdef_unref(this, owner); } EnumDef* Dup(void *owner) const { return Cast(upb_enumdef_dup(this, owner)); } Def* AsDef() { return Def::Cast(UPB_UPCAST(this)); } const Def* AsDef() const { return Def::Cast(UPB_UPCAST(this)); } int32_t default_value() const { return upb_enumdef_default(this); } // May only be set if IsMutable(). void set_full_name(const char *name) { AsDef()->set_full_name(name); } void set_full_name(const std::string& name) { AsDef()->set_full_name(name); } void set_default_value(int32_t val) { return upb_enumdef_setdefault(this, val); } // Adds a value to the enumdef. Requires that no existing val has this // name or number (returns false and does not add if there is). May only // be called if IsMutable(). bool AddValue(char *name, int32_t num) { return upb_enumdef_addval(this, name, num); } bool AddValue(const std::string& name, int32_t num) { return upb_enumdef_addval(this, name.c_str(), num); } // Lookups from name to integer and vice-versa. bool LookupName(const char *name, int32_t* num) const { return upb_enumdef_ntoi(this, name, num); } // Lookup from integer to name, returns a NULL-terminated string which // the caller does not own, or NULL if not found. const char *LookupNumber(int32_t num) const { return upb_enumdef_iton(this, num); } private: UPB_DISALLOW_CONSTRUCT_AND_DESTRUCT(EnumDef); }; class SymbolTable : public upb_symtab { public: // Converting from C types to C++ wrapper types. static SymbolTable* Cast(upb_symtab *s) { return static_cast(s); } static const SymbolTable* Cast(const upb_symtab *s) { return static_cast(s); } static SymbolTable* New() { return Cast(upb_symtab_new()); } void Ref() const { upb_symtab_unref(this); } void Unref() const { upb_symtab_unref(this); } // Adds the given defs to the symtab, resolving all symbols. Only one def // per name may be in the list, but defs can replace existing defs in the // symtab. The entire operation either succeeds or fails. If the operation // fails, the symtab is unchanged, false is returned, and status indicates // the error. The caller passes a ref on the defs in all cases. bool Add(Def *const *defs, int n, void *owner, Status* status) { return upb_symtab_add(this, (upb_def*const*)defs, n, owner, status); } bool Add(const std::vector& defs, void *owner, Status* status) { return Add(&defs[0], defs.size(), owner, status); } // If the given name refers to a message in this symbol table, returns a new // ref to that MessageDef object, otherwise returns NULL. const MessageDef* LookupMessage(const char *name, void *owner) const { return MessageDef::Cast(upb_symtab_lookupmsg(this, name, owner)); } private: UPB_DISALLOW_CONSTRUCT_AND_DESTRUCT(SymbolTable); }; template <> inline const FieldDef* GetValue(Value v) { return static_cast(upb_value_getfielddef(v)); } template <> inline Value MakeValue(FieldDef* v) { return upb_value_fielddef(v); } inline MessageDef* FieldDef::message() { return MessageDef::Cast(upb_fielddef_msgdef(this)); } inline const MessageDef* FieldDef::message() const { return MessageDef::Cast(upb_fielddef_msgdef(this)); } inline const Def* FieldDef::subdef() const { return Def::Cast(upb_fielddef_subdef(this)); } inline bool FieldDef::set_subdef(Def* def) { return upb_fielddef_setsubdef(this, def); } } // namespace upb #endif