summaryrefslogtreecommitdiff
path: root/src/util/sort_inference.cpp
blob: 0304a8e350263913318c0144fcb7b9086bc62197 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*********************                                                        */
/*! \file sort_inference.cpp
 ** \verbatim
 ** Original author: Andrew Reynolds <andrew.j.reynolds@gmail.com>
 ** Major contributors: Morgan Deters <mdeters@cs.nyu.edu>
 ** Minor contributors (to current version): none
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2013  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Sort inference module
 **
 ** This class implements sort inference, based on a simple algorithm:
 ** First, we assume all functions and predicates have distinct uninterpreted types.
 ** One pass is made through the input assertions, while a union-find data structure
 ** maintains necessary information regarding constraints on these types.
 **/

#include <vector>

#include "util/sort_inference.h"

using namespace CVC4;
using namespace std;

namespace CVC4 {


void SortInference::printSort( const char* c, int t ){
  int rt = getRepresentative( t );
  if( d_type_types.find( rt )!=d_type_types.end() ){
    Trace(c) << d_type_types[rt];
  }else{
    Trace(c) << "s_" << rt;
  }
}

void SortInference::simplify( std::vector< Node >& assertions, bool doRewrite ){
  //process all assertions
  for( unsigned i=0; i<assertions.size(); i++ ){
    Trace("sort-inference-debug") << "Process " << assertions[i] << std::endl;
    std::map< Node, Node > var_bound;
    process( assertions[i], var_bound );
  }
  //print debug
  if( Trace.isOn("sort-inference") ){
    for( std::map< Node, int >::iterator it = d_op_return_types.begin(); it != d_op_return_types.end(); ++it ){
      Trace("sort-inference") << it->first << " : ";
      if( !d_op_arg_types[ it->first ].empty() ){
        Trace("sort-inference") << "( ";
        for( size_t i=0; i<d_op_arg_types[ it->first ].size(); i++ ){
          printSort( "sort-inference", d_op_arg_types[ it->first ][i] );
          Trace("sort-inference") << " ";
        }
        Trace("sort-inference") << ") -> ";
      }
      printSort( "sort-inference", it->second );
      Trace("sort-inference") << std::endl;
    }
    for( std::map< Node, std::map< Node, int > >::iterator it = d_var_types.begin(); it != d_var_types.end(); ++it ){
      Trace("sort-inference") << "Quantified formula " << it->first << " : " << std::endl;
      for( std::map< Node, int >::iterator it2 = it->second.begin(); it2 != it->second.end(); ++it2 ){
        printSort( "sort-inference", it2->second );
        Trace("sort-inference") << std::endl;
      }
      Trace("sort-inference") << std::endl;
    }
  }
  if( doRewrite ){
    //simplify all assertions by introducing new symbols wherever necessary (NOTE: this is unsound for quantifiers)
    for( unsigned i=0; i<assertions.size(); i++ ){
      std::map< Node, Node > var_bound;
      assertions[i] = simplify( assertions[i], var_bound );
      Trace("sort-inference-rewrite") << " --> " << assertions[i] << std::endl;
    }
    //now, ensure constants are distinct
    for( std::map< TypeNode, std::map< Node, Node > >::iterator it = d_const_map.begin(); it != d_const_map.end(); ++it ){
      std::vector< Node > consts;
      for( std::map< Node, Node >::iterator it2 = it->second.begin(); it2 != it->second.end(); ++it2 ){
        consts.push_back( it2->second );
      }
      //add lemma enforcing introduced constants to be distinct?
    }
  }
}

int SortInference::getRepresentative( int t ){
  std::map< int, int >::iterator it = d_type_union_find.find( t );
  if( it!=d_type_union_find.end() ){
    if( it->second==t ){
      return t;
    }else{
      int rt = getRepresentative( it->second );
      d_type_union_find[t] = rt;
      return rt;
    }
  }else{
    return t;
  }
}

void SortInference::setEqual( int t1, int t2 ){
  if( t1!=t2 ){
    int rt1 = getRepresentative( t1 );
    int rt2 = getRepresentative( t2 );
    if( rt1!=rt2 ){
      Trace("sort-inference-debug") << "Set equal : ";
      printSort( "sort-inference-debug", rt1 );
      Trace("sort-inference-debug") << " ";
      printSort( "sort-inference-debug", rt2 );
      Trace("sort-inference-debug") << std::endl;
      //check if they must be a type
      std::map< int, TypeNode >::iterator it1 = d_type_types.find( rt1 );
      std::map< int, TypeNode >::iterator it2 = d_type_types.find( rt2 );
      if( it2!=d_type_types.end() ){
        if( it1==d_type_types.end() ){
          //swap sides
          int swap = rt1;
          rt1 = rt2;
          rt2 = swap;
        }else{
          Assert( rt1==rt2 );
        }
      }
      /*
      d_type_eq_class[rt1].insert( d_type_eq_class[rt1].end(), d_type_eq_class[rt2].begin(), d_type_eq_class[rt2].end() );
      d_type_eq_class[rt2].clear();
      Trace("sort-inference-debug") << "EqClass : { ";
      for( int i=0; i<(int)d_type_eq_class[rt1].size(); i++ ){
        Trace("sort-inference-debug") << d_type_eq_class[rt1][i] << ", ";
      }
      Trace("sort-inference-debug") << "}" << std::endl;
      */
      d_type_union_find[rt2] = rt1;
    }
  }
}

int SortInference::getIdForType( TypeNode tn ){
  //register the return type
  std::map< TypeNode, int >::iterator it = d_id_for_types.find( tn );
  if( it==d_id_for_types.end() ){
    int sc = sortCount;
    d_type_types[ sortCount ] = tn;
    d_id_for_types[ tn ] = sortCount;
    sortCount++;
    return sc;
  }else{
    return it->second;
  }
}

int SortInference::process( Node n, std::map< Node, Node >& var_bound ){
  Trace("sort-inference-debug") << "Process " << n << std::endl;
  //add to variable bindings
  if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
    for( size_t i=0; i<n[0].getNumChildren(); i++ ){
      //TODO: try applying sort inference to quantified variables
      d_var_types[n][ n[0][i] ] = sortCount;
      sortCount++;

      //type of the quantified variable must be the same
      //d_var_types[n][ n[0][i] ] = getIdForType( n[0][i].getType() );
      var_bound[ n[0][i] ] = n;
    }
  }

  //process children
  std::vector< Node > children;
  std::vector< int > child_types;
  for( size_t i=0; i<n.getNumChildren(); i++ ){
    bool processChild = true;
    if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
      processChild = i==1;
    }
    if( processChild ){
      children.push_back( n[i] );
      child_types.push_back( process( n[i], var_bound ) );
    }
  }

  //remove from variable bindings
  if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
    //erase from variable bound
    for( size_t i=0; i<n[0].getNumChildren(); i++ ){
      var_bound.erase( n[0][i] );
    }
  }

  int retType;
  if( n.getKind()==kind::EQUAL ){
    //we only require that the left and right hand side must be equal
    setEqual( child_types[0], child_types[1] );
    retType = getIdForType( n.getType() );
  }else if( n.getKind()==kind::APPLY_UF ){
    Node op = n.getOperator();
    if( d_op_return_types.find( op )==d_op_return_types.end() ){
      //assign arbitrary sort for return type
      d_op_return_types[op] = sortCount;
      sortCount++;
      //d_type_eq_class[sortCount].push_back( op );
      //assign arbitrary sort for argument types
      for( size_t i=0; i<n.getNumChildren(); i++ ){
        d_op_arg_types[op].push_back( sortCount );
        sortCount++;
      }
    }
    for( size_t i=0; i<n.getNumChildren(); i++ ){
      //the argument of the operator must match the return type of the subterm
      setEqual( child_types[i], d_op_arg_types[op][i] );
    }
    //return type is the return type
    retType = d_op_return_types[op];
  }else{
    std::map< Node, Node >::iterator it = var_bound.find( n );
    if( it!=var_bound.end() ){
      Trace("sort-inference-debug") << n << " is a bound variable." << std::endl;
      //the return type was specified while binding
      retType = d_var_types[it->second][n];
    }else if( n.getKind() == kind::VARIABLE ){
      Trace("sort-inference-debug") << n << " is a variable." << std::endl;
      if( d_op_return_types.find( n )==d_op_return_types.end() ){
        //assign arbitrary sort
        d_op_return_types[n] = sortCount;
        sortCount++;
        //d_type_eq_class[sortCount].push_back( n );
      }
      retType = d_op_return_types[n];
    }else if( n.isConst() ){
      Trace("sort-inference-debug") << n << " is a constant." << std::endl;
      //can be any type we want
      retType = sortCount;
      sortCount++;
    }else{
      Trace("sort-inference-debug") << n << " is a interpreted symbol." << std::endl;
      //it is an interpretted term
      for( size_t i=0; i<children.size(); i++ ){
        Trace("sort-inference-debug") << children[i] << " forced to have " << children[i].getType() << std::endl;
        //must enforce the actual type of the operator on the children
        int ct = getIdForType( children[i].getType() );
        setEqual( child_types[i], ct );
      }
      //return type must be the actual return type
      retType = getIdForType( n.getType() );
    }
  }
  Trace("sort-inference-debug") << "Type( " << n << " ) = ";
  printSort("sort-inference-debug", retType );
  Trace("sort-inference-debug") << std::endl;
  return retType;
}


TypeNode SortInference::getOrCreateTypeForId( int t, TypeNode pref ){
  int rt = getRepresentative( t );
  if( d_type_types.find( rt )!=d_type_types.end() ){
    return d_type_types[rt];
  }else{
    TypeNode retType;
    //see if we can assign pref
    if( !pref.isNull() && d_id_for_types.find( pref )==d_id_for_types.end() ){
      retType = pref;
    }else{
      if( d_subtype_count.find( pref )==d_subtype_count.end() ){
        d_subtype_count[pref] = 0;
      }
      //must create new type
      std::stringstream ss;
      ss << "it_" << d_subtype_count[pref] << "_" << pref;
      d_subtype_count[pref]++;
      retType = NodeManager::currentNM()->mkSort( ss.str() );
    }
    d_id_for_types[ retType ] = rt;
    d_type_types[ rt ] = retType;
    return retType;
  }
}

TypeNode SortInference::getTypeForId( int t ){
  int rt = getRepresentative( t );
  if( d_type_types.find( rt )!=d_type_types.end() ){
    return d_type_types[rt];
  }else{
    return TypeNode::null();
  }
}

Node SortInference::getNewSymbol( Node old, TypeNode tn ){
  if( tn==old.getType() ){
    return old;
  }else if( old.isConst() ){
    //must make constant of type tn
    if( d_const_map[tn].find( old )==d_const_map[tn].end() ){
      std::stringstream ss;
      ss << "ic_" << tn << "_" << old;
      d_const_map[tn][ old ] = NodeManager::currentNM()->mkSkolem( ss.str(), tn, "constant created during sort inference" );  //use mkConst???
    }
    return d_const_map[tn][ old ];
  }else{
    std::stringstream ss;
    ss << "i_$$_" << old;
    return NodeManager::currentNM()->mkSkolem( ss.str(), tn, "created during sort inference" );
  }
}

Node SortInference::simplify( Node n, std::map< Node, Node >& var_bound ){
  std::vector< Node > children;
  if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
    //recreate based on types of variables
    std::vector< Node > new_children;
    for( size_t i=0; i<n[0].getNumChildren(); i++ ){
      TypeNode tn = getOrCreateTypeForId( d_var_types[n][ n[0][i] ], n[0][i].getType() );
      Node v = getNewSymbol( n[0][i], tn );
      new_children.push_back( v );
      var_bound[ n[0][i] ] = v;
    }
    children.push_back( NodeManager::currentNM()->mkNode( n[0].getKind(), new_children ) );
  }

  //process children
  if( n.getMetaKind() == kind::metakind::PARAMETERIZED ){
    children.push_back( n.getOperator() );
  }
  for( size_t i=0; i<n.getNumChildren(); i++ ){
    bool processChild = true;
    if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
      processChild = i>=1;
    }
    if( processChild ){
      children.push_back( simplify( n[i], var_bound ) );
    }
  }

  //remove from variable bindings
  if( n.getKind()==kind::FORALL || n.getKind()==kind::EXISTS ){
    //erase from variable bound
    for( size_t i=0; i<n[0].getNumChildren(); i++ ){
      var_bound.erase( n[0][i] );
    }
    return NodeManager::currentNM()->mkNode( n.getKind(), children );
  }else if( n.getKind()==kind::EQUAL ){
    if( children[0].getType()!=children[1].getType() ){
      if( children[0].isConst() ){
        children[0] = getNewSymbol( children[0], children[1].getType() );
      }else if( children[1].isConst() ){
        children[1] = getNewSymbol( children[1], children[0].getType() );
      }else{
        Trace("sort-inference-warn") << "Sort inference created bad equality: " << children[0] << " = " << children[1] << std::endl;
        Trace("sort-inference-warn") << "  Types : " << children[0].getType() << " " << children[1].getType() << std::endl;
        Assert( false );
      }
    }
    return NodeManager::currentNM()->mkNode( kind::APPLY_UF, children );
  }else if( n.getKind()==kind::APPLY_UF ){
    Node op = n.getOperator();
    if( d_symbol_map.find( op )==d_symbol_map.end() ){
      //make the new operator if necessary
      bool opChanged = false;
      std::vector< TypeNode > argTypes;
      for( size_t i=0; i<n.getNumChildren(); i++ ){
        TypeNode tn = getOrCreateTypeForId( d_op_arg_types[op][i], n[i].getType() );
        argTypes.push_back( tn );
        if( tn!=n[i].getType() ){
          opChanged = true;
        }
      }
      TypeNode retType = getOrCreateTypeForId( d_op_return_types[op], n.getType() );
      if( retType!=n.getType() ){
        opChanged = true;
      }
      if( opChanged ){
        std::stringstream ss;
        ss << "io_$$_" << op;
        TypeNode typ = NodeManager::currentNM()->mkFunctionType( argTypes, retType );
        d_symbol_map[op] = NodeManager::currentNM()->mkSkolem( ss.str(), typ, "op created during sort inference" );
      }else{
        d_symbol_map[op] = op;
      }
    }
    children[0] = d_symbol_map[op];
    //make sure all children have been taken care of
    for( size_t i=0; i<n.getNumChildren(); i++ ){
      TypeNode tn = children[i+1].getType();
      TypeNode tna = getTypeForId( d_op_arg_types[op][i] );
      if( tn!=tna ){
        if( n[i].isConst() ){
          children[i+1] = getNewSymbol( n[i], tna );
        }else{
          Trace("sort-inference-warn") << "Sort inference created bad child: " << n[i] << " " << tn << " " << tna << std::endl;
          Assert( false );
        }
      }
    }
    return NodeManager::currentNM()->mkNode( kind::APPLY_UF, children );
  }else{
    std::map< Node, Node >::iterator it = var_bound.find( n );
    if( it!=var_bound.end() ){
      return it->second;
    }else if( n.getKind() == kind::VARIABLE ){
      if( d_symbol_map.find( n )==d_symbol_map.end() ){
        TypeNode tn = getOrCreateTypeForId( d_op_return_types[n], n.getType() );
        d_symbol_map[n] = getNewSymbol( n, tn );
      }
      return d_symbol_map[n];
    }else if( n.isConst() ){
      //just return n, we will fix at higher scope
      return n;
    }else{
      return NodeManager::currentNM()->mkNode( n.getKind(), children );
    }
  }

}
int SortInference::getSortId( Node n ) {
  Node op = n.getKind()==kind::APPLY_UF ? n.getOperator() : n;
  return getRepresentative( d_op_return_types[op] );
}

int SortInference::getSortId( Node f, Node v ) {
  return getRepresentative( d_var_types[f][v] );
}

void SortInference::setSkolemVar( Node f, Node v, Node sk ){
  d_op_return_types[sk] = getSortId( f, v );
}

}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback