summaryrefslogtreecommitdiff
path: root/src/theory/unconstrained_simplifier.cpp
blob: 6c2c791cf5d54cd1c4be521beb7820df6067bede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*********************                                                        */
/*! \file unconstrained_simplifier.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Clark Barrett, Tim King, Andrew Reynolds
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Simplifications based on unconstrained variables
 **
 ** This module implements a preprocessing phase which replaces certain "unconstrained" expressions
 ** by variables.  Based on Roberto Bruttomesso's PhD thesis.
 **/


#include "theory/unconstrained_simplifier.h"

#include "theory/rewriter.h"
#include "theory/logic_info.h"
#include "smt/smt_statistics_registry.h"

using namespace std;
using namespace CVC4;
using namespace theory;


UnconstrainedSimplifier::UnconstrainedSimplifier(context::Context* context,
                                                 const LogicInfo& logicInfo)
  : d_numUnconstrainedElim("preprocessor::number of unconstrained elims", 0),
    d_context(context), d_substitutions(context), d_logicInfo(logicInfo)
{
  smtStatisticsRegistry()->registerStat(&d_numUnconstrainedElim);
}


UnconstrainedSimplifier::~UnconstrainedSimplifier()
{
  smtStatisticsRegistry()->unregisterStat(&d_numUnconstrainedElim);
}


struct unc_preprocess_stack_element {
  TNode node;
  TNode parent;
  unc_preprocess_stack_element(TNode n) : node(n) {}
  unc_preprocess_stack_element(TNode n, TNode p) : node(n), parent(p) {}
};/* struct unc_preprocess_stack_element */


void UnconstrainedSimplifier::visitAll(TNode assertion)
{
  // Do a topological sort of the subexpressions and substitute them
  vector<unc_preprocess_stack_element> toVisit;
  toVisit.push_back(assertion);

  while (!toVisit.empty())
  {
    // The current node we are processing
    TNode current = toVisit.back().node;
    TNode parent = toVisit.back().parent;
    toVisit.pop_back();

    TNodeCountMap::iterator find = d_visited.find(current);
    if (find != d_visited.end()) {
      if (find->second == 1) {
        d_visitedOnce.erase(current);
        if (current.isVar()) {
          d_unconstrained.erase(current);
        }
      }
      ++find->second;
      continue;
    }

    d_visited[current] = 1;
    d_visitedOnce[current] = parent;

    if (current.getNumChildren() == 0) {
      if (current.getKind()==kind::VARIABLE || current.getKind()==kind::SKOLEM) {
        d_unconstrained.insert(current);
      }
    }
    else {
      for(TNode::iterator child_it = current.begin(); child_it != current.end(); ++ child_it) {
        TNode childNode = *child_it;
        toVisit.push_back(unc_preprocess_stack_element(childNode, current));
      }
    }
  }
}

Node UnconstrainedSimplifier::newUnconstrainedVar(TypeNode t, TNode var)
{
  Node n = NodeManager::currentNM()->mkSkolem("unconstrained", t, "a new var introduced because of unconstrained variable " + var.toString());
  return n;
}


void UnconstrainedSimplifier::processUnconstrained()
{
  TNodeSet::iterator it = d_unconstrained.begin(), iend = d_unconstrained.end();
  vector<TNode> workList;
  for ( ; it != iend; ++it) {
    workList.push_back(*it);
  }
  Node currentSub;
  TNode parent;
  bool swap;
  bool isSigned;
  bool strict;
  vector<TNode> delayQueueLeft;
  vector<Node> delayQueueRight;

  TNode current = workList.back();
  workList.pop_back();
  for (;;) {
    Assert(d_visitedOnce.find(current) != d_visitedOnce.end());
    parent = d_visitedOnce[current];
    if (!parent.isNull()) {
      swap = isSigned = strict = false;
      bool checkParent = false;
      switch (parent.getKind()) {

        // If-then-else operator - any two unconstrained children makes the parent unconstrained
        case kind::ITE: {
          Assert(parent[0] == current || parent[1] == current || parent[2] == current);
          bool uCond = parent[0] == current || d_unconstrained.find(parent[0]) != d_unconstrained.end();
          bool uThen = parent[1] == current || d_unconstrained.find(parent[1]) != d_unconstrained.end();
          bool uElse = parent[2] == current || d_unconstrained.find(parent[2]) != d_unconstrained.end();
          if ((uCond && uThen) || (uCond && uElse) || (uThen && uElse)) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (uThen) {
                if (parent[1] != current) {
                  if (parent[1].isVar()) {
                    currentSub = parent[1];
                  }
                  else {
                    Assert(d_substitutions.hasSubstitution(parent[1]));
                    currentSub = d_substitutions.apply(parent[1]);
                  }
                }
                else if (currentSub.isNull()) {
                  currentSub = current;
                }
              }
              else if (parent[2] != current) {
                if (parent[2].isVar()) {
                  currentSub = parent[2];
                }
                else {
                  Assert(d_substitutions.hasSubstitution(parent[2]));
                  currentSub = d_substitutions.apply(parent[2]);
                }
              }
              else if (currentSub.isNull()) {
                currentSub = current;
              }
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
          else if (uCond) {
            Cardinality card = parent.getType().getCardinality();
            if (card.isFinite() && !card.isLargeFinite() && card.getFiniteCardinality() == 2) {
              // Special case: condition is unconstrained, then and else are different, and total cardinality of the type is 2, then the result
              // is unconstrained
              Node test = Rewriter::rewrite(parent[1].eqNode(parent[2]));
              if (test == NodeManager::currentNM()->mkConst<bool>(false)) {
                ++d_numUnconstrainedElim;
                if (currentSub.isNull()) {
                  currentSub = current;
                }
                currentSub = newUnconstrainedVar(parent.getType(), currentSub);
                current = parent;
              }
            }
          }
          break;
        }

        // Comparisons that return a different type - assuming domains are larger than 1, any
        // unconstrained child makes parent unconstrained as well
        case kind::EQUAL:
          if (parent[0].getType() != parent[1].getType()) {
            TNode other = (parent[0] == current) ? parent[1] : parent[0];
            if (current.getType().isSubtypeOf(other.getType())) {
              break;
            }
          }
          if( parent[0].getType().isDatatype() ){
            TypeNode tn = parent[0].getType();
            const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
            if( dt.isRecursiveSingleton( tn.toType() ) ){
              //domain size may be 1
              break;
            }
          }
          if( parent[0].getType().isBoolean() ){
            checkParent = true;
            break;
          }
        case kind::BITVECTOR_COMP:
        case kind::LT:
        case kind::LEQ:
        case kind::GT:
        case kind::GEQ:
        {
          if (d_unconstrained.find(parent) == d_unconstrained.end() &&
              !d_substitutions.hasSubstitution(parent)) {
            ++d_numUnconstrainedElim;
            Assert(parent[0] != parent[1] &&
                   (parent[0] == current || parent[1] == current));
            if (currentSub.isNull()) {
              currentSub = current;
            }
            currentSub = newUnconstrainedVar(parent.getType(), currentSub);
            current = parent;
          }
          else {
            currentSub = Node();
          }
          break;
        }

        // Unary operators that propagate unconstrainedness
        case kind::NOT:
        case kind::BITVECTOR_NOT:
        case kind::BITVECTOR_NEG:
        case kind::UMINUS:
          ++d_numUnconstrainedElim;
          Assert(parent[0] == current);
          if (currentSub.isNull()) {
            currentSub = current;
          }
          current = parent;
          break;

        // Unary operators that propagate unconstrainedness and return a different type
        case kind::BITVECTOR_EXTRACT:
          ++d_numUnconstrainedElim;
          Assert(parent[0] == current);
          if (currentSub.isNull()) {
            currentSub = current;
          }
          currentSub = newUnconstrainedVar(parent.getType(), currentSub);
          current = parent;
          break;

        // Operators returning same type requiring all children to be unconstrained
        case kind::AND:
        case kind::OR:
        case kind::IMPLIES:
        case kind::BITVECTOR_AND:
        case kind::BITVECTOR_OR:
        case kind::BITVECTOR_NAND:
        case kind::BITVECTOR_NOR:
        {
          bool allUnconstrained = true;
          for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
            if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
              allUnconstrained = false;
              break;
            }
          }
          if (allUnconstrained) {
            checkParent = true;
          }
        }
        break;

        // Require all children to be unconstrained and different
        case kind::BITVECTOR_SHL:
        case kind::BITVECTOR_LSHR:
        case kind::BITVECTOR_ASHR:
        case kind::BITVECTOR_UDIV_TOTAL:
        case kind::BITVECTOR_UREM_TOTAL:
        case kind::BITVECTOR_SDIV:
        case kind::BITVECTOR_SREM:
        case kind::BITVECTOR_SMOD: {
          bool allUnconstrained = true;
          bool allDifferent = true;
          for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
            if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
              allUnconstrained = false;
              break;
            }
            for(TNode::iterator child_it2 = child_it + 1; child_it2 != parent.end(); ++child_it2) {
              if (*child_it == *child_it2) {
                allDifferent = false;
                break;
              }
            }
          }
          if (allUnconstrained && allDifferent) {
            checkParent = true;
          }
          break;
        }

        // Requires all children to be unconstrained and different, and returns a different type
        case kind::BITVECTOR_CONCAT:
        {
          bool allUnconstrained = true;
          bool allDifferent = true;
          for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
            if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
              allUnconstrained = false;
              break;
            }
            for(TNode::iterator child_it2 = child_it + 1; child_it2 != parent.end(); ++child_it2) {
              if (*child_it == *child_it2) {
                allDifferent = false;
                break;
              }
            }
          }
          if (allUnconstrained && allDifferent) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (currentSub.isNull()) {
                currentSub = current;
              }
              currentSub = newUnconstrainedVar(parent.getType(), currentSub);
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
        }
        break;

        // N-ary operators returning same type requiring at least one child to be unconstrained
        case kind::PLUS:
        case kind::MINUS:
          if (current.getType().isInteger() &&
              !parent.getType().isInteger()) {
            break;
          }
        case kind::XOR:
        case kind::BITVECTOR_XOR:
        case kind::BITVECTOR_XNOR:
        case kind::BITVECTOR_PLUS:
        case kind::BITVECTOR_SUB:
          checkParent = true;
          break;

        // Multiplication/division: must be non-integer and other operand must be non-zero
        case kind::MULT: {
        case kind::DIVISION:
          Assert(parent.getNumChildren() == 2);
          TNode other;
          if (parent[0] == current) {
            other = parent[1];
          }
          else {
            Assert(parent[1] == current);
            other = parent[0];
          }
          if (d_unconstrained.find(other) != d_unconstrained.end()) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              if (current.getType().isInteger() && other.getType().isInteger()) {
                Assert(parent.getKind() == kind::DIVISION || parent.getType().isInteger());
                if (parent.getKind() == kind::DIVISION) {
                  break;
                }
              }
              ++d_numUnconstrainedElim;
              if (currentSub.isNull()) {
                currentSub = current;
              }
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
          else {
            // if only the denominator of a division is unconstrained, can't set it to 0 so the result is not unconstrained
            if (parent.getKind() == kind::DIVISION && current == parent[1]) {
              break;
            }
            NodeManager* nm = NodeManager::currentNM();
            // if we are an integer, the only way we are unconstrained is if we are a MULT by -1
            if (current.getType().isInteger()) {
              // div/mult by 1 should have been simplified
              Assert(other != nm->mkConst<Rational>(1));
              if (other == nm->mkConst<Rational>(-1)) {
                // div by -1 should have been simplified
                Assert(parent.getKind() == kind::MULT);
                Assert(parent.getType().isInteger());
              }
              else {
                break;
              }
            }
            else {
              // TODO: could build ITE here
              Node test = other.eqNode(nm->mkConst<Rational>(0));
              if (Rewriter::rewrite(test) != nm->mkConst<bool>(false)) {
                break;
              }
            }
            ++d_numUnconstrainedElim;
            if (currentSub.isNull()) {
              currentSub = current;
            }
            current = parent;
          }
          break;
        }

        // Bitvector MULT - current must only appear once in the children:
        // all other children must be unconstrained or odd
        case kind::BITVECTOR_MULT:
        {
          bool found = false;
          bool done = false;
          for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
            if ((*child_it) == current) {
              if (found) {
                done = true;
                break;
              }
              found = true;
              continue;
            }
            else if (d_unconstrained.find(*child_it) != d_unconstrained.end()) {
              continue;
            }
            else {
              NodeManager* nm = NodeManager::currentNM();
              Node extractOp = nm->mkConst<BitVectorExtract>(BitVectorExtract(0,0));
              vector<Node> children;
              children.push_back(*child_it);
              Node test = nm->mkNode(extractOp, children);
              BitVector one(1,unsigned(1));
              test = test.eqNode(nm->mkConst<BitVector>(one));
              if (Rewriter::rewrite(test) != nm->mkConst<bool>(true)) {
                done = true;
                break;
              }
            }
          }
          if (done) {
            break;
          }
          checkParent = true;
          break;
        }

        // Uninterpreted function - if domain is infinite, no quantifiers are used, and any child is unconstrained, result is unconstrained
        case kind::APPLY_UF:
          if (d_logicInfo.isQuantified() || !current.getType().getCardinality().isInfinite()) {
            break;
          }
          if (d_unconstrained.find(parent) == d_unconstrained.end() &&
              !d_substitutions.hasSubstitution(parent)) {
            ++d_numUnconstrainedElim;
            if (currentSub.isNull()) {
              currentSub = current;
            }
            if (parent.getType() != current.getType()) {
              currentSub = newUnconstrainedVar(parent.getType(), currentSub);
            }
            current = parent;
          }
          else {
            currentSub = Node();
          }
          break;

        // Array select - if array is unconstrained, so is result
        case kind::SELECT:
          if (parent[0] == current) {
            ++d_numUnconstrainedElim;
            Assert(current.getType().isArray());
            if (currentSub.isNull()) {
              currentSub = current;
            }
            currentSub = newUnconstrainedVar(current.getType().getArrayConstituentType(), currentSub);
            current = parent;
          }
          break;

        // Array store - if both store and value are unconstrained, so is resulting store
        case kind::STORE:
          if (((parent[0] == current &&
                d_unconstrained.find(parent[2]) != d_unconstrained.end()) ||
               (parent[2] == current &&
                d_unconstrained.find(parent[0]) != d_unconstrained.end()))) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (parent[0] != current) {
                if (parent[0].isVar()) {
                  currentSub = parent[0];
                }
                else {
                  Assert(d_substitutions.hasSubstitution(parent[0]));
                  currentSub = d_substitutions.apply(parent[0]);
                }
              }
              else if (currentSub.isNull()) {
                currentSub = current;
              }
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
          break;

        // Bit-vector comparisons: replace with new Boolean variable, but have
        // to also conjoin with a side condition as there is always one case
        // when the comparison is forced to be false
        case kind::BITVECTOR_ULT:
        case kind::BITVECTOR_UGE:
        case kind::BITVECTOR_UGT:
        case kind::BITVECTOR_ULE:
        case kind::BITVECTOR_SLT:
        case kind::BITVECTOR_SGE:
        case kind::BITVECTOR_SGT:
        case kind::BITVECTOR_SLE: {
          // Tuples over (signed, swap, strict).
          switch (parent.getKind()) {
            case kind::BITVECTOR_UGE:
              break;
            case kind::BITVECTOR_ULT:
              strict = true;
              break;
            case kind::BITVECTOR_ULE:
              swap = true;
              break;
            case kind::BITVECTOR_UGT:
              swap = true;
              strict = true;
              break;
            case kind::BITVECTOR_SGE:
              isSigned = true;
              break;
            case kind::BITVECTOR_SLT:
              isSigned = true;
              strict = true;
              break;
            case kind::BITVECTOR_SLE:
              isSigned = true;
              swap = true;
              break;
            case kind::BITVECTOR_SGT:
              isSigned = true;
              swap = true;
              strict = true;
              break;
            default:
              Unreachable();
          }
          TNode other;
          bool left = false;
          if (parent[0] == current) {
            other = parent[1];
            left = true;
          } else {
            Assert(parent[1] == current);
            other = parent[0];
          }
          if (d_unconstrained.find(other) != d_unconstrained.end()) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (currentSub.isNull()) {
                currentSub = current;
              }
              currentSub = newUnconstrainedVar(parent.getType(), currentSub);
              current = parent;
            } else {
              currentSub = Node();
            }
          } else {
            unsigned size = current.getType().getBitVectorSize();
            BitVector bv =
                isSigned ? BitVector(size, Integer(1).multiplyByPow2(size - 1))
                         : BitVector(size, unsigned(0));
            if (swap == left) {
              bv = ~bv;
            }
            if (currentSub.isNull()) {
              currentSub = current;
            }
            currentSub = newUnconstrainedVar(parent.getType(), currentSub);
            current = parent;
            NodeManager* nm = NodeManager::currentNM();
            Node test =
                Rewriter::rewrite(other.eqNode(nm->mkConst<BitVector>(bv)));
            if (test == nm->mkConst<bool>(false)) {
              break;
            }
            if (strict) {
              currentSub = currentSub.andNode(test.notNode());
            } else {
              currentSub = currentSub.orNode(test);
            }
            // Delay adding this substitution - see comment at end of function
            delayQueueLeft.push_back(current);
            delayQueueRight.push_back(currentSub);
            currentSub = Node();
            parent = TNode();
          }
          break;
        }

        // Do nothing 
        case kind::BITVECTOR_SIGN_EXTEND:
        case kind::BITVECTOR_ZERO_EXTEND:
        case kind::BITVECTOR_REPEAT:
        case kind::BITVECTOR_ROTATE_LEFT:
        case kind::BITVECTOR_ROTATE_RIGHT:

        default:
          break;
      }
      if( checkParent ){
        //run for various cases from above
        if (d_unconstrained.find(parent) == d_unconstrained.end() &&
            !d_substitutions.hasSubstitution(parent)) {
          ++d_numUnconstrainedElim;
          if (currentSub.isNull()) {
            currentSub = current;
          }
          current = parent;
        }
        else {
          currentSub = Node();
        }
      }
      if (current == parent && d_visited[parent] == 1) {
        d_unconstrained.insert(parent);
        continue;
      }
    }
    if (!currentSub.isNull()) {
      Assert(currentSub.isVar());
      d_substitutions.addSubstitution(current, currentSub, false);
    }
    if (workList.empty()) {
      break;
    }
    current = workList.back();
    currentSub = Node();
    workList.pop_back();
  }
  TNode left;
  Node right;
  // All substitutions except those arising from bitvector comparisons are
  // substitutions t -> x where x is a variable.  This allows us to build the
  // substitution very quickly (never invalidating the substitution cache).
  // Bitvector comparisons are more complicated and may require
  // back-substitution and cache-invalidation.  So we do these last.
  while (!delayQueueLeft.empty()) {
    left = delayQueueLeft.back();
    if (!d_substitutions.hasSubstitution(left)) {
      right = d_substitutions.apply(delayQueueRight.back());
      d_substitutions.addSubstitution(delayQueueLeft.back(), right);
    }
    delayQueueLeft.pop_back();
    delayQueueRight.pop_back();
  }
}


void UnconstrainedSimplifier::processAssertions(vector<Node>& assertions)
{
  d_context->push();

  vector<Node>::iterator it = assertions.begin(), iend = assertions.end();
  for (; it != iend; ++it) {
    visitAll(*it);
  }

  if (!d_unconstrained.empty()) {
    processUnconstrained();
    //    d_substitutions.print(Message.getStream());
    for (it = assertions.begin(); it != iend; ++it) {
      (*it) = Rewriter::rewrite(d_substitutions.apply(*it));
    }
  }

  // to clear substitutions map
  d_context->pop();

  d_visited.clear();
  d_visitedOnce.clear();
  d_unconstrained.clear();
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback