summaryrefslogtreecommitdiff
path: root/src/theory/uf/theory_uf.h
blob: 9221f64ac2faa1edf39ad5271956b94e4036dd45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*********************                                                        */
/*! \file theory_uf.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Dejan Jovanovic, Morgan Deters
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief This is the interface to TheoryUF implementations
 **
 ** This is the interface to TheoryUF implementations.  All
 ** implementations of TheoryUF should inherit from this class.
 **/

#include "cvc4_private.h"

#ifndef __CVC4__THEORY__UF__THEORY_UF_H
#define __CVC4__THEORY__UF__THEORY_UF_H

#include "expr/node.h"
//#include "expr/attribute.h"

#include "theory/theory.h"
#include "theory/uf/equality_engine.h"
#include "theory/uf/symmetry_breaker.h"

#include "context/cdo.h"
#include "context/cdhashset.h"


namespace CVC4 {
namespace theory {

namespace quantifiers{
  class TermArgTrie;
}

namespace uf {

class UfTermDb;
class StrongSolverTheoryUF;

class TheoryUF : public Theory {

  friend class StrongSolverTheoryUF;
  typedef context::CDHashSet<Node, NodeHashFunction> NodeSet;
  typedef context::CDHashMap<Node, Node, NodeHashFunction> NodeNodeMap;
public:

  class NotifyClass : public eq::EqualityEngineNotify {
    TheoryUF& d_uf;
  public:
    NotifyClass(TheoryUF& uf): d_uf(uf) {}

    bool eqNotifyTriggerEquality(TNode equality, bool value) override
    {
      Debug("uf") << "NotifyClass::eqNotifyTriggerEquality(" << equality << ", " << (value ? "true" : "false" )<< ")" << std::endl;
      if (value) {
        return d_uf.propagate(equality);
      } else {
        // We use only literal triggers so taking not is safe
        return d_uf.propagate(equality.notNode());
      }
    }

    bool eqNotifyTriggerPredicate(TNode predicate, bool value) override
    {
      Debug("uf") << "NotifyClass::eqNotifyTriggerPredicate(" << predicate << ", " << (value ? "true" : "false") << ")" << std::endl;
      if (value) {
        return d_uf.propagate(predicate);
      } else {
       return d_uf.propagate(predicate.notNode());
      }
    }

    bool eqNotifyTriggerTermEquality(TheoryId tag,
                                     TNode t1,
                                     TNode t2,
                                     bool value) override
    {
      Debug("uf") << "NotifyClass::eqNotifyTriggerTermMerge(" << tag << ", " << t1 << ", " << t2 << ")" << std::endl;
      if (value) {
        return d_uf.propagate(t1.eqNode(t2));
      } else {
        return d_uf.propagate(t1.eqNode(t2).notNode());
      }
    }

    void eqNotifyConstantTermMerge(TNode t1, TNode t2) override
    {
      Debug("uf-notify") << "NotifyClass::eqNotifyConstantTermMerge(" << t1 << ", " << t2 << ")" << std::endl;
      d_uf.conflict(t1, t2);
    }

    void eqNotifyNewClass(TNode t) override
    {
      Debug("uf-notify") << "NotifyClass::eqNotifyNewClass(" << t << ")" << std::endl;
      d_uf.eqNotifyNewClass(t);
    }

    void eqNotifyPreMerge(TNode t1, TNode t2) override
    {
      Debug("uf-notify") << "NotifyClass::eqNotifyPreMerge(" << t1 << ", " << t2 << ")" << std::endl;
      d_uf.eqNotifyPreMerge(t1, t2);
    }

    void eqNotifyPostMerge(TNode t1, TNode t2) override
    {
      Debug("uf-notify") << "NotifyClass::eqNotifyPostMerge(" << t1 << ", " << t2 << ")" << std::endl;
      d_uf.eqNotifyPostMerge(t1, t2);
    }

    void eqNotifyDisequal(TNode t1, TNode t2, TNode reason) override
    {
      Debug("uf-notify") << "NotifyClass::eqNotifyDisequal(" << t1 << ", " << t2 << ", " << reason << ")" << std::endl;
      d_uf.eqNotifyDisequal(t1, t2, reason);
    }

  };/* class TheoryUF::NotifyClass */

private:

  /** The notify class */
  NotifyClass d_notify;

  /** The associated theory strong solver (or NULL if none) */
  StrongSolverTheoryUF* d_thss;

  /** Equaltity engine */
  eq::EqualityEngine d_equalityEngine;

  /** Are we in conflict */
  context::CDO<bool> d_conflict;

  /** The conflict node */
  Node d_conflictNode;

  /** extensionality has been applied to these disequalities */
  NodeSet d_extensionality;

  /** cache of getExtensionalityDeq below */
  std::map<Node, Node> d_extensionality_deq;

  /** map from non-standard operators to their skolems */
  NodeNodeMap d_uf_std_skolem;

  /** node for true */
  Node d_true;

  /**
   * Should be called to propagate the literal. We use a node here
   * since some of the propagated literals are not kept anywhere.
   */
  bool propagate(TNode literal);

  /**
   * Explain why this literal is true by adding assumptions
   * with proof (if "pf" is non-NULL).
   */
  void explain(TNode literal, std::vector<TNode>& assumptions, eq::EqProof* pf);

  /**
   * Explain a literal, with proof (if "pf" is non-NULL).
   */
  Node explain(TNode literal, eq::EqProof* pf);

  /** All the function terms that the theory has seen */
  context::CDList<TNode> d_functionsTerms;

  /** Symmetry analyzer */
  SymmetryBreaker d_symb;

  /** Conflict when merging two constants */
  void conflict(TNode a, TNode b);

  /** called when a new equivalance class is created */
  void eqNotifyNewClass(TNode t);

  /** called when two equivalance classes will merge */
  void eqNotifyPreMerge(TNode t1, TNode t2);

  /** called when two equivalance classes have merged */
  void eqNotifyPostMerge(TNode t1, TNode t2);

  /** called when two equivalence classes are made disequal */
  void eqNotifyDisequal(TNode t1, TNode t2, TNode reason);

 private:  // for higher-order
  /** get extensionality disequality
   *
   * Given disequality deq f != g, this returns the disequality:
   *   (f k) != (g k) for fresh constant(s) k.
   */
  Node getExtensionalityDeq(TNode deq);

  /** applyExtensionality
   *
   * Given disequality deq f != g, if not already cached, this sends a lemma of
   * the form:
   *   f = g V (f k) != (g k) for fresh constant k.
   * on the output channel. This is an "extensionality lemma".
   * Return value is the number of lemmas of this form sent on the output
   * channel.
   */
  unsigned applyExtensionality(TNode deq);

  /**
   * Check whether extensionality should be applied for any pair of terms in the
   * equality engine.
   *
   * If we pass a null model m to this function, then we add extensionality
   * lemmas to the output channel and return the total number of lemmas added.
   * We only add lemmas for functions whose type is finite, since pairs of
   * functions whose types are infinite can be made disequal in a model by
   * witnessing a point they are disequal.
   *
   * If we pass a non-null model m to this function, then we add disequalities
   * that correspond to the conclusion of extensionality lemmas to the model's
   * equality engine. We return 0 if the equality engine of m is consistent
   * after this call, and 1 otherwise. We only add disequalities for functions
   * whose type is infinite, since our decision procedure guarantees that
   * extensionality lemmas are added for all pairs of functions whose types are
   * finite.
   */
  unsigned checkExtensionality(TheoryModel* m = nullptr);

  /** applyAppCompletion
   * This infers a correspondence between APPLY_UF and HO_APPLY
   * versions of terms for higher-order.
   * Given APPLY_UF node e.g. (f a b c), this adds the equality to its
   * HO_APPLY equivalent:
   *   (f a b c) == (@ (@ (@ f a) b) c)
   * to equality engine, if not already equal.
   * Return value is the number of equalities added.
   */
  unsigned applyAppCompletion(TNode n);

  /** check whether app-completion should be applied for any
   * pair of terms in the equality engine.
   */
  unsigned checkAppCompletion();

  /** check higher order
   * This is called at full effort and infers facts and sends lemmas
   * based on higher-order reasoning (specifically, extentionality and
   * app completion above). It returns the number of lemmas plus facts
   * added to the equality engine.
  */
  unsigned checkHigherOrder();

  /** collect model info for higher-order term
   *
   * This adds required constraints to m for term n. In particular, if n is
   * an APPLY_UF term, we add its HO_APPLY equivalent in this call. We return
   * true if the model m is consistent after this call.
   */
  bool collectModelInfoHoTerm(Node n, TheoryModel* m);

  /** get apply uf for ho apply
   * This returns the APPLY_UF equivalent for the HO_APPLY term node, where
   * node has non-functional return type (that is, it corresponds to a fully
   * applied function term).
   * This call may introduce a skolem for the head operator and send out a lemma
   * specifying the definition.
  */
  Node getApplyUfForHoApply(Node node);
  /** get the operator for this node (node should be either APPLY_UF or
   * HO_APPLY)
   */
  Node getOperatorForApplyTerm(TNode node);
  /** get the starting index of the arguments for node (node should be either
   * APPLY_UF or HO_APPLY) */
  unsigned getArgumentStartIndexForApplyTerm(TNode node);

 public:

  /** Constructs a new instance of TheoryUF w.r.t. the provided context.*/
  TheoryUF(context::Context* c, context::UserContext* u, OutputChannel& out,
           Valuation valuation, const LogicInfo& logicInfo,
           std::string instanceName = "");

  ~TheoryUF();

  void setMasterEqualityEngine(eq::EqualityEngine* eq) override;
  void finishInit() override;

  void check(Effort) override;
  Node expandDefinition(LogicRequest& logicRequest, Node node) override;
  void preRegisterTerm(TNode term) override;
  Node explain(TNode n) override;

  bool collectModelInfo(TheoryModel* m) override;

  void ppStaticLearn(TNode in, NodeBuilder<>& learned) override;
  void presolve() override;

  void addSharedTerm(TNode n) override;
  void computeCareGraph() override;

  void propagate(Effort effort) override;
  Node getNextDecisionRequest(unsigned& priority) override;

  EqualityStatus getEqualityStatus(TNode a, TNode b) override;

  std::string identify() const override { return "THEORY_UF"; }

  eq::EqualityEngine* getEqualityEngine() override { return &d_equalityEngine; }

  StrongSolverTheoryUF* getStrongSolver() {
    return d_thss;
  }
private:
  bool areCareDisequal(TNode x, TNode y);
  void addCarePairs( quantifiers::TermArgTrie * t1, quantifiers::TermArgTrie * t2, unsigned arity, unsigned depth );
};/* class TheoryUF */

}/* CVC4::theory::uf namespace */
}/* CVC4::theory namespace */
}/* CVC4 namespace */

#endif /* __CVC4__THEORY__UF__THEORY_UF_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback