summaryrefslogtreecommitdiff
path: root/src/theory/uf/theory_uf.cpp
blob: 29bb6ba7dc0e02f1a0d35368fa88b9c5290dfd04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/*********************                                                        */
/*! \file theory_uf.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Morgan Deters, Dejan Jovanovic
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 ** in the top-level source directory and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief This is the interface to TheoryUF implementations
 **
 ** This is the interface to TheoryUF implementations.  All
 ** implementations of TheoryUF should inherit from this class.
 **/

#include "theory/uf/theory_uf.h"

#include <memory>
#include <sstream>

#include "expr/node_algorithm.h"
#include "expr/proof_node_manager.h"
#include "options/quantifiers_options.h"
#include "options/smt_options.h"
#include "options/theory_options.h"
#include "options/uf_options.h"
#include "smt/logic_exception.h"
#include "theory/theory_model.h"
#include "theory/type_enumerator.h"
#include "theory/uf/cardinality_extension.h"
#include "theory/uf/ho_extension.h"
#include "theory/uf/theory_uf_rewriter.h"

using namespace std;

namespace CVC5 {
namespace theory {
namespace uf {

/** Constructs a new instance of TheoryUF w.r.t. the provided context.*/
TheoryUF::TheoryUF(context::Context* c,
                   context::UserContext* u,
                   OutputChannel& out,
                   Valuation valuation,
                   const LogicInfo& logicInfo,
                   ProofNodeManager* pnm,
                   std::string instanceName)
    : Theory(THEORY_UF, c, u, out, valuation, logicInfo, pnm, instanceName),
      d_thss(nullptr),
      d_ho(nullptr),
      d_functionsTerms(c),
      d_symb(u, instanceName),
      d_state(c, u, valuation),
      d_im(*this, d_state, pnm, "theory::uf", false),
      d_notify(d_im, *this)
{
  d_true = NodeManager::currentNM()->mkConst( true );

  ProofChecker* pc = pnm != nullptr ? pnm->getChecker() : nullptr;
  if (pc != nullptr)
  {
    d_ufProofChecker.registerTo(pc);
  }
  // indicate we are using the default theory state and inference managers
  d_theoryState = &d_state;
  d_inferManager = &d_im;
}

TheoryUF::~TheoryUF() {
}

TheoryRewriter* TheoryUF::getTheoryRewriter() { return &d_rewriter; }

bool TheoryUF::needsEqualityEngine(EeSetupInfo& esi)
{
  esi.d_notify = &d_notify;
  esi.d_name = d_instanceName + "theory::uf::ee";
  return true;
}

void TheoryUF::finishInit() {
  Assert(d_equalityEngine != nullptr);
  // combined cardinality constraints are not evaluated in getModelValue
  d_valuation.setUnevaluatedKind(kind::COMBINED_CARDINALITY_CONSTRAINT);
  // Initialize the cardinality constraints solver if the logic includes UF,
  // finite model finding is enabled, and it is not disabled by
  // options::ufssMode().
  if (options::finiteModelFind()
      && options::ufssMode() != options::UfssMode::NONE)
  {
    d_thss.reset(new CardinalityExtension(d_state, d_im, this));
  }
  // The kinds we are treating as function application in congruence
  d_equalityEngine->addFunctionKind(kind::APPLY_UF, false, options::ufHo());
  if (options::ufHo())
  {
    d_equalityEngine->addFunctionKind(kind::HO_APPLY);
    d_ho.reset(new HoExtension(d_state, d_im));
  }
}

static Node mkAnd(const std::vector<TNode>& conjunctions) {
  Assert(conjunctions.size() > 0);

  std::set<TNode> all;
  all.insert(conjunctions.begin(), conjunctions.end());

  if (all.size() == 1) {
    // All the same, or just one
    return conjunctions[0];
  }

  NodeBuilder<> conjunction(kind::AND);
  std::set<TNode>::const_iterator it = all.begin();
  std::set<TNode>::const_iterator it_end = all.end();
  while (it != it_end) {
    conjunction << *it;
    ++ it;
  }

  return conjunction;
}/* mkAnd() */

//--------------------------------- standard check

bool TheoryUF::needsCheckLastEffort()
{
  // last call effort needed if using finite model finding
  return d_thss != nullptr;
}

void TheoryUF::postCheck(Effort level)
{
  if (d_state.isInConflict())
  {
    return;
  }
  // check with the cardinality constraints extension
  if (d_thss != nullptr)
  {
    d_thss->check(level);
  }
  // check with the higher-order extension at full effort
  if (!d_state.isInConflict() && fullEffort(level))
  {
    if (options::ufHo())
    {
      d_ho->check();
    }
  }
}

bool TheoryUF::preNotifyFact(
    TNode atom, bool pol, TNode fact, bool isPrereg, bool isInternal)
{
  if (d_thss != nullptr)
  {
    bool isDecision =
        d_valuation.isSatLiteral(fact) && d_valuation.isDecision(fact);
    d_thss->assertNode(fact, isDecision);
    if (d_state.isInConflict())
    {
      return true;
    }
  }
  if (atom.getKind() == kind::CARDINALITY_CONSTRAINT
      || atom.getKind() == kind::COMBINED_CARDINALITY_CONSTRAINT)
  {
    if (d_thss == nullptr)
    {
      if (!getLogicInfo().hasCardinalityConstraints())
      {
        std::stringstream ss;
        ss << "Cardinality constraint " << atom
           << " was asserted, but the logic does not allow it." << std::endl;
        ss << "Try using a logic containing \"UFC\"." << std::endl;
        throw Exception(ss.str());
      }
      else
      {
        // support for cardinality constraints is not enabled, set incomplete
        d_im.setIncomplete();
      }
    }
    // don't need to assert cardinality constraints if not producing models
    return !options::produceModels();
  }
  return false;
}

void TheoryUF::notifyFact(TNode atom, bool pol, TNode fact, bool isInternal)
{
  if (!d_state.isInConflict() && atom.getKind() == kind::EQUAL)
  {
    if (options::ufHo() && options::ufHoExt())
    {
      if (!pol && !d_state.isInConflict() && atom[0].getType().isFunction())
      {
        // apply extensionality eagerly using the ho extension
        d_ho->applyExtensionality(fact);
      }
    }
  }
}
//--------------------------------- end standard check

TrustNode TheoryUF::ppRewrite(TNode node, std::vector<SkolemLemma>& lems)
{
  Trace("uf-exp-def") << "TheoryUF::ppRewrite: expanding definition : " << node
                      << std::endl;
  Kind k = node.getKind();
  if (k == kind::HO_APPLY)
  {
    if( !options::ufHo() ){
      std::stringstream ss;
      ss << "Partial function applications are not supported in default mode, try --uf-ho.";
      throw LogicException(ss.str());
    }
    Node ret = d_ho->ppRewrite(node);
    if (ret != node)
    {
      Trace("uf-exp-def") << "TheoryUF::ppRewrite: higher-order: " << node
                          << " to " << ret << std::endl;
      return TrustNode::mkTrustRewrite(node, ret, nullptr);
    }
  }
  else if (k == kind::APPLY_UF)
  {
    // check for higher-order
    // logic exception if higher-order is not enabled
    if (isHigherOrderType(node.getOperator().getType()) && !options::ufHo())
    {
      std::stringstream ss;
      ss << "UF received an application whose operator has higher-order type "
         << node << ", which is not supported by default, try --uf-ho";
      throw LogicException(ss.str());
    }
  }
  return TrustNode::null();
}

void TheoryUF::preRegisterTerm(TNode node)
{
  Debug("uf") << "TheoryUF::preRegisterTerm(" << node << ")" << std::endl;

  if (d_thss != NULL) {
    d_thss->preRegisterTerm(node);
  }

  // we always use APPLY_UF if not higher-order, HO_APPLY if higher-order
  //Assert( node.getKind()!=kind::APPLY_UF || !options::ufHo() );
  Assert(node.getKind() != kind::HO_APPLY || options::ufHo());

  Kind k = node.getKind();
  switch (k)
  {
    case kind::EQUAL:
      // Add the trigger for equality
      d_equalityEngine->addTriggerPredicate(node);
      break;
    case kind::APPLY_UF:
    case kind::HO_APPLY:
    {
      // Maybe it's a predicate
      if (node.getType().isBoolean())
      {
        // Get triggered for both equal and dis-equal
        d_equalityEngine->addTriggerPredicate(node);
      }
      else
      {
        // Function applications/predicates
        d_equalityEngine->addTerm(node);
      }
      // Remember the function and predicate terms
      d_functionsTerms.push_back(node);
    }
    break;
  case kind::CARDINALITY_CONSTRAINT:
  case kind::COMBINED_CARDINALITY_CONSTRAINT:
    //do nothing
    break;
  default:
    // Variables etc
    d_equalityEngine->addTerm(node);
    break;
  }
}

void TheoryUF::explain(TNode literal, Node& exp)
{
  Debug("uf") << "TheoryUF::explain(" << literal << ")" << std::endl;
  std::vector<TNode> assumptions;
  // Do the work
  bool polarity = literal.getKind() != kind::NOT;
  TNode atom = polarity ? literal : literal[0];
  if (atom.getKind() == kind::EQUAL)
  {
    d_equalityEngine->explainEquality(
        atom[0], atom[1], polarity, assumptions, nullptr);
  }
  else
  {
    d_equalityEngine->explainPredicate(atom, polarity, assumptions, nullptr);
  }
  exp = mkAnd(assumptions);
}

TrustNode TheoryUF::explain(TNode literal) { return d_im.explainLit(literal); }

bool TheoryUF::collectModelValues(TheoryModel* m, const std::set<Node>& termSet)
{
  if( options::ufHo() ){
    // must add extensionality disequalities for all pairs of (non-disequal)
    // function equivalence classes.
    if (!d_ho->collectModelInfoHo(m, termSet))
    {
      Trace("uf") << "Collect model info fail HO" << std::endl;
      return false;
    }
  }

  Debug("uf") << "UF : finish collectModelInfo " << std::endl;
  return true;
}

void TheoryUF::presolve() {
  // TimerStat::CodeTimer codeTimer(d_presolveTimer);

  Debug("uf") << "uf: begin presolve()" << endl;
  if(options::ufSymmetryBreaker()) {
    vector<Node> newClauses;
    d_symb.apply(newClauses);
    for(vector<Node>::const_iterator i = newClauses.begin();
        i != newClauses.end();
        ++i) {
      Debug("uf") << "uf: generating a lemma: " << *i << std::endl;
      // no proof generator provided
      d_im.lemma(*i, InferenceId::UF_BREAK_SYMMETRY);
    }
  }
  if( d_thss ){
    d_thss->presolve();
  }
  Debug("uf") << "uf: end presolve()" << endl;
}

void TheoryUF::ppStaticLearn(TNode n, NodeBuilder<>& learned) {
  //TimerStat::CodeTimer codeTimer(d_staticLearningTimer);

  vector<TNode> workList;
  workList.push_back(n);
  std::unordered_set<TNode, TNodeHashFunction> processed;

  while(!workList.empty()) {
    n = workList.back();

    if (n.isClosure())
    {
      // unsafe to go under quantifiers; we might pull bound vars out of scope!
      processed.insert(n);
      workList.pop_back();
      continue;
    }

    bool unprocessedChildren = false;
    for(TNode::iterator i = n.begin(), iend = n.end(); i != iend; ++i) {
      if(processed.find(*i) == processed.end()) {
        // unprocessed child
        workList.push_back(*i);
        unprocessedChildren = true;
      }
    }

    if(unprocessedChildren) {
      continue;
    }

    workList.pop_back();
    // has node n been processed in the meantime ?
    if(processed.find(n) != processed.end()) {
      continue;
    }
    processed.insert(n);

    // == DIAMONDS ==

    Debug("diamonds") << "===================== looking at" << endl
                      << n << endl;

    // binary OR of binary ANDs of EQUALities
    if(n.getKind() == kind::OR && n.getNumChildren() == 2 &&
       n[0].getKind() == kind::AND && n[0].getNumChildren() == 2 &&
       n[1].getKind() == kind::AND && n[1].getNumChildren() == 2 &&
       (n[0][0].getKind() == kind::EQUAL) &&
       (n[0][1].getKind() == kind::EQUAL) &&
       (n[1][0].getKind() == kind::EQUAL) &&
       (n[1][1].getKind() == kind::EQUAL)) {
      // now we have (a = b && c = d) || (e = f && g = h)

      Debug("diamonds") << "has form of a diamond!" << endl;

      TNode
        a = n[0][0][0], b = n[0][0][1],
        c = n[0][1][0], d = n[0][1][1],
        e = n[1][0][0], f = n[1][0][1],
        g = n[1][1][0], h = n[1][1][1];

      // test that one of {a, b} = one of {c, d}, and make "b" the
      // shared node (i.e. put in the form (a = b && b = d))
      // note we don't actually care about the shared ones, so the
      // "swaps" below are one-sided, ignoring b and c
      if(a == c) {
        a = b;
      } else if(a == d) {
        a = b;
        d = c;
      } else if(b == c) {
        // nothing to do
      } else if(b == d) {
        d = c;
      } else {
        // condition not satisfied
        Debug("diamonds") << "+ A fails" << endl;
        continue;
      }

      Debug("diamonds") << "+ A holds" << endl;

      // same: one of {e, f} = one of {g, h}, and make "f" the
      // shared node (i.e. put in the form (e = f && f = h))
      if(e == g) {
        e = f;
      } else if(e == h) {
        e = f;
        h = g;
      } else if(f == g) {
        // nothing to do
      } else if(f == h) {
        h = g;
      } else {
        // condition not satisfied
        Debug("diamonds") << "+ B fails" << endl;
        continue;
      }

      Debug("diamonds") << "+ B holds" << endl;

      // now we have (a = b && b = d) || (e = f && f = h)
      // test that {a, d} == {e, h}
      if( (a == e && d == h) ||
          (a == h && d == e) ) {
        // learn: n implies a == d
        Debug("diamonds") << "+ C holds" << endl;
        Node newEquality = a.eqNode(d);
        Debug("diamonds") << "  ==> " << newEquality << endl;
        learned << n.impNode(newEquality);
      } else {
        Debug("diamonds") << "+ C fails" << endl;
      }
    }
  }

  if(options::ufSymmetryBreaker()) {
    d_symb.assertFormula(n);
  }
}/* TheoryUF::ppStaticLearn() */

EqualityStatus TheoryUF::getEqualityStatus(TNode a, TNode b) {

  // Check for equality (simplest)
  if (d_equalityEngine->areEqual(a, b))
  {
    // The terms are implied to be equal
    return EQUALITY_TRUE;
  }

  // Check for disequality
  if (d_equalityEngine->areDisequal(a, b, false))
  {
    // The terms are implied to be dis-equal
    return EQUALITY_FALSE;
  }

  // All other terms we interpret as dis-equal in the model
  return EQUALITY_FALSE_IN_MODEL;
}

bool TheoryUF::areCareDisequal(TNode x, TNode y){
  Assert(d_equalityEngine->hasTerm(x));
  Assert(d_equalityEngine->hasTerm(y));
  if (d_equalityEngine->isTriggerTerm(x, THEORY_UF)
      && d_equalityEngine->isTriggerTerm(y, THEORY_UF))
  {
    TNode x_shared =
        d_equalityEngine->getTriggerTermRepresentative(x, THEORY_UF);
    TNode y_shared =
        d_equalityEngine->getTriggerTermRepresentative(y, THEORY_UF);
    EqualityStatus eqStatus = d_valuation.getEqualityStatus(x_shared, y_shared);
    if( eqStatus==EQUALITY_FALSE_AND_PROPAGATED || eqStatus==EQUALITY_FALSE || eqStatus==EQUALITY_FALSE_IN_MODEL ){
      return true;
    }
  }
  return false;
}

void TheoryUF::addCarePairs(const TNodeTrie* t1,
                            const TNodeTrie* t2,
                            unsigned arity,
                            unsigned depth)
{
  if( depth==arity ){
    if( t2!=NULL ){
      Node f1 = t1->getData();
      Node f2 = t2->getData();
      if (!d_equalityEngine->areEqual(f1, f2))
      {
        Debug("uf::sharing") << "TheoryUf::computeCareGraph(): checking function " << f1 << " and " << f2 << std::endl;
        vector< pair<TNode, TNode> > currentPairs;
        for (size_t k = 0, nchildren = f1.getNumChildren(); k < nchildren; ++k)
        {
          TNode x = f1[k];
          TNode y = f2[k];
          Assert(d_equalityEngine->hasTerm(x));
          Assert(d_equalityEngine->hasTerm(y));
          Assert(!d_equalityEngine->areDisequal(x, y, false));
          Assert(!areCareDisequal(x, y));
          if (!d_equalityEngine->areEqual(x, y))
          {
            if (d_equalityEngine->isTriggerTerm(x, THEORY_UF)
                && d_equalityEngine->isTriggerTerm(y, THEORY_UF))
            {
              TNode x_shared =
                  d_equalityEngine->getTriggerTermRepresentative(x, THEORY_UF);
              TNode y_shared =
                  d_equalityEngine->getTriggerTermRepresentative(y, THEORY_UF);
              currentPairs.push_back(make_pair(x_shared, y_shared));
            }
          }
        }
        for (unsigned c = 0; c < currentPairs.size(); ++ c) {
          Debug("uf::sharing") << "TheoryUf::computeCareGraph(): adding to care-graph" << std::endl;
          addCarePair(currentPairs[c].first, currentPairs[c].second);
        }
      }
    }
  }else{
    if( t2==NULL ){
      if( depth<(arity-1) ){
        //add care pairs internal to each child
        for (const std::pair<const TNode, TNodeTrie>& tt : t1->d_data)
        {
          addCarePairs(&tt.second, NULL, arity, depth + 1);
        }
      }
      //add care pairs based on each pair of non-disequal arguments
      for (std::map<TNode, TNodeTrie>::const_iterator it = t1->d_data.begin();
           it != t1->d_data.end();
           ++it)
      {
        std::map<TNode, TNodeTrie>::const_iterator it2 = it;
        ++it2;
        for( ; it2 != t1->d_data.end(); ++it2 ){
          if (!d_equalityEngine->areDisequal(it->first, it2->first, false))
          {
            if( !areCareDisequal(it->first, it2->first) ){
              addCarePairs( &it->second, &it2->second, arity, depth+1 );
            }
          }
        }
      }
    }else{
      //add care pairs based on product of indices, non-disequal arguments
      for (const std::pair<const TNode, TNodeTrie>& tt1 : t1->d_data)
      {
        for (const std::pair<const TNode, TNodeTrie>& tt2 : t2->d_data)
        {
          if (!d_equalityEngine->areDisequal(tt1.first, tt2.first, false))
          {
            if (!areCareDisequal(tt1.first, tt2.first))
            {
              addCarePairs(&tt1.second, &tt2.second, arity, depth + 1);
            }
          }
        }
      }
    }
  }
}

void TheoryUF::computeCareGraph() {
  if (d_sharedTerms.empty())
  {
    return;
  }
  // Use term indexing. We build separate indices for APPLY_UF and HO_APPLY.
  // We maintain indices per operator for the former, and indices per
  // function type for the latter.
  Debug("uf::sharing") << "TheoryUf::computeCareGraph(): Build term indices..."
                       << std::endl;
  std::map<Node, TNodeTrie> index;
  std::map<TypeNode, TNodeTrie> hoIndex;
  std::map<Node, size_t> arity;
  for (TNode app : d_functionsTerms)
  {
    std::vector<TNode> reps;
    bool has_trigger_arg = false;
    for (const Node& j : app)
    {
      reps.push_back(d_equalityEngine->getRepresentative(j));
      if (d_equalityEngine->isTriggerTerm(j, THEORY_UF))
      {
        has_trigger_arg = true;
      }
    }
    if (has_trigger_arg)
    {
      if (app.getKind() == kind::APPLY_UF)
      {
        Node op = app.getOperator();
        index[op].addTerm(app, reps);
        arity[op] = reps.size();
      }
      else
      {
        Assert(app.getKind() == kind::HO_APPLY);
        // add it to the hoIndex for the function type
        hoIndex[app[0].getType()].addTerm(app, reps);
      }
    }
  }
  // for each index
  for (std::pair<const Node, TNodeTrie>& tt : index)
  {
    Debug("uf::sharing") << "TheoryUf::computeCareGraph(): Process index "
                         << tt.first << "..." << std::endl;
    Assert(arity.find(tt.first) != arity.end());
    addCarePairs(&tt.second, nullptr, arity[tt.first], 0);
  }
  for (std::pair<const TypeNode, TNodeTrie>& tt : hoIndex)
  {
    Debug("uf::sharing") << "TheoryUf::computeCareGraph(): Process ho index "
                         << tt.first << "..." << std::endl;
    // the arity of HO_APPLY is always two
    addCarePairs(&tt.second, nullptr, 2, 0);
  }
  Debug("uf::sharing") << "TheoryUf::computeCareGraph(): finished."
                       << std::endl;
}/* TheoryUF::computeCareGraph() */

void TheoryUF::eqNotifyNewClass(TNode t) {
  if (d_thss != NULL) {
    d_thss->newEqClass(t);
  }
}

void TheoryUF::eqNotifyMerge(TNode t1, TNode t2)
{
  if (d_thss != NULL) {
    d_thss->merge(t1, t2);
  }
}

void TheoryUF::eqNotifyDisequal(TNode t1, TNode t2, TNode reason) {
  if (d_thss != NULL) {
    d_thss->assertDisequal(t1, t2, reason);
  }
}

bool TheoryUF::isHigherOrderType(TypeNode tn)
{
  Assert(tn.isFunction());
  std::map<TypeNode, bool>::iterator it = d_isHoType.find(tn);
  if (it != d_isHoType.end())
  {
    return it->second;
  }
  bool ret = false;
  const std::vector<TypeNode>& argTypes = tn.getArgTypes();
  for (const TypeNode& tnc : argTypes)
  {
    if (tnc.isFunction())
    {
      ret = true;
      break;
    }
  }
  d_isHoType[tn] = ret;
  return ret;
}

}  // namespace uf
}  // namespace theory
} // namespace CVC5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback