summaryrefslogtreecommitdiff
path: root/src/theory/trust_substitutions.cpp
blob: ea87829a9ffc0debe096d17d34b57e41008313aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Gereon Kremer
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Trust substitutions.
 */

#include "theory/trust_substitutions.h"

#include "theory/rewriter.h"

namespace cvc5 {
namespace theory {

TrustSubstitutionMap::TrustSubstitutionMap(context::Context* c,
                                           ProofNodeManager* pnm,
                                           std::string name,
                                           PfRule trustId,
                                           MethodId ids)
    : d_ctx(c),
      d_subs(c),
      d_tsubs(c),
      d_tspb(nullptr),
      d_subsPg(nullptr),
      d_applyPg(nullptr),
      d_helperPf(nullptr),
      d_name(name),
      d_trustId(trustId),
      d_ids(ids),
      d_eqtIndex(c)
{
  setProofNodeManager(pnm);
}

void TrustSubstitutionMap::setProofNodeManager(ProofNodeManager* pnm)
{
  if (pnm != nullptr)
  {
    // should not set the proof node manager more than once
    Assert(d_tspb == nullptr);
    d_tspb.reset(new TheoryProofStepBuffer(pnm->getChecker())),
        d_subsPg.reset(new LazyCDProof(
            pnm, nullptr, d_ctx, "TrustSubstitutionMap::subsPg"));
    d_applyPg.reset(
        new LazyCDProof(pnm, nullptr, d_ctx, "TrustSubstitutionMap::applyPg"));
    d_helperPf.reset(new CDProofSet<LazyCDProof>(pnm, d_ctx));
  }
}

void TrustSubstitutionMap::addSubstitution(TNode x, TNode t, ProofGenerator* pg)
{
  Trace("trust-subs") << "TrustSubstitutionMap::addSubstitution: add " << x
                      << " -> " << t << std::endl;
  d_subs.addSubstitution(x, t);
  if (isProofEnabled())
  {
    TrustNode tnl = TrustNode::mkTrustRewrite(x, t, pg);
    d_tsubs.push_back(tnl);
    // add to lazy proof
    d_subsPg->addLazyStep(tnl.getProven(), pg, d_trustId);
  }
}

void TrustSubstitutionMap::addSubstitution(TNode x,
                                           TNode t,
                                           PfRule id,
                                           const std::vector<Node>& children,
                                           const std::vector<Node>& args)
{
  if (!isProofEnabled())
  {
    addSubstitution(x, t, nullptr);
    return;
  }
  LazyCDProof* stepPg = d_helperPf->allocateProof(nullptr, d_ctx);
  Node eq = x.eqNode(t);
  stepPg->addStep(eq, id, children, args);
  addSubstitution(x, t, stepPg);
}

ProofGenerator* TrustSubstitutionMap::addSubstitutionSolved(TNode x,
                                                            TNode t,
                                                            TrustNode tn)
{
  Trace("trust-subs") << "TrustSubstitutionMap::addSubstitutionSolved: add "
                      << x << " -> " << t << " from " << tn.getProven()
                      << std::endl;
  if (!isProofEnabled() || tn.getGenerator() == nullptr)
  {
    // no generator or not proof enabled, nothing to do
    addSubstitution(x, t, nullptr);
    Trace("trust-subs") << "...no proof" << std::endl;
    return nullptr;
  }
  Node eq = x.eqNode(t);
  Node proven = tn.getProven();
  // notice that this checks syntactic equality, not CDProof::isSame since
  // tn.getGenerator() is not necessarily robust to symmetry.
  if (eq == proven)
  {
    // no rewrite required, just use the generator
    addSubstitution(x, t, tn.getGenerator());
    Trace("trust-subs") << "...use generator directly" << std::endl;
    return tn.getGenerator();
  }
  LazyCDProof* solvePg = d_helperPf->allocateProof(nullptr, d_ctx);
  // Try to transform tn.getProven() to (= x t) here, if necessary
  if (!d_tspb->applyPredTransform(proven, eq, {}))
  {
    // failed to rewrite, we add a trust step which assumes eq is provable
    // from proven, and proceed as normal.
    Trace("trust-subs") << "...failed to rewrite " << proven << std::endl;
    d_tspb->addStep(PfRule::TRUST_SUBS_EQ, {proven}, {eq}, eq);
  }
  Trace("trust-subs") << "...successful rewrite" << std::endl;
  solvePg->addSteps(*d_tspb.get());
  d_tspb->clear();
  // link the given generator
  solvePg->addLazyStep(proven, tn.getGenerator());
  addSubstitution(x, t, solvePg);
  return solvePg;
}

void TrustSubstitutionMap::addSubstitutions(TrustSubstitutionMap& t)
{
  if (!isProofEnabled())
  {
    // just use the basic utility
    d_subs.addSubstitutions(t.get());
    return;
  }
  // call addSubstitution above in sequence
  for (const TrustNode& tns : t.d_tsubs)
  {
    Node proven = tns.getProven();
    addSubstitution(proven[0], proven[1], tns.getGenerator());
  }
}

TrustNode TrustSubstitutionMap::applyTrusted(Node n, Rewriter* r)
{
  Trace("trust-subs") << "TrustSubstitutionMap::addSubstitution: apply " << n
                      << std::endl;
  Node ns = d_subs.apply(n, r);
  Trace("trust-subs") << "...subs " << ns << std::endl;
  if (n == ns)
  {
    // no change
    return TrustNode::null();
  }
  if (!isProofEnabled())
  {
    // no proofs, use null generator
    return TrustNode::mkTrustRewrite(n, ns, nullptr);
  }
  Node eq = n.eqNode(ns);
  // If we haven't already stored an index, remember the index. Otherwise, a
  // (possibly shorter) prefix of the substitution already suffices to show eq
  if (d_eqtIndex.find(eq) == d_eqtIndex.end())
  {
    d_eqtIndex[eq] = d_tsubs.size();
  }
  // this class will provide a proof if asked
  return TrustNode::mkTrustRewrite(n, ns, this);
}

Node TrustSubstitutionMap::apply(Node n, Rewriter* r)
{
  return d_subs.apply(n, r);
}

std::shared_ptr<ProofNode> TrustSubstitutionMap::getProofFor(Node eq)
{
  Assert(eq.getKind() == kind::EQUAL);
  Node n = eq[0];
  Node ns = eq[1];
  // Easy case: if n is in the domain of the substitution, maybe it is already
  // a proof in the substitution proof generator. This is moreover required
  // to avoid cyclic proofs below. For example, if { x -> 5 } is a substitution,
  // and we are asked to transform x, resulting in 5, we hence must provide
  // a proof of (= x 5) based on the substitution. However, it must be the
  // case that (= x 5) is a proven fact of the substitution generator. Hence
  // we avoid a proof that looks like:
  // ---------- from d_subsPg
  // (= x 5)
  // ---------- MACRO_SR_EQ_INTRO{x}
  // (= x 5)
  // by taking the premise proof directly.
  if (d_subsPg->hasStep(eq) || d_subsPg->hasGenerator(eq))
  {
    return d_subsPg->getProofFor(eq);
  }
  Trace("trust-subs-pf") << "getProofFor " << eq << std::endl;
  AlwaysAssert(d_proving.find(eq) == d_proving.end())
      << "Repeat getProofFor in TrustSubstitutionMap " << eq;
  d_proving.insert(eq);
  NodeUIntMap::iterator it = d_eqtIndex.find(eq);
  Assert(it != d_eqtIndex.end());
  Trace("trust-subs-pf") << "TrustSubstitutionMap::getProofFor, # assumptions= "
                         << it->second << std::endl;
  Node cs = getSubstitution(it->second);
  Trace("trust-subs-pf") << "getProofFor substitution is " << cs << std::endl;
  Assert(eq != cs);
  std::vector<Node> pfChildren;
  if (!cs.isConst())
  {
    // note we will get more proof reuse if we do not special case AND here.
    if (cs.getKind() == kind::AND)
    {
      for (const Node& csc : cs)
      {
        pfChildren.push_back(csc);
        // connect substitution generator into apply generator
        d_applyPg->addLazyStep(csc, d_subsPg.get());
      }
    }
    else
    {
      pfChildren.push_back(cs);
      // connect substitution generator into apply generator
      d_applyPg->addLazyStep(cs, d_subsPg.get());
    }
  }
  Trace("trust-subs-pf") << "...apply eq intro" << std::endl;
  // We use fixpoint as the substitution-apply identifier. Notice that it
  // suffices to use SBA_SEQUENTIAL here, but SBA_FIXPOINT is typically
  // more efficient. This is because for substitution of size n, sequential
  // substitution can either be implemented as n traversals of the term to
  // apply the substitution to, or a single traversal of the term, but n^2/2
  // traversals of the range of the substitution to prepare a simultaneous
  // substitution. Both of these options are inefficient.
  if (!d_tspb->applyEqIntro(n, ns, pfChildren, d_ids, MethodId::SBA_FIXPOINT))
  {
    // if we fail for any reason, we must use a trusted step instead
    d_tspb->addStep(PfRule::TRUST_SUBS_MAP, pfChildren, {eq}, eq);
  }
  Trace("trust-subs-pf") << "...made steps" << std::endl;
  // -------        ------- from external proof generators
  // x1 = t1 ...    xn = tn
  // ----------------------- AND_INTRO
  //   ...
  // --------- MACRO_SR_EQ_INTRO (or TRUST_SUBS_MAP if we failed above)
  // n == ns
  // add it to the apply proof generator.
  //
  // Notice that we use a single child to MACRO_SR_EQ_INTRO here. This is an
  // optimization motivated by the fact that n may be large and reused many
  // time. For instance, if this class is being used to track substitutions
  // derived during non-clausal simplification during preprocessing, it is
  // a fixed (possibly) large substitution applied to many terms. Having
  // a single child saves us from creating many proofs with n children, where
  // notice this proof is reused.
  d_applyPg->addSteps(*d_tspb.get());
  d_tspb->clear();
  Trace("trust-subs-pf") << "...finish, make proof" << std::endl;
  std::shared_ptr<ProofNode> ret = d_applyPg->getProofFor(eq);
  d_proving.erase(eq);
  return ret;
}

std::string TrustSubstitutionMap::identify() const { return d_name; }

SubstitutionMap& TrustSubstitutionMap::get() { return d_subs; }

bool TrustSubstitutionMap::isProofEnabled() const
{
  return d_subsPg != nullptr;
}

Node TrustSubstitutionMap::getSubstitution(size_t index)
{
  Assert(index <= d_tsubs.size());
  std::vector<Node> csubsChildren;
  for (size_t i = 0; i < index; i++)
  {
    csubsChildren.push_back(d_tsubs[i].getProven());
  }
  std::reverse(csubsChildren.begin(), csubsChildren.end());
  Node cs = NodeManager::currentNM()->mkAnd(csubsChildren);
  if (cs.getKind() == kind::AND)
  {
    d_subsPg->addStep(cs, PfRule::AND_INTRO, csubsChildren, {});
  }
  return cs;
}

}  // namespace theory
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback