summaryrefslogtreecommitdiff
path: root/src/theory/theory_engine.cpp
blob: 11f736e83fc62860d9430cc22f5ed4295241f84b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
/*********************                                                        */
/*! \file theory_engine.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Dejan Jovanovic, Morgan Deters, Tim King
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2016 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief The theory engine
 **
 ** The theory engine.
 **/

#include "theory/theory_engine.h"

#include <list>
#include <vector>

#include "decision/decision_engine.h"
#include "expr/attribute.h"
#include "expr/node.h"
#include "expr/node_builder.h"
#include "options/bv_options.h"
#include "options/options.h"
#include "options/quantifiers_options.h"
#include "proof/proof_manager.h"
#include "proof/theory_proof.h"
#include "smt/ite_removal.h"
#include "smt/logic_exception.h"
#include "smt_util/lemma_output_channel.h"
#include "smt_util/node_visitor.h"
#include "theory/arith/arith_ite_utils.h"
#include "theory/bv/theory_bv_utils.h"
#include "theory/ite_utilities.h"
#include "theory/quantifiers/first_order_model.h"
#include "theory/quantifiers/model_engine.h"
#include "theory/quantifiers/theory_quantifiers.h"
#include "theory/quantifiers_engine.h"
#include "theory/rewriter.h"
#include "theory/theory.h"
#include "theory/theory_model.h"
#include "theory/theory_traits.h"
#include "theory/uf/equality_engine.h"
#include "theory/unconstrained_simplifier.h"
#include "util/resource_manager.h"

using namespace std;

using namespace CVC4::theory;

namespace CVC4 {

void TheoryEngine::finishInit() {
  // initialize the quantifiers engine
  d_quantEngine = new QuantifiersEngine(d_context, d_userContext, this);

  if (d_logicInfo.isQuantified()) {
    d_quantEngine->finishInit();
    Assert(d_masterEqualityEngine == 0);
    d_masterEqualityEngine = new eq::EqualityEngine(d_masterEENotify,getSatContext(), "theory::master", false);

    for(TheoryId theoryId = theory::THEORY_FIRST; theoryId != theory::THEORY_LAST; ++ theoryId) {
      if (d_theoryTable[theoryId]) {
        d_theoryTable[theoryId]->setQuantifiersEngine(d_quantEngine);
        d_theoryTable[theoryId]->setMasterEqualityEngine(d_masterEqualityEngine);
      }
    }
  }

  for(TheoryId theoryId = theory::THEORY_FIRST; theoryId != theory::THEORY_LAST; ++ theoryId) {
    if (d_theoryTable[theoryId]) {
      d_theoryTable[theoryId]->finishInit();
    }
  }
}

void TheoryEngine::eqNotifyNewClass(TNode t){
  if (d_logicInfo.isQuantified()) {
    d_quantEngine->eqNotifyNewClass( t );
  }
}

void TheoryEngine::eqNotifyPreMerge(TNode t1, TNode t2){
  if (d_logicInfo.isQuantified()) {
    d_quantEngine->eqNotifyPreMerge( t1, t2 );
  }
}

void TheoryEngine::eqNotifyPostMerge(TNode t1, TNode t2){
  if (d_logicInfo.isQuantified()) {
    d_quantEngine->eqNotifyPostMerge( t1, t2 );
  }
}

void TheoryEngine::eqNotifyDisequal(TNode t1, TNode t2, TNode reason){
  if (d_logicInfo.isQuantified()) {
    d_quantEngine->eqNotifyDisequal( t1, t2, reason );
  }
}


TheoryEngine::TheoryEngine(context::Context* context,
                           context::UserContext* userContext,
                           RemoveITE& iteRemover,
                           const LogicInfo& logicInfo,
                           LemmaChannels* channels)
: d_propEngine(NULL),
  d_decisionEngine(NULL),
  d_context(context),
  d_userContext(userContext),
  d_logicInfo(logicInfo),
  d_sharedTerms(this, context),
  d_masterEqualityEngine(NULL),
  d_masterEENotify(*this),
  d_quantEngine(NULL),
  d_curr_model(NULL),
  d_curr_model_builder(NULL),
  d_ppCache(),
  d_possiblePropagations(context),
  d_hasPropagated(context),
  d_inConflict(context, false),
  d_hasShutDown(false),
  d_incomplete(context, false),
  d_propagationMap(context),
  d_propagationMapTimestamp(context, 0),
  d_propagatedLiterals(context),
  d_propagatedLiteralsIndex(context, 0),
  d_atomRequests(context),
  d_iteRemover(iteRemover),
  d_combineTheoriesTime("TheoryEngine::combineTheoriesTime"),
  d_true(),
  d_false(),
  d_interrupted(false),
  d_resourceManager(NodeManager::currentResourceManager()),
  d_channels(channels),
  d_inPreregister(false),
  d_factsAsserted(context, false),
  d_preRegistrationVisitor(this, context),
  d_sharedTermsVisitor(d_sharedTerms),
  d_unconstrainedSimp(new UnconstrainedSimplifier(context, logicInfo)),
  d_bvToBoolPreprocessor(),
  d_theoryAlternatives(),
  d_attr_handle(),
  d_arithSubstitutionsAdded("theory::arith::zzz::arith::substitutions", 0)
{
  for(TheoryId theoryId = theory::THEORY_FIRST; theoryId != theory::THEORY_LAST;
      ++ theoryId)
  {
    d_theoryTable[theoryId] = NULL;
    d_theoryOut[theoryId] = NULL;
  }

  // build model information if applicable
  d_curr_model = new theory::TheoryModel(userContext, "DefaultModel", true);
  d_curr_model_builder = new theory::TheoryEngineModelBuilder(this);

  smtStatisticsRegistry()->registerStat(&d_combineTheoriesTime);
  d_true = NodeManager::currentNM()->mkConst<bool>(true);
  d_false = NodeManager::currentNM()->mkConst<bool>(false);

  PROOF (ProofManager::currentPM()->initTheoryProofEngine(); );

  d_iteUtilities = new ITEUtilities(d_iteRemover.getContainsVisitor());

  smtStatisticsRegistry()->registerStat(&d_arithSubstitutionsAdded);
}

TheoryEngine::~TheoryEngine() {
  Assert(d_hasShutDown);

  for(TheoryId theoryId = theory::THEORY_FIRST; theoryId != theory::THEORY_LAST; ++ theoryId) {
    if(d_theoryTable[theoryId] != NULL) {
      delete d_theoryTable[theoryId];
      delete d_theoryOut[theoryId];
    }
  }

  delete d_curr_model_builder;
  delete d_curr_model;

  delete d_quantEngine;

  delete d_masterEqualityEngine;

  smtStatisticsRegistry()->unregisterStat(&d_combineTheoriesTime);

  delete d_unconstrainedSimp;

  delete d_iteUtilities;

  smtStatisticsRegistry()->unregisterStat(&d_arithSubstitutionsAdded);
}

void TheoryEngine::interrupt() throw(ModalException) {
  d_interrupted = true;
}

void TheoryEngine::preRegister(TNode preprocessed) {

  Debug("theory") << "TheoryEngine::preRegister( " << preprocessed << ")" << std::endl;
  if(Dump.isOn("missed-t-propagations")) {
    d_possiblePropagations.push_back(preprocessed);
  }
  d_preregisterQueue.push(preprocessed);

  if (!d_inPreregister) {
    // We're in pre-register
    d_inPreregister = true;

    // Process the pre-registration queue
    while (!d_preregisterQueue.empty()) {
      // Get the next atom to pre-register
      preprocessed = d_preregisterQueue.front();
      d_preregisterQueue.pop();

      if (d_logicInfo.isSharingEnabled() && preprocessed.getKind() == kind::EQUAL) {
        // When sharing is enabled, we propagate from the shared terms manager also
        d_sharedTerms.addEqualityToPropagate(preprocessed);
      }

      // Pre-register the terms in the atom
      Theory::Set theories = NodeVisitor<PreRegisterVisitor>::run(d_preRegistrationVisitor, preprocessed);
      theories = Theory::setRemove(THEORY_BOOL, theories);
      // Remove the top theory, if any more that means multiple theories were involved
      bool multipleTheories = Theory::setRemove(Theory::theoryOf(preprocessed), theories);
      TheoryId i;
      // These checks don't work with finite model finding, because it
      // uses Rational constants to represent cardinality constraints,
      // even though arithmetic isn't actually involved.
      if(!options::finiteModelFind()) {
        while((i = Theory::setPop(theories)) != THEORY_LAST) {
          if(!d_logicInfo.isTheoryEnabled(i)) {
            LogicInfo newLogicInfo = d_logicInfo.getUnlockedCopy();
            newLogicInfo.enableTheory(i);
            newLogicInfo.lock();
            stringstream ss;
            ss << "The logic was specified as " << d_logicInfo.getLogicString()
               << ", which doesn't include " << i
               << ", but found a term in that theory." << endl
               << "You might want to extend your logic to "
               << newLogicInfo.getLogicString() << endl;
            throw LogicException(ss.str());
          }
        }
      }
      if (multipleTheories) {
        // Collect the shared terms if there are multiple theories
        NodeVisitor<SharedTermsVisitor>::run(d_sharedTermsVisitor, preprocessed);
      }
    }

    // Leaving pre-register
    d_inPreregister = false;
  }
}

void TheoryEngine::printAssertions(const char* tag) {
  if (Trace.isOn(tag)) {

    for (TheoryId theoryId = THEORY_FIRST; theoryId < THEORY_LAST; ++theoryId) {
      Theory* theory = d_theoryTable[theoryId];
      if (theory && d_logicInfo.isTheoryEnabled(theoryId)) {
        Trace(tag) << "--------------------------------------------" << endl;
        Trace(tag) << "Assertions of " << theory->getId() << ": " << endl;
        context::CDList<Assertion>::const_iterator it = theory->facts_begin(), it_end = theory->facts_end();
        for (unsigned i = 0; it != it_end; ++ it, ++i) {
            if ((*it).isPreregistered) {
              Trace(tag) << "[" << i << "]: ";
            } else {
              Trace(tag) << "(" << i << "): ";
            }
            Trace(tag) << (*it).assertion << endl;
        }

        if (d_logicInfo.isSharingEnabled()) {
          Trace(tag) << "Shared terms of " << theory->getId() << ": " << endl;
          context::CDList<TNode>::const_iterator it = theory->shared_terms_begin(), it_end = theory->shared_terms_end();
          for (unsigned i = 0; it != it_end; ++ it, ++i) {
              Trace(tag) << "[" << i << "]: " << (*it) << endl;
          }
        }
      }
    }
  }
}

void TheoryEngine::dumpAssertions(const char* tag) {
  if (Dump.isOn(tag)) {
    Dump(tag) << CommentCommand("Starting completeness check");
    for (TheoryId theoryId = THEORY_FIRST; theoryId < THEORY_LAST; ++theoryId) {
      Theory* theory = d_theoryTable[theoryId];
      if (theory && d_logicInfo.isTheoryEnabled(theoryId)) {
        Dump(tag) << CommentCommand("Completeness check");
        Dump(tag) << PushCommand();

        // Dump the shared terms
        if (d_logicInfo.isSharingEnabled()) {
          Dump(tag) << CommentCommand("Shared terms");
          context::CDList<TNode>::const_iterator it = theory->shared_terms_begin(), it_end = theory->shared_terms_end();
          for (unsigned i = 0; it != it_end; ++ it, ++i) {
              stringstream ss;
              ss << (*it);
              Dump(tag) << CommentCommand(ss.str());
          }
        }

        // Dump the assertions
        Dump(tag) << CommentCommand("Assertions");
        context::CDList<Assertion>::const_iterator it = theory->facts_begin(), it_end = theory->facts_end();
        for (; it != it_end; ++ it) {
          // Get the assertion
          Node assertionNode = (*it).assertion;
          // Purify all the terms

          if ((*it).isPreregistered) {
            Dump(tag) << CommentCommand("Preregistered");
          } else {
            Dump(tag) << CommentCommand("Shared assertion");
          }
          Dump(tag) << AssertCommand(assertionNode.toExpr());
        }
        Dump(tag) << CheckSatCommand();

        Dump(tag) << PopCommand();
      }
    }
  }
}

/**
 * Check all (currently-active) theories for conflicts.
 * @param effort the effort level to use
 */
void TheoryEngine::check(Theory::Effort effort) {
  // spendResource();

  // Reset the interrupt flag
  d_interrupted = false;

#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
    if (theory::TheoryTraits<THEORY>::hasCheck && d_logicInfo.isTheoryEnabled(THEORY)) { \
       theoryOf(THEORY)->check(effort); \
       if (d_inConflict) { \
         break; \
       } \
    }

  // Do the checking
  try {

    // Mark the output channel unused (if this is FULL_EFFORT, and nothing
    // is done by the theories, no additional check will be needed)
    d_outputChannelUsed = false;

    // Mark the lemmas flag (no lemmas added)
    d_lemmasAdded = false;

    Debug("theory") << "TheoryEngine::check(" << effort << "): d_factsAsserted = " << (d_factsAsserted ? "true" : "false") << endl;

    // If in full effort, we have a fake new assertion just to jumpstart the checking
    if (Theory::fullEffort(effort)) {
      d_factsAsserted = true;
    }

    // Check until done
    while (d_factsAsserted && !d_inConflict && !d_lemmasAdded) {

      Debug("theory") << "TheoryEngine::check(" << effort << "): running check" << endl;

      Trace("theory::assertions") << endl;
      if (Trace.isOn("theory::assertions")) {
        printAssertions("theory::assertions");
      }

      if(Theory::fullEffort(effort)) {
        Trace("theory::assertions::fulleffort") << endl;
        if (Trace.isOn("theory::assertions::fulleffort")) {
          printAssertions("theory::assertions::fulleffort");
        }
      }

      // Note that we've discharged all the facts
      d_factsAsserted = false;

      // Do the checking
      CVC4_FOR_EACH_THEORY;

      if(Dump.isOn("missed-t-conflicts")) {
        Dump("missed-t-conflicts")
            << CommentCommand("Completeness check for T-conflicts; expect sat")
            << CheckSatCommand();
      }

      Debug("theory") << "TheoryEngine::check(" << effort << "): running propagation after the initial check" << endl;

      // We are still satisfiable, propagate as much as possible
      propagate(effort);

      // We do combination if all has been processed and we are in fullcheck
      if (Theory::fullEffort(effort) && d_logicInfo.isSharingEnabled() && !d_factsAsserted && !d_lemmasAdded && !d_inConflict) {
        // Do the combination
        Debug("theory") << "TheoryEngine::check(" << effort << "): running combination" << endl;
        combineTheories();
        if(d_logicInfo.isQuantified()){
          d_quantEngine->notifyCombineTheories();
        }
      }
    }

    // Must consult quantifiers theory for last call to ensure sat, or otherwise add a lemma
    if( effort == Theory::EFFORT_FULL && ! d_inConflict && ! needCheck() ) {
      //d_theoryTable[THEORY_STRINGS]->check(Theory::EFFORT_LAST_CALL);
      if(d_logicInfo.isQuantified()) {
        // quantifiers engine must pass effort last call check
        d_quantEngine->check(Theory::EFFORT_LAST_CALL);
        // if returning incomplete or SAT, we have ensured that the model in the quantifiers engine has been built
      } else if(options::produceModels()) {
        // must build model at this point
        d_curr_model_builder->buildModel(d_curr_model, true);
      }
      Trace("theory::assertions-model") << endl;
      if (Trace.isOn("theory::assertions-model")) {
        printAssertions("theory::assertions-model");
      }
    }

    Debug("theory") << "TheoryEngine::check(" << effort << "): done, we are " << (d_inConflict ? "unsat" : "sat") << (d_lemmasAdded ? " with new lemmas" : " with no new lemmas");
    Debug("theory") << ", need check = " << (needCheck() ? "YES" : "NO") << endl;

    if(!d_inConflict && Theory::fullEffort(effort) && d_masterEqualityEngine != NULL && !d_lemmasAdded) {
      AlwaysAssert(d_masterEqualityEngine->consistent());
    }
  } catch(const theory::Interrupted&) {
    Trace("theory") << "TheoryEngine::check() => interrupted" << endl;
  }
  // If fulleffort, check all theories
  if(Dump.isOn("theory::fullcheck") && Theory::fullEffort(effort)) {
    if (!d_inConflict && !needCheck()) {
      dumpAssertions("theory::fullcheck");
    }
  }
}

void TheoryEngine::combineTheories() {

  Trace("combineTheories") << "TheoryEngine::combineTheories()" << endl;

  TimerStat::CodeTimer combineTheoriesTimer(d_combineTheoriesTime);

  // Care graph we'll be building
  CareGraph careGraph;

#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
  if (theory::TheoryTraits<THEORY>::isParametric && d_logicInfo.isTheoryEnabled(THEORY)) { \
    theoryOf(THEORY)->getCareGraph(careGraph); \
  }

  // Call on each parametric theory to give us its care graph
  CVC4_FOR_EACH_THEORY;

  Trace("combineTheories") << "TheoryEngine::combineTheories(): care graph size = " << careGraph.size() << endl;

  // Now add splitters for the ones we are interested in
  CareGraph::const_iterator care_it = careGraph.begin();
  CareGraph::const_iterator care_it_end = careGraph.end();

  for (; care_it != care_it_end; ++ care_it) {
    const CarePair& carePair = *care_it;

    Debug("combineTheories") << "TheoryEngine::combineTheories(): checking " << carePair.a << " = " << carePair.b << " from " << carePair.theory << endl;

    Assert(d_sharedTerms.isShared(carePair.a) || carePair.a.isConst());
    Assert(d_sharedTerms.isShared(carePair.b) || carePair.b.isConst());

    // The equality in question (order for no repetition)
    Node equality = carePair.a.eqNode(carePair.b);
    // EqualityStatus es = getEqualityStatus(carePair.a, carePair.b);
    // Debug("combineTheories") << "TheoryEngine::combineTheories(): " <<
    //   (es == EQUALITY_TRUE_AND_PROPAGATED ? "EQUALITY_TRUE_AND_PROPAGATED" :
    //   es == EQUALITY_FALSE_AND_PROPAGATED ? "EQUALITY_FALSE_AND_PROPAGATED" :
    //   es == EQUALITY_TRUE ? "EQUALITY_TRUE" :
    //   es == EQUALITY_FALSE ? "EQUALITY_FALSE" :
    //   es == EQUALITY_TRUE_IN_MODEL ? "EQUALITY_TRUE_IN_MODEL" :
    //   es == EQUALITY_FALSE_IN_MODEL ? "EQUALITY_FALSE_IN_MODEL" :
    //   es == EQUALITY_UNKNOWN ? "EQUALITY_UNKNOWN" :
    //    "Unexpected case") << endl;

    // We need to split on it
    Debug("combineTheories") << "TheoryEngine::combineTheories(): requesting a split " << endl;
    lemma(equality.orNode(equality.notNode()), RULE_INVALID, false, false, false, carePair.theory, carePair.theory);
    // This code is supposed to force preference to follow what the theory models already have
    // but it doesn't seem to make a big difference - need to explore more -Clark
    // if (true) {
    //   if (es == EQUALITY_TRUE || es == EQUALITY_TRUE_IN_MODEL) {
    Node e = ensureLiteral(equality);
    d_propEngine->requirePhase(e, true);
    //   }
    //   else if (es == EQUALITY_FALSE_IN_MODEL) {
    //     Node e = ensureLiteral(equality);
    //     d_propEngine->requirePhase(e, false);
    //   }
    // }
  }
}

void TheoryEngine::propagate(Theory::Effort effort) {
  // Reset the interrupt flag
  d_interrupted = false;

  // Definition of the statement that is to be run by every theory
#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
  if (theory::TheoryTraits<THEORY>::hasPropagate && d_logicInfo.isTheoryEnabled(THEORY)) { \
    theoryOf(THEORY)->propagate(effort); \
  }

  // Reset the interrupt flag
  d_interrupted = false;

  // Propagate for each theory using the statement above
  CVC4_FOR_EACH_THEORY;

  if(Dump.isOn("missed-t-propagations")) {
    for(unsigned i = 0; i < d_possiblePropagations.size(); ++i) {
      Node atom = d_possiblePropagations[i];
      bool value;
      if(d_propEngine->hasValue(atom, value)) {
        continue;
      }
      // Doesn't have a value, check it (and the negation)
      if(d_hasPropagated.find(atom) == d_hasPropagated.end()) {
        Dump("missed-t-propagations")
          << CommentCommand("Completeness check for T-propagations; expect invalid")
          << EchoCommand(atom.toString())
          << QueryCommand(atom.toExpr())
          << EchoCommand(atom.notNode().toString())
          << QueryCommand(atom.notNode().toExpr());
      }
    }
  }
}

Node TheoryEngine::getNextDecisionRequest() {
  // Definition of the statement that is to be run by every theory
#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
  if (theory::TheoryTraits<THEORY>::hasGetNextDecisionRequest && d_logicInfo.isTheoryEnabled(THEORY)) { \
    Node n = theoryOf(THEORY)->getNextDecisionRequest(); \
    if(! n.isNull()) { \
      return n; \
    } \
  }

  // Request decision from each theory using the statement above
  CVC4_FOR_EACH_THEORY;

  return TNode();
}

bool TheoryEngine::properConflict(TNode conflict) const {
  bool value;
  if (conflict.getKind() == kind::AND) {
    for (unsigned i = 0; i < conflict.getNumChildren(); ++ i) {
      if (! getPropEngine()->hasValue(conflict[i], value)) {
        Debug("properConflict") << "Bad conflict is due to unassigned atom: "
                                << conflict[i] << endl;
        return false;
      }
      if (! value) {
        Debug("properConflict") << "Bad conflict is due to false atom: "
                                << conflict[i] << endl;
        return false;
      }
      if (conflict[i] != Rewriter::rewrite(conflict[i])) {
        Debug("properConflict") << "Bad conflict is due to atom not in normal form: "
                                << conflict[i] << " vs " << Rewriter::rewrite(conflict[i]) << endl;
        return false;
      }
    }
  } else {
    if (! getPropEngine()->hasValue(conflict, value)) {
      Debug("properConflict") << "Bad conflict is due to unassigned atom: "
                              << conflict << endl;
      return false;
    }
    if(! value) {
      Debug("properConflict") << "Bad conflict is due to false atom: "
                              << conflict << endl;
      return false;
    }
    if (conflict != Rewriter::rewrite(conflict)) {
      Debug("properConflict") << "Bad conflict is due to atom not in normal form: "
                              << conflict << " vs " << Rewriter::rewrite(conflict) << endl;
      return false;
    }
  }
  return true;
}

bool TheoryEngine::properPropagation(TNode lit) const {
  if(!getPropEngine()->isSatLiteral(lit)) {
    return false;
  }
  bool b;
  return !getPropEngine()->hasValue(lit, b);
}

bool TheoryEngine::properExplanation(TNode node, TNode expl) const {
  // Explanation must be either a conjunction of true literals that have true SAT values already
  // or a singled literal that has a true SAT value already.
  if (expl.getKind() == kind::AND) {
    for (unsigned i = 0; i < expl.getNumChildren(); ++ i) {
      bool value;
      if (!d_propEngine->hasValue(expl[i], value) || !value) {
        return false;
      }
    }
  } else {
    bool value;
    return d_propEngine->hasValue(expl, value) && value;
  }
  return true;
}

void TheoryEngine::collectModelInfo( theory::TheoryModel* m, bool fullModel ){
  //have shared term engine collectModelInfo
  //  d_sharedTerms.collectModelInfo( m, fullModel );
  // Consult each active theory to get all relevant information
  // concerning the model.
  for(TheoryId theoryId = theory::THEORY_FIRST; theoryId < theory::THEORY_LAST; ++theoryId) {
    if(d_logicInfo.isTheoryEnabled(theoryId)) {
      Trace("model-builder") << "  CollectModelInfo on theory: " << theoryId << endl;
      d_theoryTable[theoryId]->collectModelInfo( m, fullModel );
    }
  }
  // Get the Boolean variables
  vector<TNode> boolVars;
  d_propEngine->getBooleanVariables(boolVars);
  vector<TNode>::iterator it, iend = boolVars.end();
  bool hasValue, value;
  for (it = boolVars.begin(); it != iend; ++it) {
    TNode var = *it;
    hasValue = d_propEngine->hasValue(var, value);
    // TODO: Assert that hasValue is true?
    if (!hasValue) {
      value = false;
    }
    Trace("model-builder-assertions") << "(assert" << (value ? " " : " (not ") << var << (value ? ");" : "));") << endl;
    m->assertPredicate(var, value);
  }
}

/* get model */
TheoryModel* TheoryEngine::getModel() {
  Debug("model") << "TheoryEngine::getModel()" << endl;
  if( d_logicInfo.isQuantified() ) {
    Debug("model") << "Get model from quantifiers engine." << endl;
    return d_quantEngine->getModel();
  } else {
    Debug("model") << "Get default model." << endl;
    return d_curr_model;
  }
}

bool TheoryEngine::presolve() {
  // Reset the interrupt flag
  d_interrupted = false;

  try {
    // Definition of the statement that is to be run by every theory
#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
    if (theory::TheoryTraits<THEORY>::hasPresolve) {    \
      theoryOf(THEORY)->presolve(); \
      if(d_inConflict) { \
        return true; \
      } \
    }

    // Presolve for each theory using the statement above
    CVC4_FOR_EACH_THEORY;
  } catch(const theory::Interrupted&) {
    Trace("theory") << "TheoryEngine::presolve() => interrupted" << endl;
  }
  // return whether we have a conflict
  return false;
}/* TheoryEngine::presolve() */

void TheoryEngine::postsolve() {
  // Reset the interrupt flag
  d_interrupted = false;
  bool CVC4_UNUSED wasInConflict = d_inConflict;

  try {
    // Definition of the statement that is to be run by every theory
#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
    if (theory::TheoryTraits<THEORY>::hasPostsolve) { \
      theoryOf(THEORY)->postsolve(); \
      Assert(! d_inConflict || wasInConflict, "conflict raised during postsolve()"); \
    }

    // Postsolve for each theory using the statement above
    CVC4_FOR_EACH_THEORY;
  } catch(const theory::Interrupted&) {
    Trace("theory") << "TheoryEngine::postsolve() => interrupted" << endl;
  }
}/* TheoryEngine::postsolve() */


void TheoryEngine::notifyRestart() {
  // Reset the interrupt flag
  d_interrupted = false;

  // Definition of the statement that is to be run by every theory
#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
  if (theory::TheoryTraits<THEORY>::hasNotifyRestart && d_logicInfo.isTheoryEnabled(THEORY)) { \
    theoryOf(THEORY)->notifyRestart(); \
  }

  // notify each theory using the statement above
  CVC4_FOR_EACH_THEORY;
}

void TheoryEngine::ppStaticLearn(TNode in, NodeBuilder<>& learned) {
  // Reset the interrupt flag
  d_interrupted = false;

  // Definition of the statement that is to be run by every theory
#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
  if (theory::TheoryTraits<THEORY>::hasPpStaticLearn) { \
    theoryOf(THEORY)->ppStaticLearn(in, learned); \
  }

  // static learning for each theory using the statement above
  CVC4_FOR_EACH_THEORY;
}

void TheoryEngine::shutdown() {
  // Set this first; if a Theory shutdown() throws an exception,
  // at least the destruction of the TheoryEngine won't confound
  // matters.
  d_hasShutDown = true;

  // Shutdown all the theories
  for(TheoryId theoryId = theory::THEORY_FIRST; theoryId < theory::THEORY_LAST; ++theoryId) {
    if(d_theoryTable[theoryId]) {
      theoryOf(theoryId)->shutdown();
    }
  }

  d_ppCache.clear();
}

theory::Theory::PPAssertStatus TheoryEngine::solve(TNode literal, SubstitutionMap& substitutionOut) {
  // Reset the interrupt flag
  d_interrupted = false;

  TNode atom = literal.getKind() == kind::NOT ? literal[0] : literal;
  Trace("theory::solve") << "TheoryEngine::solve(" << literal << "): solving with " << theoryOf(atom)->getId() << endl;

  if(! d_logicInfo.isTheoryEnabled(Theory::theoryOf(atom)) &&
     Theory::theoryOf(atom) != THEORY_SAT_SOLVER) {
    stringstream ss;
    ss << "The logic was specified as " << d_logicInfo.getLogicString()
       << ", which doesn't include " << Theory::theoryOf(atom)
       << ", but got a preprocessing-time fact for that theory." << endl
       << "The fact:" << endl
       << literal;
    throw LogicException(ss.str());
  }

  Theory::PPAssertStatus solveStatus = theoryOf(atom)->ppAssert(literal, substitutionOut);
  Trace("theory::solve") << "TheoryEngine::solve(" << literal << ") => " << solveStatus << endl;
  return solveStatus;
}

// Recursively traverse a term and call the theory rewriter on its sub-terms
Node TheoryEngine::ppTheoryRewrite(TNode term) {
  NodeMap::iterator find = d_ppCache.find(term);
  if (find != d_ppCache.end()) {
    return (*find).second;
  }
  unsigned nc = term.getNumChildren();
  if (nc == 0) {
    return theoryOf(term)->ppRewrite(term);
  }
  Trace("theory-pp") << "ppTheoryRewrite { " << term << endl;

  Node newTerm;
  if (theoryOf(term)->ppDontRewriteSubterm(term)) {
    newTerm = Rewriter::rewrite(term);
  } else {
    NodeBuilder<> newNode(term.getKind());
    if (term.getMetaKind() == kind::metakind::PARAMETERIZED) {
      newNode << term.getOperator();
    }
    unsigned i;
    for (i = 0; i < nc; ++i) {
      newNode << ppTheoryRewrite(term[i]);
    }
    newTerm = Rewriter::rewrite(Node(newNode));
  }
  Node newTerm2 = theoryOf(newTerm)->ppRewrite(newTerm);
  if (newTerm != newTerm2) {
    newTerm = ppTheoryRewrite(Rewriter::rewrite(newTerm2));
  }
  d_ppCache[term] = newTerm;
  Trace("theory-pp")<< "ppTheoryRewrite returning " << newTerm << "}" << endl;
  return newTerm;
}


void TheoryEngine::preprocessStart()
{
  d_ppCache.clear();
}


struct preprocess_stack_element {
  TNode node;
  bool children_added;
  preprocess_stack_element(TNode node)
  : node(node), children_added(false) {}
};/* struct preprocess_stack_element */


Node TheoryEngine::preprocess(TNode assertion) {

  Trace("theory::preprocess") << "TheoryEngine::preprocess(" << assertion << ")" << endl;
  // spendResource();

  // Do a topological sort of the subexpressions and substitute them
  vector<preprocess_stack_element> toVisit;
  toVisit.push_back(assertion);

  while (!toVisit.empty())
  {
    // The current node we are processing
    preprocess_stack_element& stackHead = toVisit.back();
    TNode current = stackHead.node;

    Debug("theory::internal") << "TheoryEngine::preprocess(" << assertion << "): processing " << current << endl;

    // If node already in the cache we're done, pop from the stack
    NodeMap::iterator find = d_ppCache.find(current);
    if (find != d_ppCache.end()) {
      toVisit.pop_back();
      continue;
    }

    if(! d_logicInfo.isTheoryEnabled(Theory::theoryOf(current)) &&
       Theory::theoryOf(current) != THEORY_SAT_SOLVER) {
      stringstream ss;
      ss << "The logic was specified as " << d_logicInfo.getLogicString()
         << ", which doesn't include " << Theory::theoryOf(current)
         << ", but got a preprocessing-time fact for that theory." << endl
         << "The fact:" << endl
         << current;
      throw LogicException(ss.str());
    }

    // If this is an atom, we preprocess its terms with the theory ppRewriter
    if (Theory::theoryOf(current) != THEORY_BOOL) {
      Node ppRewritten = ppTheoryRewrite(current);
      d_ppCache[current] = ppRewritten;
      Assert(Rewriter::rewrite(d_ppCache[current]) == d_ppCache[current]);
      continue;
    }

    // Not yet substituted, so process
    if (stackHead.children_added) {
      // Children have been processed, so substitute
      NodeBuilder<> builder(current.getKind());
      if (current.getMetaKind() == kind::metakind::PARAMETERIZED) {
        builder << current.getOperator();
      }
      for (unsigned i = 0; i < current.getNumChildren(); ++ i) {
        Assert(d_ppCache.find(current[i]) != d_ppCache.end());
        builder << d_ppCache[current[i]];
      }
      // Mark the substitution and continue
      Node result = builder;
      if (result != current) {
        result = Rewriter::rewrite(result);
      }
      Debug("theory::internal") << "TheoryEngine::preprocess(" << assertion << "): setting " << current << " -> " << result << endl;
      d_ppCache[current] = result;
      toVisit.pop_back();
    } else {
      // Mark that we have added the children if any
      if (current.getNumChildren() > 0) {
        stackHead.children_added = true;
        // We need to add the children
        for(TNode::iterator child_it = current.begin(); child_it != current.end(); ++ child_it) {
          TNode childNode = *child_it;
          NodeMap::iterator childFind = d_ppCache.find(childNode);
          if (childFind == d_ppCache.end()) {
            toVisit.push_back(childNode);
          }
        }
      } else {
        // No children, so we're done
        Debug("substitution::internal") << "SubstitutionMap::internalSubstitute(" << assertion << "): setting " << current << " -> " << current << endl;
        d_ppCache[current] = current;
        toVisit.pop_back();
      }
    }
  }

  // Return the substituted version
  return d_ppCache[assertion];
}

bool TheoryEngine::markPropagation(TNode assertion, TNode originalAssertion, theory::TheoryId toTheoryId, theory::TheoryId fromTheoryId) {

  // What and where we are asserting
  NodeTheoryPair toAssert(assertion, toTheoryId, d_propagationMapTimestamp);
  // What and where it came from
  NodeTheoryPair toExplain(originalAssertion, fromTheoryId, d_propagationMapTimestamp);

  // See if the theory already got this literal
  PropagationMap::const_iterator find = d_propagationMap.find(toAssert);
  if (find != d_propagationMap.end()) {
    // The theory already knows this
    Trace("theory::assertToTheory") << "TheoryEngine::markPropagation(): already there" << endl;
    return false;
  }

  Trace("theory::assertToTheory") << "TheoryEngine::markPropagation(): marking [" << d_propagationMapTimestamp << "] " << assertion << ", " << toTheoryId << " from " << originalAssertion << ", " << fromTheoryId << endl;

  // Mark the propagation
  d_propagationMap[toAssert] = toExplain;
  d_propagationMapTimestamp = d_propagationMapTimestamp + 1;

  return true;
}


void TheoryEngine::assertToTheory(TNode assertion, TNode originalAssertion, theory::TheoryId toTheoryId, theory::TheoryId fromTheoryId) {

  Trace("theory::assertToTheory") << "TheoryEngine::assertToTheory(" << assertion << ", " << toTheoryId << ", " << fromTheoryId << ")" << endl;

  Assert(toTheoryId != fromTheoryId);
  if(toTheoryId != THEORY_SAT_SOLVER &&
     ! d_logicInfo.isTheoryEnabled(toTheoryId)) {
    stringstream ss;
    ss << "The logic was specified as " << d_logicInfo.getLogicString()
       << ", which doesn't include " << toTheoryId
       << ", but got an asserted fact to that theory." << endl
       << "The fact:" << endl
       << assertion;
    throw LogicException(ss.str());
  }

  if (d_inConflict) {
    return;
  }

  // If sharing is disabled, things are easy
  if (!d_logicInfo.isSharingEnabled()) {
    Assert(assertion == originalAssertion);
    if (fromTheoryId == THEORY_SAT_SOLVER) {
      // Send to the apropriate theory
      theory::Theory* toTheory = theoryOf(toTheoryId);
      // We assert it, and we know it's preregistereed
      toTheory->assertFact(assertion, true);
      // Mark that we have more information
      d_factsAsserted = true;
    } else {
      Assert(toTheoryId == THEORY_SAT_SOLVER);
      // Check for propositional conflict
      bool value;
      if (d_propEngine->hasValue(assertion, value)) {
        if (!value) {
          Trace("theory::propagate") << "TheoryEngine::assertToTheory(" << assertion << ", " << toTheoryId << ", " << fromTheoryId << "): conflict (no sharing)" << endl;
          d_inConflict = true;
        } else {
          return;
        }
      }
      d_propagatedLiterals.push_back(assertion);
    }
    return;
  }

  // Polarity of the assertion
  bool polarity = assertion.getKind() != kind::NOT;

  // Atom of the assertion
  TNode atom = polarity ? assertion : assertion[0];

  // If sending to the shared terms database, it's also simple
  if (toTheoryId == THEORY_BUILTIN) {
    Assert(atom.getKind() == kind::EQUAL, "atom should be an EQUALity, not `%s'", atom.toString().c_str());
    if (markPropagation(assertion, originalAssertion, toTheoryId, fromTheoryId)) {
      d_sharedTerms.assertEquality(atom, polarity, assertion);
    }
    return;
  }

  // Things from the SAT solver are already normalized, so they go
  // directly to the apropriate theory
  if (fromTheoryId == THEORY_SAT_SOLVER) {
    // We know that this is normalized, so just send it off to the theory
    if (markPropagation(assertion, originalAssertion, toTheoryId, fromTheoryId)) {
      // Is it preregistered
      bool preregistered = d_propEngine->isSatLiteral(assertion) && Theory::theoryOf(assertion) == toTheoryId;
      // We assert it
      theoryOf(toTheoryId)->assertFact(assertion, preregistered);
      // Mark that we have more information
      d_factsAsserted = true;
    }
    return;
  }

  // Propagations to the SAT solver are just enqueued for pickup by
  // the SAT solver later
  if (toTheoryId == THEORY_SAT_SOLVER) {
    if (markPropagation(assertion, originalAssertion, toTheoryId, fromTheoryId)) {
      // Enqueue for propagation to the SAT solver
      d_propagatedLiterals.push_back(assertion);
      // Check for propositional conflicts
      bool value;
      if (d_propEngine->hasValue(assertion, value) && !value) {
          Trace("theory::propagate") << "TheoryEngine::assertToTheory(" << assertion << ", " << toTheoryId << ", " << fromTheoryId << "): conflict (sharing)" << endl;
        d_inConflict = true;
      }
    }
    return;
  }

  Assert(atom.getKind() == kind::EQUAL);

  // Normalize
  Node normalizedLiteral = Rewriter::rewrite(assertion);

  // See if it rewrites false directly -> conflict
  if (normalizedLiteral.isConst()) {
    if (!normalizedLiteral.getConst<bool>()) {
      // Mark the propagation for explanations
      if (markPropagation(normalizedLiteral, originalAssertion, toTheoryId, fromTheoryId)) {
        // Get the explanation (conflict will figure out where it came from)
        conflict(normalizedLiteral, toTheoryId);
      } else {
        Unreachable();
      }
      return;
    }
  }

  // Try and assert (note that we assert the non-normalized one)
  if (markPropagation(assertion, originalAssertion, toTheoryId, fromTheoryId)) {
    // Check if has been pre-registered with the theory
    bool preregistered = d_propEngine->isSatLiteral(assertion) && Theory::theoryOf(assertion) == toTheoryId;
    // Assert away
    theoryOf(toTheoryId)->assertFact(assertion, preregistered);
    d_factsAsserted = true;
  }

  return;
}

void TheoryEngine::assertFact(TNode literal)
{
  Trace("theory") << "TheoryEngine::assertFact(" << literal << ")" << endl;

  // spendResource();

  // If we're in conflict, nothing to do
  if (d_inConflict) {
    return;
  }

  // Get the atom
  bool polarity = literal.getKind() != kind::NOT;
  TNode atom = polarity ? literal : literal[0];

  if (d_logicInfo.isSharingEnabled()) {

    // If any shared terms, it's time to do sharing work
    if (d_sharedTerms.hasSharedTerms(atom)) {
      // Notify the theories the shared terms
      SharedTermsDatabase::shared_terms_iterator it = d_sharedTerms.begin(atom);
      SharedTermsDatabase::shared_terms_iterator it_end = d_sharedTerms.end(atom);
      for (; it != it_end; ++ it) {
        TNode term = *it;
        Theory::Set theories = d_sharedTerms.getTheoriesToNotify(atom, term);
        for (TheoryId id = THEORY_FIRST; id != THEORY_LAST; ++ id) {
          if (Theory::setContains(id, theories)) {
            theoryOf(id)->addSharedTermInternal(term);
          }
        }
        d_sharedTerms.markNotified(term, theories);
      }
    }

    // If it's an equality, assert it to the shared term manager, even though the terms are not
    // yet shared. As the terms become shared later, the shared terms manager will then add them
    // to the assert the equality to the interested theories
    if (atom.getKind() == kind::EQUAL) {
      // Assert it to the the owning theory
      assertToTheory(literal, literal, /* to */ Theory::theoryOf(atom), /* from */ THEORY_SAT_SOLVER);
      // Shared terms manager will assert to interested theories directly, as the terms become shared
      assertToTheory(literal, literal, /* to */ THEORY_BUILTIN, /* from */ THEORY_SAT_SOLVER);

      // Now, let's check for any atom triggers from lemmas
      AtomRequests::atom_iterator it = d_atomRequests.getAtomIterator(atom);
      while (!it.done()) {
        const AtomRequests::Request& request = it.get();
        Node toAssert = polarity ? (Node) request.atom : request.atom.notNode();
        Debug("theory::atoms") << "TheoryEngine::assertFact(" << literal << "): sending requested " << toAssert << endl;
        assertToTheory(toAssert, literal, request.toTheory, THEORY_SAT_SOLVER);
        it.next();
      }

    } else {
      // Not an equality, just assert to the appropriate theory
      assertToTheory(literal, literal, /* to */ Theory::theoryOf(atom), /* from */ THEORY_SAT_SOLVER);
    }
  } else {
    // Assert the fact to the appropriate theory directly
    assertToTheory(literal, literal, /* to */ Theory::theoryOf(atom), /* from */ THEORY_SAT_SOLVER);
  }
}

bool TheoryEngine::propagate(TNode literal, theory::TheoryId theory) {

  Debug("theory::propagate") << "TheoryEngine::propagate(" << literal << ", " << theory << ")" << endl;

  // spendResource();

  if(Dump.isOn("t-propagations")) {
    Dump("t-propagations") << CommentCommand("negation of theory propagation: expect valid")
                           << QueryCommand(literal.toExpr());
  }
  if(Dump.isOn("missed-t-propagations")) {
    d_hasPropagated.insert(literal);
  }

  // Get the atom
  bool polarity = literal.getKind() != kind::NOT;
  TNode atom = polarity ? literal : literal[0];

  if (d_logicInfo.isSharingEnabled() && atom.getKind() == kind::EQUAL) {
    if (d_propEngine->isSatLiteral(literal)) {
      // We propagate SAT literals to SAT
      assertToTheory(literal, literal, /* to */ THEORY_SAT_SOLVER, /* from */ theory);
    }
    if (theory != THEORY_BUILTIN) {
      // Assert to the shared terms database
      assertToTheory(literal, literal, /* to */ THEORY_BUILTIN, /* from */ theory);
    }
  } else {
    // Just send off to the SAT solver
    Assert(d_propEngine->isSatLiteral(literal));
    assertToTheory(literal, literal, /* to */ THEORY_SAT_SOLVER, /* from */ theory);
  }

  return !d_inConflict;
}


theory::EqualityStatus TheoryEngine::getEqualityStatus(TNode a, TNode b) {
  Assert(a.getType().isComparableTo(b.getType()));
  if (d_sharedTerms.isShared(a) && d_sharedTerms.isShared(b)) {
    if (d_sharedTerms.areEqual(a,b)) {
      return EQUALITY_TRUE_AND_PROPAGATED;
    }
    else if (d_sharedTerms.areDisequal(a,b)) {
      return EQUALITY_FALSE_AND_PROPAGATED;
    }
  }
  return theoryOf(Theory::theoryOf(a.getType()))->getEqualityStatus(a, b);
}

Node TheoryEngine::getModelValue(TNode var) {
  if (var.isConst()) return var;  // FIXME: HACK!!!
  Assert(d_sharedTerms.isShared(var));
  return theoryOf(Theory::theoryOf(var.getType()))->getModelValue(var);
}


Node TheoryEngine::ensureLiteral(TNode n) {
  Debug("ensureLiteral") << "rewriting: " << n << std::endl;
  Node rewritten = Rewriter::rewrite(n);
  Debug("ensureLiteral") << "      got: " << rewritten << std::endl;
  Node preprocessed = preprocess(rewritten);
  Debug("ensureLiteral") << "preprocessed: " << preprocessed << std::endl;
  d_propEngine->ensureLiteral(preprocessed);
  return preprocessed;
}


void TheoryEngine::printInstantiations( std::ostream& out ) {
  if( d_quantEngine ){
    d_quantEngine->printInstantiations( out );
  }else{
    out << "Internal error : instantiations not available when quantifiers are not present." << std::endl;
  }
}

void TheoryEngine::printSynthSolution( std::ostream& out ) {
  if( d_quantEngine ){
    d_quantEngine->printSynthSolution( out );
  }else{
    out << "Internal error : synth solution not available when quantifiers are not present." << std::endl;
  }
}

void TheoryEngine::getInstantiations( std::map< Node, std::vector< Node > >& insts ) {
  if( d_quantEngine ){
    d_quantEngine->getInstantiations( insts );
  }else{
    Assert( false );
  }
}


static Node mkExplanation(const std::vector<NodeTheoryPair>& explanation) {

  std::set<TNode> all;
  for (unsigned i = 0; i < explanation.size(); ++ i) {
    Assert(explanation[i].theory == THEORY_SAT_SOLVER);
    all.insert(explanation[i].node);
  }

  if (all.size() == 0) {
    // Normalize to true
    return NodeManager::currentNM()->mkConst<bool>(true);
  }

  if (all.size() == 1) {
    // All the same, or just one
    return explanation[0].node;
  }

  NodeBuilder<> conjunction(kind::AND);
  std::set<TNode>::const_iterator it = all.begin();
  std::set<TNode>::const_iterator it_end = all.end();
  while (it != it_end) {
    conjunction << *it;
    ++ it;
  }

  return conjunction;
}

NodeTheoryPair TheoryEngine::getExplanationAndExplainer(TNode node) {
  Debug("theory::explain") << "TheoryEngine::getExplanation(" << node << "): current propagation index = " << d_propagationMapTimestamp << endl;

  bool polarity = node.getKind() != kind::NOT;
  TNode atom = polarity ? node : node[0];

  // If we're not in shared mode, explanations are simple
  if (!d_logicInfo.isSharingEnabled()) {
    Node explanation = theoryOf(atom)->explain(node);
    Debug("theory::explain") << "TheoryEngine::getExplanation(" << node << ") => " << explanation << endl;
    return NodeTheoryPair(explanation, theoryOf(atom)->getId());
  }

  // Initial thing to explain
  NodeTheoryPair toExplain(node, THEORY_SAT_SOLVER, d_propagationMapTimestamp);
  Assert(d_propagationMap.find(toExplain) != d_propagationMap.end());

  NodeTheoryPair nodeExplainerPair = d_propagationMap[toExplain];
  TheoryId explainer = nodeExplainerPair.theory;

  // Create the workplace for explanations
  std::vector<NodeTheoryPair> explanationVector;
  explanationVector.push_back(d_propagationMap[toExplain]);
  // Process the explanation
  getExplanation(explanationVector);
  Node explanation = mkExplanation(explanationVector);

  Debug("theory::explain") << "TheoryEngine::getExplanation(" << node << ") => " << explanation << endl;

  return NodeTheoryPair(explanation, explainer);
}

Node TheoryEngine::getExplanation(TNode node) {
  return getExplanationAndExplainer(node).node;
}

struct AtomsCollect {

  std::vector<TNode> d_atoms;
  std::hash_set<TNode, TNodeHashFunction> d_visited;

public:

  typedef void return_type;

  bool alreadyVisited(TNode current, TNode parent) {
    // Check if already visited
    if (d_visited.find(current) != d_visited.end()) return true;
    // Don't visit non-boolean
    if (!current.getType().isBoolean()) return true;
    // New node
    return false;
  }

  void visit(TNode current, TNode parent) {
    if (Theory::theoryOf(current) != theory::THEORY_BOOL) {
      d_atoms.push_back(current);
    }
    d_visited.insert(current);
  }

  void start(TNode node) {}
  void done(TNode node) {}

  std::vector<TNode> getAtoms() const {
    return d_atoms;
  }
};

void TheoryEngine::ensureLemmaAtoms(const std::vector<TNode>& atoms, theory::TheoryId atomsTo) {
  for (unsigned i = 0; i < atoms.size(); ++ i) {

    // Non-equality atoms are either owned by theory or they don't make sense
    if (atoms[i].getKind() != kind::EQUAL) {
      continue;
    }

    // The equality
    Node eq = atoms[i];
    // Simple normalization to not repeat stuff
    if (eq[0] > eq[1]) {
      eq = eq[1].eqNode(eq[0]);
    }

    // Rewrite the equality
    Node eqNormalized = Rewriter::rewrite(atoms[i]);

    Debug("theory::atoms") << "TheoryEngine::ensureLemmaAtoms(): " << eq << " with nf " << eqNormalized << endl;

    // If the equality is a boolean constant, we send immediately
    if (eqNormalized.isConst()) {
      if (eqNormalized.getConst<bool>()) {
        assertToTheory(eq, eqNormalized, /** to */ atomsTo, /** Sat solver */ theory::THEORY_SAT_SOLVER);
      } else {
        assertToTheory(eq.notNode(), eqNormalized.notNode(), /** to */ atomsTo, /** Sat solver */ theory::THEORY_SAT_SOLVER);
      }
      continue;
    }

    Assert(eqNormalized.getKind() == kind::EQUAL);


    // If the normalization did the just flips, keep the flip
    if (eqNormalized[0] == eq[1] && eqNormalized[1] == eq[0]) {
      eq = eqNormalized;
    }

    // Check if the equality is already known by the sat solver
    if (d_propEngine->isSatLiteral(eqNormalized)) {
      bool value;
      if (d_propEngine->hasValue(eqNormalized, value)) {
        if (value) {
          assertToTheory(eq, eqNormalized, atomsTo, theory::THEORY_SAT_SOLVER);
          continue;
        } else {
          assertToTheory(eq.notNode(), eqNormalized.notNode(), atomsTo, theory::THEORY_SAT_SOLVER);
          continue;
        }
      }
    }

    // If the theory is asking about a different form, or the form is ok but if will go to a different theory
    // then we must figure it out
    if (eqNormalized != eq || Theory::theoryOf(eq) != atomsTo) {
      // If you get eqNormalized, send atoms[i] to atomsTo
      d_atomRequests.add(eqNormalized, eq, atomsTo);
    }
  }
}

theory::LemmaStatus TheoryEngine::lemma(TNode node,
                                        ProofRule rule,
                                        bool negated,
                                        bool removable,
                                        bool preprocess,
                                        theory::TheoryId atomsTo,
                                        theory::TheoryId ownerTheory) {
  // For resource-limiting (also does a time check).
  // spendResource();

  // Do we need to check atoms
  if (atomsTo != theory::THEORY_LAST) {
    Debug("theory::atoms") << "TheoryEngine::lemma(" << node << ", " << atomsTo << ")" << endl;
    AtomsCollect collectAtoms;
    NodeVisitor<AtomsCollect>::run(collectAtoms, node);
    ensureLemmaAtoms(collectAtoms.getAtoms(), atomsTo);
  }

  if(Dump.isOn("t-lemmas")) {
    Node n = node;
    if (negated) {
      n = node.negate();
    }
    Dump("t-lemmas") << CommentCommand("theory lemma: expect valid")
                     << QueryCommand(n.toExpr());
  }

  // Share with other portfolio threads
  if(d_channels->getLemmaOutputChannel() != NULL) {
    d_channels->getLemmaOutputChannel()->notifyNewLemma(node.toExpr());
  }

  std::vector<Node> additionalLemmas;
  IteSkolemMap iteSkolemMap;

  // Run theory preprocessing, maybe
  Node ppNode = preprocess ? this->preprocess(node) : Node(node);

  // Remove the ITEs
  additionalLemmas.push_back(ppNode);
  d_iteRemover.run(additionalLemmas, iteSkolemMap);
  additionalLemmas[0] = theory::Rewriter::rewrite(additionalLemmas[0]);

  if(Debug.isOn("lemma-ites")) {
    Debug("lemma-ites") << "removed ITEs from lemma: " << ppNode << endl;
    Debug("lemma-ites") << " + now have the following "
                        << additionalLemmas.size() << " lemma(s):" << endl;
    for(std::vector<Node>::const_iterator i = additionalLemmas.begin();
        i != additionalLemmas.end();
        ++i) {
      Debug("lemma-ites") << " + " << *i << endl;
    }
    Debug("lemma-ites") << endl;
  }

  // assert to prop engine
  d_propEngine->assertLemma(additionalLemmas[0], negated, removable, rule, ownerTheory, node);
  for (unsigned i = 1; i < additionalLemmas.size(); ++ i) {
    additionalLemmas[i] = theory::Rewriter::rewrite(additionalLemmas[i]);
    d_propEngine->assertLemma(additionalLemmas[i], false, removable, rule, ownerTheory, node);
  }

  // WARNING: Below this point don't assume additionalLemmas[0] to be not negated.
  if(negated) {
    additionalLemmas[0] = additionalLemmas[0].notNode();
    negated = false;
  }

  // assert to decision engine
  if(!removable) {
    d_decisionEngine->addAssertions(additionalLemmas, 1, iteSkolemMap);
  }

  // Mark that we added some lemmas
  d_lemmasAdded = true;

  // Lemma analysis isn't online yet; this lemma may only live for this
  // user level.
  return theory::LemmaStatus(additionalLemmas[0], d_userContext->getLevel());
}

void TheoryEngine::conflict(TNode conflict, TheoryId theoryId) {

  Debug("theory::conflict") << "TheoryEngine::conflict(" << conflict << ", " << theoryId << ")" << endl;

  // Mark that we are in conflict
  d_inConflict = true;

  if(Dump.isOn("t-conflicts")) {
    Dump("t-conflicts") << CommentCommand("theory conflict: expect unsat")
                        << CheckSatCommand(conflict.toExpr());
  }

  // In the multiple-theories case, we need to reconstruct the conflict
  if (d_logicInfo.isSharingEnabled()) {
    // Create the workplace for explanations
    std::vector<NodeTheoryPair> explanationVector;
    explanationVector.push_back(NodeTheoryPair(conflict, theoryId, d_propagationMapTimestamp));
    // Process the explanation
    getExplanation(explanationVector);
    Node fullConflict = mkExplanation(explanationVector);
    Debug("theory::conflict") << "TheoryEngine::conflict(" << conflict << ", " << theoryId << "): full = " << fullConflict << endl;
    Assert(properConflict(fullConflict));
    lemma(fullConflict, RULE_CONFLICT, true, true, false, THEORY_LAST, theoryId);
  } else {
    // When only one theory, the conflict should need no processing
    Assert(properConflict(conflict));
    lemma(conflict, RULE_CONFLICT, true, true, false, THEORY_LAST, theoryId);
  }
}

void TheoryEngine::staticInitializeBVOptions(const std::vector<Node>& assertions) {
  bool useSlicer = true;
  if (options::bitvectorEqualitySlicer() == bv::BITVECTOR_SLICER_ON) {
    if (options::incrementalSolving())
      throw ModalException("Slicer does not currently support incremental mode. Use --bv-eq-slicer=off");
    if (options::produceModels())
      throw ModalException("Slicer does not currently support model generation. Use --bv-eq-slicer=off");
    useSlicer = true;

  } else if (options::bitvectorEqualitySlicer() == bv::BITVECTOR_SLICER_OFF) {
    return;

  } else if (options::bitvectorEqualitySlicer() == bv::BITVECTOR_SLICER_AUTO) {
    if (options::incrementalSolving() ||
        options::produceModels())
      return;

    useSlicer = true;
    bv::utils::TNodeBoolMap cache;
    for (unsigned i = 0; i < assertions.size(); ++i) {
      useSlicer = useSlicer && bv::utils::isCoreTerm(assertions[i], cache);
    }
  }

  if (useSlicer) {
    bv::TheoryBV* bv_theory = (bv::TheoryBV*)d_theoryTable[THEORY_BV];
    bv_theory->enableCoreTheorySlicer();
  }

}

void TheoryEngine::ppBvToBool(const std::vector<Node>& assertions, std::vector<Node>& new_assertions) {
  d_bvToBoolPreprocessor.liftBvToBool(assertions, new_assertions);
}

bool  TheoryEngine::ppBvAbstraction(const std::vector<Node>& assertions, std::vector<Node>& new_assertions) {
  bv::TheoryBV* bv_theory = (bv::TheoryBV*)d_theoryTable[THEORY_BV];
  return bv_theory->applyAbstraction(assertions, new_assertions);
}

void TheoryEngine::mkAckermanizationAsssertions(std::vector<Node>& assertions) {
  bv::TheoryBV* bv_theory = (bv::TheoryBV*)d_theoryTable[THEORY_BV];
  bv_theory->mkAckermanizationAsssertions(assertions);
}

Node TheoryEngine::ppSimpITE(TNode assertion)
{
  if(options::incrementalSolving()){
    // disabling the d_iteUtilities->simpITE(assertion) pass for incremental solving.
    // This is paranoia. We do not actually know of a bug coming from this.
    // TODO re-enable
    return assertion;
  } else if(!d_iteRemover.containsTermITE(assertion)){
    return assertion;
  }else{

    Node result = d_iteUtilities->simpITE(assertion);
    Node res_rewritten = Rewriter::rewrite(result);

    if(options::simplifyWithCareEnabled()){
      Chat() << "starting simplifyWithCare()" << endl;
      Node postSimpWithCare = d_iteUtilities->simplifyWithCare(res_rewritten);
      Chat() << "ending simplifyWithCare()"
             << " post simplifyWithCare()" << postSimpWithCare.getId() << endl;
      result = Rewriter::rewrite(postSimpWithCare);
    }else{
      result = res_rewritten;
    }

    return result;
  }
}

bool TheoryEngine::donePPSimpITE(std::vector<Node>& assertions){
  // This pass does not support dependency tracking yet
  // (learns substitutions from all assertions so just
  // adding addDependence is not enough)
  if (options::unsatCores()) {
    return true;
  }
  bool result = true;
  bool simpDidALotOfWork = d_iteUtilities->simpIteDidALotOfWorkHeuristic();
  if(simpDidALotOfWork){
    if(options::compressItes()){
      result = d_iteUtilities->compress(assertions);
    }

    if(result){
      // if false, don't bother to reclaim memory here.
      NodeManager* nm = NodeManager::currentNM();
      if(nm->poolSize() >= options::zombieHuntThreshold()){
        Chat() << "..ite simplifier did quite a bit of work.. " << nm->poolSize() << endl;
        Chat() << "....node manager contains " << nm->poolSize() << " nodes before cleanup" << endl;
        d_iteUtilities->clear();
        Rewriter::clearCaches();
        d_iteRemover.garbageCollect();
        nm->reclaimZombiesUntil(options::zombieHuntThreshold());
        Chat() << "....node manager contains " << nm->poolSize() << " nodes after cleanup" << endl;
      }
    }
  }

  // Do theory specific preprocessing passes
  if(d_logicInfo.isTheoryEnabled(theory::THEORY_ARITH)
     && !options::incrementalSolving() ){
    if(!simpDidALotOfWork){
      ContainsTermITEVisitor& contains = *d_iteRemover.getContainsVisitor();
      arith::ArithIteUtils aiteu(contains, d_userContext, getModel());
      bool anyItes = false;
      for(size_t i = 0;  i < assertions.size(); ++i){
        Node curr = assertions[i];
        if(contains.containsTermITE(curr)){
          anyItes = true;
          Node res = aiteu.reduceVariablesInItes(curr);
          Debug("arith::ite::red") << "@ " << i << " ... " << curr << endl << "   ->" << res << endl;
          if(curr != res){
            Node more = aiteu.reduceConstantIteByGCD(res);
            Debug("arith::ite::red") << "  gcd->" << more << endl;
            assertions[i] = Rewriter::rewrite(more);
          }
        }
      }
      if(!anyItes){
        unsigned prevSubCount = aiteu.getSubCount();
        aiteu.learnSubstitutions(assertions);
        if(prevSubCount < aiteu.getSubCount()){
          d_arithSubstitutionsAdded += aiteu.getSubCount() - prevSubCount;
          bool anySuccess = false;
          for(size_t i = 0, N =  assertions.size();  i < N; ++i){
            Node curr = assertions[i];
            Node next = Rewriter::rewrite(aiteu.applySubstitutions(curr));
            Node res = aiteu.reduceVariablesInItes(next);
            Debug("arith::ite::red") << "@ " << i << " ... " << next << endl << "   ->" << res << endl;
            Node more = aiteu.reduceConstantIteByGCD(res);
            Debug("arith::ite::red") << "  gcd->" << more << endl;
            if(more != next){
              anySuccess = true;
              break;
            }
          }
          for(size_t i = 0, N =  assertions.size();  anySuccess && i < N; ++i){
            Node curr = assertions[i];
            Node next = Rewriter::rewrite(aiteu.applySubstitutions(curr));
            Node res = aiteu.reduceVariablesInItes(next);
            Debug("arith::ite::red") << "@ " << i << " ... " << next << endl << "   ->" << res << endl;
            Node more = aiteu.reduceConstantIteByGCD(res);
            Debug("arith::ite::red") << "  gcd->" << more << endl;
            assertions[i] = Rewriter::rewrite(more);
          }
        }
      }
    }
  }
  return result;
}

void TheoryEngine::getExplanation(std::vector<NodeTheoryPair>& explanationVector)
{
  Assert(explanationVector.size() > 0);

  unsigned i = 0; // Index of the current literal we are processing
  unsigned j = 0; // Index of the last literal we are keeping

  while (i < explanationVector.size()) {

    // Get the current literal to explain
    NodeTheoryPair toExplain = explanationVector[i];

    Debug("theory::explain") << "TheoryEngine::explain(): processing [" << toExplain.timestamp << "] " << toExplain.node << " sent from " << toExplain.theory << endl;

    // If a true constant or a negation of a false constant we can ignore it
    if (toExplain.node.isConst() && toExplain.node.getConst<bool>()) {
      ++ i;
      continue;
    }
    if (toExplain.node.getKind() == kind::NOT && toExplain.node[0].isConst() && !toExplain.node[0].getConst<bool>()) {
      ++ i;
      continue;
    }

    // If from the SAT solver, keep it
    if (toExplain.theory == THEORY_SAT_SOLVER) {
      explanationVector[j++] = explanationVector[i++];
      continue;
    }

    // If an and, expand it
    if (toExplain.node.getKind() == kind::AND) {
      Debug("theory::explain") << "TheoryEngine::explain(): expanding " << toExplain.node << " got from " << toExplain.theory << endl;
      for (unsigned k = 0; k < toExplain.node.getNumChildren(); ++ k) {
        NodeTheoryPair newExplain(toExplain.node[k], toExplain.theory, toExplain.timestamp);
        explanationVector.push_back(newExplain);
      }
      ++ i;
      continue;
    }

    // See if it was sent to the theory by another theory
    PropagationMap::const_iterator find = d_propagationMap.find(toExplain);
    if (find != d_propagationMap.end()) {
      // There is some propagation, check if its a timely one
      if ((*find).second.timestamp < toExplain.timestamp) {
        explanationVector.push_back((*find).second);
        ++ i;
        continue;
      }
    }

    // It was produced by the theory, so ask for an explanation
    Node explanation;
    if (toExplain.theory == THEORY_BUILTIN) {
      explanation = d_sharedTerms.explain(toExplain.node);
    } else {
      explanation = theoryOf(toExplain.theory)->explain(toExplain.node);
    }
    Debug("theory::explain") << "TheoryEngine::explain(): got explanation " << explanation << " got from " << toExplain.theory << endl;
    Assert(explanation != toExplain.node, "wasn't sent to you, so why are you explaining it trivially");
    // Mark the explanation
    NodeTheoryPair newExplain(explanation, toExplain.theory, toExplain.timestamp);
    explanationVector.push_back(newExplain);
    ++ i;
  }

  // Keep only the relevant literals
  explanationVector.resize(j);
}


void TheoryEngine::ppUnconstrainedSimp(vector<Node>& assertions)
{
  d_unconstrainedSimp->processAssertions(assertions);
}


void TheoryEngine::setUserAttribute(const std::string& attr, Node n, std::vector<Node>& node_values, std::string str_value) {
  Trace("te-attr") << "set user attribute " << attr << " " << n << endl;
  if( d_attr_handle.find( attr )!=d_attr_handle.end() ){
    for( size_t i=0; i<d_attr_handle[attr].size(); i++ ){
      d_attr_handle[attr][i]->setUserAttribute(attr, n, node_values, str_value);
    }
  } else {
    //unhandled exception?
  }
}

void TheoryEngine::handleUserAttribute(const char* attr, Theory* t) {
  Trace("te-attr") << "Handle user attribute " << attr << " " << t << endl;
  std::string str( attr );
  d_attr_handle[ str ].push_back( t );
}

void TheoryEngine::checkTheoryAssertionsWithModel() {
  for(TheoryId theoryId = THEORY_FIRST; theoryId < THEORY_LAST; ++theoryId) {
    Theory* theory = d_theoryTable[theoryId];
    if(theory && d_logicInfo.isTheoryEnabled(theoryId)) {
      for(context::CDList<Assertion>::const_iterator it = theory->facts_begin(),
            it_end = theory->facts_end();
          it != it_end;
          ++it) {
        Node assertion = (*it).assertion;
        Node val = getModel()->getValue(assertion);
        if(val != d_true) {
          stringstream ss;
          ss << theoryId << " has an asserted fact that the model doesn't satisfy." << endl
             << "The fact: " << assertion << endl
             << "Model value: " << val << endl;
          InternalError(ss.str());
        }
      }
    }
  }
}

std::pair<bool, Node> TheoryEngine::entailmentCheck(theory::TheoryOfMode mode, TNode lit, const EntailmentCheckParameters* params, EntailmentCheckSideEffects* seffects) {
  TNode atom = (lit.getKind() == kind::NOT) ? lit[0] : lit;
  theory::TheoryId tid = theory::Theory::theoryOf(mode, atom);
  theory::Theory* th = theoryOf(tid);

  Assert(th != NULL);
  Assert(params == NULL || tid == params->getTheoryId());
  Assert(seffects == NULL || tid == seffects->getTheoryId());

  return th->entailmentCheck(lit, params, seffects);
}

void TheoryEngine::spendResource(unsigned ammount) {
  d_resourceManager->spendResource(ammount);
}

void TheoryEngine::enableTheoryAlternative(const std::string& name){
  Debug("TheoryEngine::enableTheoryAlternative")
      << "TheoryEngine::enableTheoryAlternative(" << name << ")" << std::endl;

  d_theoryAlternatives.insert(name);
}

bool TheoryEngine::useTheoryAlternative(const std::string& name) {
  return d_theoryAlternatives.find(name) != d_theoryAlternatives.end();
}


TheoryEngine::Statistics::Statistics(theory::TheoryId theory):
    conflicts(mkName("theory<", theory, ">::conflicts"), 0),
    propagations(mkName("theory<", theory, ">::propagations"), 0),
    lemmas(mkName("theory<", theory, ">::lemmas"), 0),
    requirePhase(mkName("theory<", theory, ">::requirePhase"), 0),
    flipDecision(mkName("theory<", theory, ">::flipDecision"), 0),
    restartDemands(mkName("theory<", theory, ">::restartDemands"), 0)
{
  smtStatisticsRegistry()->registerStat(&conflicts);
  smtStatisticsRegistry()->registerStat(&propagations);
  smtStatisticsRegistry()->registerStat(&lemmas);
  smtStatisticsRegistry()->registerStat(&requirePhase);
  smtStatisticsRegistry()->registerStat(&flipDecision);
  smtStatisticsRegistry()->registerStat(&restartDemands);
}

TheoryEngine::Statistics::~Statistics() {
  smtStatisticsRegistry()->unregisterStat(&conflicts);
  smtStatisticsRegistry()->unregisterStat(&propagations);
  smtStatisticsRegistry()->unregisterStat(&lemmas);
  smtStatisticsRegistry()->unregisterStat(&requirePhase);
  smtStatisticsRegistry()->unregisterStat(&flipDecision);
  smtStatisticsRegistry()->unregisterStat(&restartDemands);
}

}/* CVC4 namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback