summaryrefslogtreecommitdiff
path: root/src/theory/theory.h
blob: 28fdc8cbe040761e64e0fc16e4e808b1a29d1e41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/*********************                                                        */
/*! \file theory.h
 ** \verbatim
 ** Original author: mdeters
 ** Major contributors: dejan
 ** Minor contributors (to current version): taking, barrett
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009, 2010, 2011  The Analysis of Computer Systems Group (ACSys)
 ** Courant Institute of Mathematical Sciences
 ** New York University
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Base of the theory interface.
 **
 ** Base of the theory interface.
 **/

#include "cvc4_private.h"

#ifndef __CVC4__THEORY__THEORY_H
#define __CVC4__THEORY__THEORY_H

#include "expr/node.h"
#include "expr/attribute.h"
#include "expr/command.h"
#include "theory/valuation.h"
#include "theory/substitutions.h"
#include "theory/output_channel.h"
#include "context/context.h"
#include "context/cdlist.h"
#include "context/cdo.h"
#include "util/options.h"
#include "util/stats.h"
#include "util/dump.h"

#include <string>
#include <iostream>

namespace CVC4 {

class TheoryEngine;

namespace theory {

/**
 * Information about an assertion for the theories.
 */
struct Assertion {

  /** The assertion */
  Node assertion;
  /** Has this assertion been preregistered with this theory */
  bool isPreregistered;

  Assertion(TNode assertion, bool isPreregistered)
  : assertion(assertion), isPreregistered(isPreregistered) {}

  /**
   * Convert the assertion to a TNode.
   */
  operator TNode () const {
    return assertion;
  }

  /**
   * Convert the assertion to a Node.
   */
  operator Node () const {
    return assertion;
  }
};

/**
 * A (oredered) pair of terms a theory cares about.
 */
struct CarePair {

  TNode a, b;
  TheoryId theory;

public:

  CarePair(TNode a, TNode b, TheoryId theory) 
  : a(a < b ? a : b), b(a < b ? b : a), theory(theory) {}

  bool operator == (const CarePair& other) const {
    return (theory == other.theory) && (a == other.a) && (b == other.b);
  }

  bool operator < (const CarePair& other) const {
    if (theory < other.theory) return true;
    if (theory > other.theory) return false;
    if (a < other.a) return true;
    if (a > other.a) return false;
    return b < other.b;
  }

};

/**
 * A set of care pairs.
 */
typedef std::set<CarePair> CareGraph;

/**
 * Base class for T-solvers.  Abstract DPLL(T).
 *
 * This is essentially an interface class.  The TheoryEngine has
 * pointers to Theory.  Note that only one specific Theory type (e.g.,
 * TheoryUF) can exist per NodeManager, because of how the
 * RegisteredAttr works.  (If you need multiple instances of the same
 * theory, you'll have to write a multiplexed theory that dispatches
 * all calls to them.)
 */
class Theory {
private:

  friend class ::CVC4::TheoryEngine;

  // Disallow default construction, copy, assignment.
  Theory() CVC4_UNUSED;
  Theory(const Theory&) CVC4_UNUSED;
  Theory& operator=(const Theory&) CVC4_UNUSED;

  /**
   * An integer identifying the type of the theory
   */
  TheoryId d_id;

  /**
   * The context for the Theory.
   */
  context::Context* d_context;

  /**
   * The user context for the Theory.
   */
  context::UserContext* d_userContext;

  /**
   * The assertFact() queue.
   *
   * These can not be TNodes as some atoms (such as equalities) are sent
   * across theories without being stored in a global map.
   */
  context::CDList<Assertion> d_facts;

  /** Index into the head of the facts list */
  context::CDO<unsigned> d_factsHead;

  /**
   * Add shared term to the theory.
   */
  void addSharedTermInternal(TNode node);

  /**
   * Indices for splitting on the shared terms.
   */
  context::CDO<unsigned> d_sharedTermsIndex;

  /**
   * The care graph the theory will use during combination.
   */
  CareGraph* d_careGraph;

  // === STATISTICS ===
  /** time spent in theory combination */
  TimerStat d_computeCareGraphTime;

  static std::string statName(TheoryId id, const char* statName) {
    std::stringstream ss;
    ss << "theory<" << id << ">::" << statName;
    return ss.str();
  }

protected:

  /**
   * The only method to add suff to the care graph.
   */
  void addCarePair(TNode t1, TNode t2) {
    if (d_careGraph) {
      d_careGraph->insert(CarePair(t1, t2, d_id));
    }
  }

  /**
   * The function should compute the care graph over the shared terms.
   * The default function returns all the pairs among the shared variables.
   */
  virtual void computeCareGraph();

  /**
   * A list of shared terms that the theory has.
   */
  context::CDList<TNode> d_sharedTerms;

  /**
   * Construct a Theory.
   */
  Theory(TheoryId id, context::Context* context, context::UserContext* userContext,
         OutputChannel& out, Valuation valuation) throw() :
    d_id(id),
    d_context(context),
    d_userContext(userContext),
    d_facts(context),
    d_factsHead(context, 0),
    d_sharedTermsIndex(context, 0),
    d_careGraph(0),
    d_computeCareGraphTime(statName(id, "computeCareGraphTime")),
    d_sharedTerms(context),
    d_out(&out),
    d_valuation(valuation)
  {
    StatisticsRegistry::registerStat(&d_computeCareGraphTime);
  }

  /**
   * This is called at shutdown time by the TheoryEngine, just before
   * destruction.  It is important because there are destruction
   * ordering issues between PropEngine and Theory (based on what
   * hard-links to Nodes are outstanding).  As the fact queue might be
   * nonempty, we ensure here that it's clear.  If you overload this,
   * you must make an explicit call here to this->Theory::shutdown()
   * too.
   */
  virtual void shutdown() { }

  /**
   * The output channel for the Theory.
   */
  OutputChannel* d_out;

  /**
   * The valuation proxy for the Theory to communicate back with the
   * theory engine (and other theories).
   */
  Valuation d_valuation;

  /**
   * Returns the next assertion in the assertFact() queue.
   *
   * @return the next assertion in the assertFact() queue
   */
  Assertion get() {
    Assert( !done(), "Theory`() called with assertion queue empty!" );

    // Get the assertion
    Assertion fact = d_facts[d_factsHead];
    d_factsHead = d_factsHead + 1;
    Trace("theory") << "Theory::get() => " << fact << " (" << d_facts.size() - d_factsHead << " left)" << std::endl;
    if(Dump.isOn("state")) {
      Dump("state") << AssertCommand(fact.assertion.toExpr());
    }
        
    return fact;
  }

  /**
   * The theory that owns the uninterpreted sort.
   */
  static TheoryId s_uninterpretedSortOwner;

  void printFacts(std::ostream& os) const;

public:

  /**
   * Return the ID of the theory responsible for the given type.
   */
  static inline TheoryId theoryOf(TypeNode typeNode) {
    Trace("theory::internal") << "theoryOf(" << typeNode << ")" << std::endl;
    TheoryId id;
    while (typeNode.isPredicateSubtype()) {
      typeNode = typeNode.getSubtypeBaseType();
    }
    if (typeNode.getKind() == kind::TYPE_CONSTANT) {
      id = typeConstantToTheoryId(typeNode.getConst<TypeConstant>());
    } else {
      id = kindToTheoryId(typeNode.getKind());
    }
    if (id == THEORY_BUILTIN) {
      Trace("theory::internal") << "theoryOf(" << typeNode << ") == " << s_uninterpretedSortOwner << std::endl;
      return s_uninterpretedSortOwner;
    }
    return id;
  }


  /**
   * Returns the ID of the theory responsible for the given node.
   */
  static inline TheoryId theoryOf(TNode node) {
    Trace("theory::internal") << "theoryOf(" << node << ")" << std::endl;
    // Constants, variables, 0-ary constructors
    if (node.getMetaKind() == kind::metakind::VARIABLE || node.getMetaKind() == kind::metakind::CONSTANT) {
      return theoryOf(node.getType());
    }
    // Equality is owned by the theory that owns the domain
    if (node.getKind() == kind::EQUAL) {
      return theoryOf(node[0].getType());
    }
    // Regular nodes are owned by the kind
    return kindToTheoryId(node.getKind());
  }

  /**
   * Set the owner of the uninterpreted sort.
   */
  static void setUninterpretedSortOwner(TheoryId theory) {
    s_uninterpretedSortOwner = theory;
  }

  /**
   * Checks if the node is a leaf node of this theory
   */
  inline bool isLeaf(TNode node) const {
    return node.getNumChildren() == 0 || theoryOf(node) != d_id;
  }

  /**
   * Checks if the node is a leaf node of a theory.
   */
  inline static bool isLeafOf(TNode node, TheoryId theoryId) {
    return node.getNumChildren() == 0 || theoryOf(node) != theoryId;
  }

  /**
   * Returns true if the assertFact queue is empty
   */
  bool done() throw() {
    return d_factsHead == d_facts.size();
  }

  /**
   * Destructs a Theory.  This implementation does nothing, but we
   * need a virtual destructor for safety in case subclasses have a
   * destructor.
   */
  virtual ~Theory() {
    StatisticsRegistry::unregisterStat(&d_computeCareGraphTime);
  }

  /**
   * Subclasses of Theory may add additional efforts.  DO NOT CHECK
   * equality with one of these values (e.g. if STANDARD xxx) but
   * rather use range checks (or use the helper functions below).
   * Normally we call QUICK_CHECK or STANDARD; at the leaves we call
   * with FULL_EFFORT.
   */
  enum Effort {
    /**
     * Standard effort where theory need not do anything
     */
    EFFORT_STANDARD = 50,
    /**
     * Full effort requires the theory make sure its assertions are satisfiable or not
     */
    EFFORT_FULL = 100,
    /**
     * Combination effort means that the individual theories are already satisfied, and
     * it is time to put some effort into propagation of shared term equalities
     */
    EFFORT_COMBINATION = 150
  };/* enum Effort */

  static inline bool standardEffortOrMore(Effort e) CVC4_CONST_FUNCTION
    { return e >= EFFORT_STANDARD; }
  static inline bool standardEffortOnly(Effort e) CVC4_CONST_FUNCTION
    { return e >= EFFORT_STANDARD && e <  EFFORT_FULL; }
  static inline bool fullEffort(Effort e) CVC4_CONST_FUNCTION
    { return e == EFFORT_FULL; }
  static inline bool combination(Effort e) CVC4_CONST_FUNCTION 
    { return e == EFFORT_COMBINATION; }

  /**
   * Get the id for this Theory.
   */
  TheoryId getId() const {
    return d_id;
  }

  /**
   * Get the context associated to this Theory.
   */
  context::Context* getContext() const {
    return d_context;
  }

  /**
   * Get the context associated to this Theory.
   */
  context::UserContext* getUserContext() const {
    return d_userContext;
  }

  /**
   * Set the output channel associated to this theory.
   */
  void setOutputChannel(OutputChannel& out) {
    d_out = &out;
  }

  /**
   * Get the output channel associated to this theory.
   */
  OutputChannel& getOutputChannel() {
    return *d_out;
  }

  /**
   * Pre-register a term.  Done one time for a Node, ever.
   */
  virtual void preRegisterTerm(TNode) { }

  /**
   * Assert a fact in the current context.
   */
  void assertFact(TNode assertion, bool isPreregistered) {
    Trace("theory") << "Theory<" << getId() << ">::assertFact[" << d_context->getLevel() << "](" << assertion << ", " << (isPreregistered ? "true" : "false") << ")" << std::endl;
    d_facts.push_back(Assertion(assertion, isPreregistered));
  }

  /**
   * This method is called to notify a theory that the node n should
   * be considered a "shared term" by this theory
   */
  virtual void addSharedTerm(TNode n) { }

  /**
   * Return the current theory care graph. Theories should overload computeCareGraph to do
   * the actual computation, and use addCarePair to add pairs to the care graph.
   */
  void getCareGraph(CareGraph& careGraph) {
    TimerStat::CodeTimer computeCareGraphTime(d_computeCareGraphTime);
    d_careGraph = &careGraph;
    computeCareGraph();
    d_careGraph = NULL;
  }

  /**
   * Return the status of two terms in the current context. Should be implemented in 
   * sub-theories to enable more efficient theory-combination.
   */
  virtual EqualityStatus getEqualityStatus(TNode a, TNode b) { return EQUALITY_UNKNOWN; }

  /**
   * This method is called by the shared term manager when a shared
   * term lhs which this theory cares about (either because it
   * received a previous addSharedTerm call with lhs or because it
   * received a previous notifyEq call with lhs as the second
   * argument) becomes equal to another shared term rhs.  This call
   * also serves as notice to the theory that the shared term manager
   * now considers rhs the representative for this equivalence class
   * of shared terms, so future notifications for this class will be
   * based on rhs not lhs.
   */
  virtual void notifyEq(TNode lhs, TNode rhs) { }

  /**
   * Check the current assignment's consistency.
   *
   * An implementation of check() is required to either:
   * - return a conflict on the output channel,
   * - be interrupted,
   * - throw an exception
   * - or call get() until done() is true.
   */
  virtual void check(Effort level = EFFORT_FULL) { }

  /**
   * T-propagate new literal assignments in the current context.
   */
  virtual void propagate(Effort level = EFFORT_FULL) { }

  /**
   * Return an explanation for the literal represented by parameter n
   * (which was previously propagated by this theory).
   */
  virtual Node explain(TNode n) {
    Unimplemented("Theory %s propagated a node but doesn't implement the "
                  "Theory::explain() interface!", identify().c_str());
  }

  /**
   * Return the value of a node (typically used after a ).  If the
   * theory supports model generation but has no value for this node,
   * it should return Node::null().  If the theory doesn't support
   * model generation at all, or usually would but doesn't in its
   * current state, it should throw an exception saying so.
   *
   * The TheoryEngine is passed in so that you can recursively request
   * values for the Node's children.  This is important because the
   * TheoryEngine takes care of simple cases (metakind CONSTANT,
   * Boolean-valued VARIABLES, ...) and can dispatch to other theories
   * if that's necessary.  Only call your own getValue() recursively
   * if you *know* that you are responsible handle the Node you're
   * asking for; other theories can use your types, so be careful
   * here!  To be safe, it's best to delegate back to the
   * TheoryEngine (by way of the Valuation proxy object, which avoids
   * direct dependence on TheoryEngine).
   *
   * Usually, you need to handle at least the two cases of EQUAL and
   * VARIABLE---EQUAL in case a value of yours is on the LHS of an
   * EQUAL, and VARIABLE for variables of your types.  You also need
   * to support any operators that can survive your rewriter.  You
   * don't need to handle constants, as they are handled by the
   * TheoryEngine.
   *
   * There are some gotchas here.  The user may be requesting the
   * value of an expression that wasn't part of the satisfiable
   * assertion, or has been declared since.  If you don't have a value
   * and suspect this situation is the case, return Node::null()
   * rather than throwing an exception.
   */
  virtual Node getValue(TNode n) {
    Unimplemented("Theory %s doesn't support Theory::getValue interface",
                  identify().c_str());
    return Node::null();
  }

  /**
   * Statically learn from assertion "in," which has been asserted
   * true at the top level.  The theory should only add (via
   * ::operator<< or ::append()) to the "learned" builder---it should
   * *never* clear it.  It is a conjunction to add to the formula at
   * the top-level and may contain other theories' contributions.
   */
  virtual void ppStaticLearn(TNode in, NodeBuilder<>& learned) { }

  enum PPAssertStatus {
    /** Atom has been solved  */
    PP_ASSERT_STATUS_SOLVED,
    /** Atom has not been solved */
    PP_ASSERT_STATUS_UNSOLVED,
    /** Atom is inconsistent */
    PP_ASSERT_STATUS_CONFLICT
  };

  /**
   * Given a literal, add the solved substitutions to the map, if any.
   * The method should return true if the literal can be safely removed.
   */
  virtual PPAssertStatus ppAssert(TNode in, SubstitutionMap& outSubstitutions) {
    if (in.getKind() == kind::EQUAL) {
      if (in[0].getMetaKind() == kind::metakind::VARIABLE && !in[1].hasSubterm(in[0])) {
        outSubstitutions.addSubstitution(in[0], in[1]);
        return PP_ASSERT_STATUS_SOLVED;
      }
      if (in[1].getMetaKind() == kind::metakind::VARIABLE && !in[0].hasSubterm(in[1])) {
        outSubstitutions.addSubstitution(in[1], in[0]);
        return PP_ASSERT_STATUS_SOLVED;
      }
      if (in[0].getMetaKind() == kind::metakind::CONSTANT && in[1].getMetaKind() == kind::metakind::CONSTANT) {
        if (in[0] != in[1]) {
          return PP_ASSERT_STATUS_CONFLICT;
        }
      }
    }

    return PP_ASSERT_STATUS_UNSOLVED;
  }

  /**
   * Given an atom of the theory coming from the input formula, this
   * method can be overridden in a theory implementation to rewrite
   * the atom into an equivalent form.  This is only called just
   * before an input atom to the engine.
   */
  virtual Node ppRewrite(TNode atom) { return atom; }

  /**
   * A Theory is called with presolve exactly one time per user
   * check-sat.  presolve() is called after preregistration,
   * rewriting, and Boolean propagation, (other theories'
   * propagation?), but the notified Theory has not yet had its
   * check() or propagate() method called.  A Theory may empty its
   * assertFact() queue using get().  A Theory can raise conflicts,
   * add lemmas, and propagate literals during presolve().
   */
  virtual void presolve() { }

  /**
   * A Theory is called with postsolve exactly one time per user
   * check-sat.  postsolve() is called after the query has completed
   * (regardless of whether sat, unsat, or unknown), and after any
   * model-querying related to the query has been performed.
   * After this call, the theory will not get another check() or
   * propagate() call until presolve() is called again.  A Theory
   * cannot raise conflicts, add lemmas, or propagate literals during
   * postsolve().
   */
  virtual void postsolve() { }

  /**
   * Notification sent to the theory wheneven the search restarts.
   * Serves as a good time to do some clean-up work, and you can
   * assume you're at DL 0 for the purposes of Contexts.  This function
   * should not use the output channel.
   */
  virtual void notifyRestart() { }

  /**
   * Identify this theory (for debugging, dynamic configuration,
   * etc..)
   */
  virtual std::string identify() const = 0;

  /** A set of theories */
  typedef uint32_t Set;

  /** A set of all theories */
  static const Set AllTheories = (1 << theory::THEORY_LAST) - 1;

  /** Add the theory to the set. If no set specified, just returns a singleton set */
  static inline Set setInsert(TheoryId theory, Set set = 0) {
    return set | (1 << theory);
  }

  /** Check if the set contains the theory */
  static inline bool setContains(TheoryId theory, Set set) {
    return set & (1 << theory);
  }

  static inline Set setComplement(Set a) {
    return (~a) & AllTheories;
  }

  static inline Set setIntersection(Set a, Set b) {
    return a & b;
  } 

  static inline Set setUnion(Set a, Set b) {
    return a | b;
  }

  /** a - b  */
  static inline Set setDifference(Set a, Set b) {
    return (~b) & a;
  }

  static inline std::string setToString(theory::Theory::Set theorySet) {
    std::stringstream ss;
    ss << "[";
    for(unsigned theoryId = 0; theoryId < theory::THEORY_LAST; ++theoryId) {
      if (theory::Theory::setContains((theory::TheoryId)theoryId, theorySet)) {
        ss << (theory::TheoryId) theoryId << " ";
      }
    }
    ss << "]";
    return ss.str();
  }

  /**
   * Provides access to the facts queue, primarily intended for theory
   * debugging purposes.
   *
   * @return the iterator to the beginning of the fact queue
   */
  context::CDList<Assertion>::const_iterator facts_begin() const {
    return d_facts.begin();
  }

  /**
   * Provides access to the facts queue, primarily intended for theory
   * debugging purposes.
   *
   * @return the iterator to the end of the fact queue
   */
  context::CDList<Assertion>::const_iterator facts_end() const {
    return d_facts.end();
  }

  /**
   * Provides access to the shared terms, primarily intended for theory
   * debugging purposes.
   *
   * @return the iterator to the beginning of the shared terms list
   */
  context::CDList<TNode>::const_iterator shared_terms_begin() const {
    return d_sharedTerms.begin();
  }

  /**
   * Provides access to the facts queue, primarily intended for theory
   * debugging purposes.
   *
   * @return the iterator to the end of the shared terms list
   */
  context::CDList<TNode>::const_iterator shared_terms_end() const {
    return d_sharedTerms.end();
  }

};/* class Theory */

std::ostream& operator<<(std::ostream& os, Theory::Effort level);

}/* CVC4::theory namespace */

inline std::ostream& operator<<(std::ostream& out,
                                const CVC4::theory::Theory& theory) {
  return out << theory.identify();
}

inline std::ostream& operator << (std::ostream& out, theory::Theory::PPAssertStatus status) {
  switch (status) {
  case theory::Theory::PP_ASSERT_STATUS_SOLVED:
    out << "SOLVE_STATUS_SOLVED"; break;
  case theory::Theory::PP_ASSERT_STATUS_UNSOLVED:
    out << "SOLVE_STATUS_UNSOLVED"; break;
  case theory::Theory::PP_ASSERT_STATUS_CONFLICT:
    out << "SOLVE_STATUS_CONFLICT"; break;
  default:
    Unhandled();
  }
  return out;
}

}/* CVC4 namespace */

#endif /* __CVC4__THEORY__THEORY_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback