summaryrefslogtreecommitdiff
path: root/src/theory/theory.cpp
blob: 96bc85336ad29b990a9b7c5da026130fda8deefa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Tim King, Dejan Jovanovic
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Base for theory interface.
 */

#include "theory/theory.h"

#include <iostream>
#include <sstream>
#include <string>
#include <vector>

#include "base/check.h"
#include "expr/node_algorithm.h"
#include "options/arith_options.h"
#include "options/smt_options.h"
#include "options/theory_options.h"
#include "smt/smt_statistics_registry.h"
#include "theory/ee_setup_info.h"
#include "theory/ext_theory.h"
#include "theory/output_channel.h"
#include "theory/quantifiers_engine.h"
#include "theory/substitutions.h"
#include "theory/theory_inference_manager.h"
#include "theory/theory_model.h"
#include "theory/theory_rewriter.h"
#include "theory/theory_state.h"
#include "theory/trust_substitutions.h"

using namespace std;

namespace cvc5 {
namespace theory {

/** Default value for the uninterpreted sorts is the UF theory */
TheoryId Theory::s_uninterpretedSortOwner = THEORY_UF;

std::ostream& operator<<(std::ostream& os, Theory::Effort level){
  switch(level){
  case Theory::EFFORT_STANDARD:
    os << "EFFORT_STANDARD"; break;
  case Theory::EFFORT_FULL:
    os << "EFFORT_FULL"; break;
  case Theory::EFFORT_LAST_CALL:
    os << "EFFORT_LAST_CALL"; break;
  default:
      Unreachable();
  }
  return os;
}/* ostream& operator<<(ostream&, Theory::Effort) */

Theory::Theory(TheoryId id,
               context::Context* satContext,
               context::UserContext* userContext,
               OutputChannel& out,
               Valuation valuation,
               const LogicInfo& logicInfo,
               ProofNodeManager* pnm,
               std::string name)
    : d_id(id),
      d_satContext(satContext),
      d_userContext(userContext),
      d_logicInfo(logicInfo),
      d_facts(satContext),
      d_factsHead(satContext, 0),
      d_sharedTermsIndex(satContext, 0),
      d_careGraph(nullptr),
      d_instanceName(name),
      d_checkTime(smtStatisticsRegistry().registerTimer(getStatsPrefix(id)
                                                        + name + "checkTime")),
      d_computeCareGraphTime(smtStatisticsRegistry().registerTimer(
          getStatsPrefix(id) + name + "computeCareGraphTime")),
      d_sharedTerms(satContext),
      d_out(&out),
      d_valuation(valuation),
      d_equalityEngine(nullptr),
      d_allocEqualityEngine(nullptr),
      d_theoryState(nullptr),
      d_inferManager(nullptr),
      d_quantEngine(nullptr),
      d_pnm(pnm)
{
}

Theory::~Theory() {
}

bool Theory::needsEqualityEngine(EeSetupInfo& esi)
{
  // by default, this theory does not use an (official) equality engine
  return false;
}

void Theory::setEqualityEngine(eq::EqualityEngine* ee)
{
  // set the equality engine pointer
  d_equalityEngine = ee;
  if (d_theoryState != nullptr)
  {
    d_theoryState->setEqualityEngine(ee);
  }
  if (d_inferManager != nullptr)
  {
    d_inferManager->setEqualityEngine(ee);
  }
}

void Theory::setQuantifiersEngine(QuantifiersEngine* qe)
{
  // quantifiers engine may be null if not in quantified logic
  d_quantEngine = qe;
}

void Theory::setDecisionManager(DecisionManager* dm)
{
  Assert(dm != nullptr);
  if (d_inferManager != nullptr)
  {
    d_inferManager->setDecisionManager(dm);
  }
}

void Theory::finishInitStandalone()
{
  EeSetupInfo esi;
  if (needsEqualityEngine(esi))
  {
    // always associated with the same SAT context as the theory (d_satContext)
    d_allocEqualityEngine.reset(new eq::EqualityEngine(
        *esi.d_notify, d_satContext, esi.d_name, esi.d_constantsAreTriggers));
    // use it as the official equality engine
    setEqualityEngine(d_allocEqualityEngine.get());
  }
  finishInit();
}

TheoryId Theory::theoryOf(options::TheoryOfMode mode, TNode node)
{
  TheoryId tid = THEORY_BUILTIN;
  switch(mode) {
    case options::TheoryOfMode::THEORY_OF_TYPE_BASED:
      // Constants, variables, 0-ary constructors
      if (node.isVar())
      {
        if (node.getKind() == kind::BOOLEAN_TERM_VARIABLE)
        {
          tid = THEORY_UF;
        }
        else
        {
          tid = Theory::theoryOf(node.getType());
        }
      }
      else if (node.getKind() == kind::EQUAL)
      {
        // Equality is owned by the theory that owns the domain
        tid = Theory::theoryOf(node[0].getType());
      }
      else
      {
        // Regular nodes are owned by the kind. Notice that constants are a
        // special case here, where the theory of the kind of a constant
        // always coincides with the type of that constant.
        tid = kindToTheoryId(node.getKind());
      }
      break;
    case options::TheoryOfMode::THEORY_OF_TERM_BASED:
      // Variables
      if (node.isVar())
      {
        if (Theory::theoryOf(node.getType()) != theory::THEORY_BOOL)
        {
          // We treat the variables as uninterpreted
          tid = s_uninterpretedSortOwner;
        }
        else
        {
          if (node.getKind() == kind::BOOLEAN_TERM_VARIABLE)
          {
            // Boolean vars go to UF
            tid = THEORY_UF;
          }
          else
          {
            // Except for the Boolean ones
            tid = THEORY_BOOL;
          }
        }
      }
      else if (node.getKind() == kind::EQUAL)
      {  // Equality
        // If one of them is an ITE, it's irelevant, since they will get
        // replaced out anyhow
        if (node[0].getKind() == kind::ITE)
        {
          tid = Theory::theoryOf(node[0].getType());
        }
        else if (node[1].getKind() == kind::ITE)
        {
          tid = Theory::theoryOf(node[1].getType());
        }
        else
        {
          TNode l = node[0];
          TNode r = node[1];
          TypeNode ltype = l.getType();
          TypeNode rtype = r.getType();
          // If the types are different, we must assign based on type due
          // to handling subtypes (limited to arithmetic). Also, if we are
          // a Boolean equality, we must assign THEORY_BOOL.
          if (ltype != rtype || ltype.isBoolean())
          {
            tid = Theory::theoryOf(ltype);
          }
          else
          {
            // If both sides belong to the same theory the choice is easy
            TheoryId T1 = Theory::theoryOf(l);
            TheoryId T2 = Theory::theoryOf(r);
            if (T1 == T2)
            {
              tid = T1;
            }
            else
            {
              TheoryId T3 = Theory::theoryOf(ltype);
              // This is a case of
              // * x*y = f(z) -> UF
              // * x = c      -> UF
              // * f(x) = read(a, y) -> either UF or ARRAY
              // at least one of the theories has to be parametric, i.e. theory
              // of the type is different from the theory of the term
              if (T1 == T3)
              {
                tid = T2;
              }
              else if (T2 == T3)
              {
                tid = T1;
              }
              else
              {
                // If both are parametric, we take the smaller one (arbitrary)
                tid = T1 < T2 ? T1 : T2;
              }
            }
          }
        }
      }
      else
      {
        // Regular nodes are owned by the kind, which includes constants as a
        // special case.
        tid = kindToTheoryId(node.getKind());
      }
    break;
  default:
    Unreachable();
  }
  Trace("theory::internal") << "theoryOf(" << mode << ", " << node << ") -> " << tid << std::endl;
  return tid;
}

void Theory::notifySharedTerm(TNode n)
{
  // do nothing
}

void Theory::notifyInConflict()
{
  if (d_inferManager != nullptr)
  {
    d_inferManager->notifyInConflict();
  }
}

void Theory::computeCareGraph() {
  Debug("sharing") << "Theory::computeCareGraph<" << getId() << ">()" << endl;
  for (unsigned i = 0; i < d_sharedTerms.size(); ++ i) {
    TNode a = d_sharedTerms[i];
    TypeNode aType = a.getType();
    for (unsigned j = i + 1; j < d_sharedTerms.size(); ++ j) {
      TNode b = d_sharedTerms[j];
      if (b.getType() != aType) {
        // We don't care about the terms of different types
        continue;
      }
      switch (d_valuation.getEqualityStatus(a, b)) {
      case EQUALITY_TRUE_AND_PROPAGATED:
      case EQUALITY_FALSE_AND_PROPAGATED:
        // If we know about it, we should have propagated it, so we can skip
        break;
      default:
        // Let's split on it
        addCarePair(a, b);
        break;
      }
    }
  }
}

void Theory::printFacts(std::ostream& os) const {
  unsigned i, n = d_facts.size();
  for(i = 0; i < n; i++){
    const Assertion& a_i = d_facts[i];
    Node assertion  = a_i;
    os << d_id << '[' << i << ']' << " " << assertion << endl;
  }
}

void Theory::debugPrintFacts() const{
  DebugChannel.getStream() << "Theory::debugPrintFacts()" << endl;
  printFacts(DebugChannel.getStream());
}

bool Theory::isLegalElimination(TNode x, TNode val)
{
  Assert(x.isVar());
  if (x.getKind() == kind::BOOLEAN_TERM_VARIABLE
      || val.getKind() == kind::BOOLEAN_TERM_VARIABLE)
  {
    return false;
  }
  if (expr::hasSubterm(val, x))
  {
    return false;
  }
  if (!val.getType().isSubtypeOf(x.getType()))
  {
    return false;
  }
  if (!options::produceModels() && !d_logicInfo.isQuantified())
  {
    // Don't care about the model and logic is not quantified, we can eliminate.
    return true;
  }
  // If models are enabled, then it depends on whether the term contains any
  // unevaluable operators like FORALL, SINE, etc. Having such operators makes
  // model construction contain non-constant values for variables, which is
  // not ideal from a user perspective.
  // We also insist on this check since the term to eliminate should never
  // contain quantifiers, or else variable shadowing issues may arise.
  // there should be a model object
  TheoryModel* tm = d_valuation.getModel();
  Assert(tm != nullptr);
  return tm->isLegalElimination(x, val);
}

std::unordered_set<TNode> Theory::currentlySharedTerms() const
{
  std::unordered_set<TNode> currentlyShared;
  for (shared_terms_iterator i = shared_terms_begin(),
           i_end = shared_terms_end(); i != i_end; ++i) {
    currentlyShared.insert (*i);
  }
  return currentlyShared;
}

bool Theory::collectModelInfo(TheoryModel* m, const std::set<Node>& termSet)
{
  // if we are using an equality engine, assert it to the model
  if (d_equalityEngine != nullptr && !termSet.empty())
  {
    Trace("model-builder") << "Assert Equality engine for " << d_id
                           << std::endl;
    if (!m->assertEqualityEngine(d_equalityEngine, &termSet))
    {
      return false;
    }
  }
  Trace("model-builder") << "Collect Model values for " << d_id << std::endl;
  // now, collect theory-specific value assigments
  return collectModelValues(m, termSet);
}

void Theory::computeRelevantTerms(std::set<Node>& termSet)
{
  // by default, there are no additional relevant terms
}

bool Theory::collectModelValues(TheoryModel* m, const std::set<Node>& termSet)
{
  return true;
}

Theory::PPAssertStatus Theory::ppAssert(TrustNode tin,
                                        TrustSubstitutionMap& outSubstitutions)
{
  TNode in = tin.getNode();
  if (in.getKind() == kind::EQUAL)
  {
    // (and (= x t) phi) can be replaced by phi[x/t] if
    // 1) x is a variable
    // 2) x is not in the term t
    // 3) x : T and t : S, then S <: T
    if (in[0].isVar() && isLegalElimination(in[0], in[1])
        && in[0].getKind() != kind::BOOLEAN_TERM_VARIABLE)
    {
      outSubstitutions.addSubstitutionSolved(in[0], in[1], tin);
      return PP_ASSERT_STATUS_SOLVED;
    }
    if (in[1].isVar() && isLegalElimination(in[1], in[0])
        && in[1].getKind() != kind::BOOLEAN_TERM_VARIABLE)
    {
      outSubstitutions.addSubstitutionSolved(in[1], in[0], tin);
      return PP_ASSERT_STATUS_SOLVED;
    }
    if (in[0].isConst() && in[1].isConst())
    {
      if (in[0] != in[1])
      {
        return PP_ASSERT_STATUS_CONFLICT;
      }
    }
  }
  else if (in.getKind() == kind::NOT && in[0].getKind() == kind::EQUAL
           && in[0][0].getType().isBoolean())
  {
    TNode eq = in[0];
    if (eq[0].isVar())
    {
      Node res = eq[0].eqNode(eq[1].notNode());
      TrustNode tn = TrustNode::mkTrustRewrite(in, res, nullptr);
      return ppAssert(tn, outSubstitutions);
    }
    else if (eq[1].isVar())
    {
      Node res = eq[1].eqNode(eq[0].notNode());
      TrustNode tn = TrustNode::mkTrustRewrite(in, res, nullptr);
      return ppAssert(tn, outSubstitutions);
    }
  }

  return PP_ASSERT_STATUS_UNSOLVED;
}

std::pair<bool, Node> Theory::entailmentCheck(TNode lit)
{
  return make_pair(false, Node::null());
}

void Theory::addCarePair(TNode t1, TNode t2) {
  if (d_careGraph) {
    d_careGraph->insert(CarePair(t1, t2, d_id));
  }
}

void Theory::getCareGraph(CareGraph* careGraph) {
  Assert(careGraph != NULL);

  Trace("sharing") << "Theory<" << getId() << ">::getCareGraph()" << std::endl;
  TimerStat::CodeTimer computeCareGraphTime(d_computeCareGraphTime);
  d_careGraph = careGraph;
  computeCareGraph();
  d_careGraph = NULL;
}

bool Theory::proofsEnabled() const
{
  return d_pnm != nullptr;
}

EqualityStatus Theory::getEqualityStatus(TNode a, TNode b)
{
  // if not using an equality engine, then by default we don't know the status
  if (d_equalityEngine == nullptr)
  {
    return EQUALITY_UNKNOWN;
  }
  Trace("sharing") << "Theory<" << getId() << ">::getEqualityStatus(" << a << ", " << b << ")" << std::endl;
  Assert(d_equalityEngine->hasTerm(a) && d_equalityEngine->hasTerm(b));

  // Check for equality (simplest)
  if (d_equalityEngine->areEqual(a, b))
  {
    // The terms are implied to be equal
    return EQUALITY_TRUE;
  }

  // Check for disequality
  if (d_equalityEngine->areDisequal(a, b, false))
  {
    // The terms are implied to be dis-equal
    return EQUALITY_FALSE;
  }

  // All other terms are unknown, which is conservative. A theory may override
  // this method if it knows more information.
  return EQUALITY_UNKNOWN;
}

void Theory::check(Effort level)
{
  // see if we are already done (as an optimization)
  if (done() && level < EFFORT_FULL)
  {
    return;
  }
  Assert(d_theoryState!=nullptr);
  // standard calls for resource, stats
  d_out->spendResource(Resource::TheoryCheckStep);
  TimerStat::CodeTimer checkTimer(d_checkTime);
  Trace("theory-check") << "Theory::preCheck " << level << " " << d_id
                        << std::endl;
  // pre-check at level
  if (preCheck(level))
  {
    // check aborted for a theory-specific reason
    return;
  }
  Assert(d_theoryState != nullptr);
  Trace("theory-check") << "Theory::process fact queue " << d_id << std::endl;
  // process the pending fact queue
  while (!done() && !d_theoryState->isInConflict())
  {
    // Get the next assertion from the fact queue
    Assertion assertion = get();
    TNode fact = assertion.d_assertion;
    Trace("theory-check") << "Theory::preNotifyFact " << fact << " " << d_id
                          << std::endl;
    bool polarity = fact.getKind() != kind::NOT;
    TNode atom = polarity ? fact : fact[0];
    // call the pre-notify method
    if (preNotifyFact(atom, polarity, fact, assertion.d_isPreregistered, false))
    {
      // handled in theory-specific way that doesn't involve equality engine
      continue;
    }
    Trace("theory-check") << "Theory::assert " << fact << " " << d_id
                          << std::endl;
    // Theories that don't have an equality engine should always return true
    // for preNotifyFact
    Assert(d_equalityEngine != nullptr);
    // assert to the equality engine
    if (atom.getKind() == kind::EQUAL)
    {
      d_equalityEngine->assertEquality(atom, polarity, fact);
    }
    else
    {
      d_equalityEngine->assertPredicate(atom, polarity, fact);
    }
    Trace("theory-check") << "Theory::notifyFact " << fact << " " << d_id
                          << std::endl;
    // notify the theory of the new fact, which is not internal
    notifyFact(atom, polarity, fact, false);
  }
  Trace("theory-check") << "Theory::postCheck " << d_id << std::endl;
  // post-check at level
  postCheck(level);
  Trace("theory-check") << "Theory::finish check " << d_id << std::endl;
}

bool Theory::preCheck(Effort level) { return false; }

void Theory::postCheck(Effort level) {}

bool Theory::preNotifyFact(
    TNode atom, bool polarity, TNode fact, bool isPrereg, bool isInternal)
{
  return false;
}

void Theory::notifyFact(TNode atom, bool polarity, TNode fact, bool isInternal)
{
}

void Theory::preRegisterTerm(TNode node) {}

void Theory::addSharedTerm(TNode n)
{
  Debug("sharing") << "Theory::addSharedTerm<" << getId() << ">(" << n << ")"
                   << std::endl;
  Debug("theory::assertions")
      << "Theory::addSharedTerm<" << getId() << ">(" << n << ")" << std::endl;
  d_sharedTerms.push_back(n);
  // now call theory-specific method notifySharedTerm
  notifySharedTerm(n);
  // if we have an equality engine, add the trigger term
  if (d_equalityEngine != nullptr)
  {
    d_equalityEngine->addTriggerTerm(n, d_id);
  }
}

eq::EqualityEngine* Theory::getEqualityEngine()
{
  // get the assigned equality engine, which is a pointer stored in this class
  return d_equalityEngine;
}

bool Theory::usesCentralEqualityEngine() const
{
  return usesCentralEqualityEngine(d_id);
}

bool Theory::usesCentralEqualityEngine(TheoryId id)
{
  if (id == THEORY_BUILTIN)
  {
    return true;
  }
  if (options::eeMode() == options::EqEngineMode::DISTRIBUTED)
  {
    return false;
  }
  if (id == THEORY_ARITH)
  {
    // conditional on whether we are using the equality solver
    return options::arithEqSolver();
  }
  return id == THEORY_UF || id == THEORY_DATATYPES || id == THEORY_BAGS
         || id == THEORY_FP || id == THEORY_SETS || id == THEORY_STRINGS
         || id == THEORY_SEP || id == THEORY_ARRAYS;
}

bool Theory::expUsingCentralEqualityEngine(TheoryId id)
{
  return id != THEORY_ARITH && usesCentralEqualityEngine(id);
}

}  // namespace theory
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback