summaryrefslogtreecommitdiff
path: root/src/theory/theory.cpp
blob: f513b0d780eab06c676a2910821dd7aff1928cd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*********************                                                        */
/*! \file theory.cpp
 ** \verbatim
 ** Original author: mdeters
 ** Major contributors: ajreynol, dejan
 ** Minor contributors (to current version): taking
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009-2012  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Base for theory interface.
 **
 ** Base for theory interface.
 **/

#include "theory/theory.h"
#include "util/cvc4_assert.h"
#include "theory/quantifiers_engine.h"

#include <vector>

using namespace std;

namespace CVC4 {
namespace theory {

/** Default value for the uninterpreted sorts is the UF theory */
TheoryId Theory::s_uninterpretedSortOwner = THEORY_UF;

/** By default, we use the type based theoryOf */
TheoryOfMode Theory::s_theoryOfMode = THEORY_OF_TYPE_BASED;

std::ostream& operator<<(std::ostream& os, Theory::Effort level){
  switch(level){
  case Theory::EFFORT_STANDARD:
    os << "EFFORT_STANDARD"; break;
  case Theory::EFFORT_FULL:
    os << "EFFORT_FULL"; break;
  case Theory::EFFORT_COMBINATION:
    os << "EFFORT_COMBINATION"; break;
  case Theory::EFFORT_LAST_CALL:
    os << "EFFORT_LAST_CALL"; break;
  default:
      Unreachable();
  }
  return os;
}/* ostream& operator<<(ostream&, Theory::Effort) */

Theory::~Theory() {
  StatisticsRegistry::unregisterStat(&d_computeCareGraphTime);
}

TheoryId Theory::theoryOf(TheoryOfMode mode, TNode node) {

  Trace("theory::internal") << "theoryOf(" << node << ")" << std::endl;

  switch(mode) {
  case THEORY_OF_TYPE_BASED:
    // Constants, variables, 0-ary constructors
    if (node.isVar() || node.isConst()) {
      return theoryOf(node.getType());
    }
    // Equality is owned by the theory that owns the domain
    if (node.getKind() == kind::EQUAL) {
      return theoryOf(node[0].getType());
    }
    // Regular nodes are owned by the kind
    return kindToTheoryId(node.getKind());
    break;
  case THEORY_OF_TERM_BASED:
    // Variables
    if (node.isVar()) {
      if (theoryOf(node.getType()) != theory::THEORY_BOOL) {
        // We treat the varibables as uninterpreted
        return s_uninterpretedSortOwner;
      } else {
        // Except for the Boolean ones, which we just ignore anyhow
        return theory::THEORY_BOOL;
      }
    }
    // Constants
    if (node.isConst()) {
      // Constants go to the theory of the type
      return theoryOf(node.getType());
    }
    // Equality
    if (node.getKind() == kind::EQUAL) {
      // If one of them is an ITE, it's irelevant, since they will get replaced out anyhow
      if (node[0].getKind() == kind::ITE) {
        return theoryOf(node[0].getType());
      }
      if (node[1].getKind() == kind::ITE) {
        return theoryOf(node[1].getType());
      }
      // If both sides belong to the same theory the choice is easy
      TheoryId T1 = theoryOf(node[0]);
      TheoryId T2 = theoryOf(node[1]);
      if (T1 == T2) {
        return T1;
      }
      TheoryId T3 = theoryOf(node[0].getType());
      // This is a case of
      // * x*y = f(z) -> UF
      // * x = c      -> UF
      // * f(x) = read(a, y) -> either UF or ARRAY
      // at least one of the theories has to be parametric, i.e. theory of the type is different
      // from the theory of the term
      if (T1 == T3) {
        return T2;
      }
      if (T2 == T3) {
        return T1;
      }
      // If both are parametric, we take the smaller one (arbitraty)
      return T1 < T2 ? T1 : T2;
    }
    // Regular nodes are owned by the kind
    return kindToTheoryId(node.getKind());
    break;
  default:
    Unreachable();
  }
}

void Theory::addSharedTermInternal(TNode n) {
  Debug("sharing") << "Theory::addSharedTerm<" << getId() << ">(" << n << ")" << endl;
  Debug("theory::assertions") << "Theory::addSharedTerm<" << getId() << ">(" << n << ")" << endl;
  d_sharedTerms.push_back(n);
  addSharedTerm(n);
}

void Theory::computeCareGraph() {
  Debug("sharing") << "Theory::computeCareGraph<" << getId() << ">()" << endl;
  for (unsigned i = 0; i < d_sharedTerms.size(); ++ i) {
    TNode a = d_sharedTerms[i];
    TypeNode aType = a.getType();
    for (unsigned j = i + 1; j < d_sharedTerms.size(); ++ j) {
      TNode b = d_sharedTerms[j];
      if (b.getType() != aType) {
        // We don't care about the terms of different types
        continue;
      }
      switch (d_valuation.getEqualityStatus(a, b)) {
      case EQUALITY_TRUE_AND_PROPAGATED:
      case EQUALITY_FALSE_AND_PROPAGATED:
  	// If we know about it, we should have propagated it, so we can skip
  	break;
      default:
  	// Let's split on it
  	addCarePair(a, b);
  	break;
      }
    }
  }
}

void Theory::printFacts(std::ostream& os) const {
  unsigned i, n = d_facts.size();
  for(i = 0; i < n; i++){
    const Assertion& a_i = d_facts[i];
    Node assertion  = a_i;
    os << d_id << '[' << i << ']' << " " << assertion << endl;
  }
}

void Theory::debugPrintFacts() const{
  DebugChannel.getStream() << "Theory::debugPrintFacts()" << endl;
  printFacts(DebugChannel.getStream());
}

std::hash_set<TNode, TNodeHashFunction> Theory::currentlySharedTerms() const{
  std::hash_set<TNode, TNodeHashFunction> currentlyShared;
  for(shared_terms_iterator i = shared_terms_begin(), i_end = shared_terms_end(); i != i_end; ++i){
    currentlyShared.insert (*i);
  }
  return currentlyShared;
}


void Theory::collectTerms(TNode n, set<Node>& termSet)
{
  if (termSet.find(n) != termSet.end()) {
    return;
  }
  Trace("theory::collectTerms") << "Theory::collectTerms: adding " << n << endl;
  termSet.insert(n);
  if (n.getKind() == kind::NOT || n.getKind() == kind::EQUAL || !isLeaf(n)) {
    for(TNode::iterator child_it = n.begin(); child_it != n.end(); ++child_it) {
      collectTerms(*child_it, termSet);
    }
  }
}


void Theory::computeRelevantTerms(set<Node>& termSet)
{
  // Collect all terms appearing in assertions
  context::CDList<Assertion>::const_iterator assert_it = facts_begin(), assert_it_end = facts_end();
  for (; assert_it != assert_it_end; ++assert_it) {
    collectTerms(*assert_it, termSet);
  }

  // Add terms that are shared terms
  context::CDList<TNode>::const_iterator shared_it = shared_terms_begin(), shared_it_end = shared_terms_end();
  for (; shared_it != shared_it_end; ++shared_it) {
    collectTerms(*shared_it, termSet);
  }
}


}/* CVC4::theory namespace */
}/* CVC4 namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback