summaryrefslogtreecommitdiff
path: root/src/theory/strings/term_registry.cpp
blob: 71b45915fc0a9998e1e46cc3d14d7b73c5bb13d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*********************                                                        */
/*! \file term_registry.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Andres Noetzli, Tianyi Liang
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Implementation of term registry for the theory of strings.
 **/

#include "theory/strings/term_registry.h"

#include "expr/attribute.h"
#include "options/smt_options.h"
#include "options/strings_options.h"
#include "smt/logic_exception.h"
#include "theory/rewriter.h"
#include "theory/strings/theory_strings_utils.h"
#include "theory/strings/word.h"

using namespace std;
using namespace CVC4::context;
using namespace CVC4::kind;

namespace CVC4 {
namespace theory {
namespace strings {

struct StringsProxyVarAttributeId
{
};
typedef expr::Attribute<StringsProxyVarAttributeId, bool>
    StringsProxyVarAttribute;

TermRegistry::TermRegistry(SolverState& s,
                           OutputChannel& out,
                           SequencesStatistics& statistics,
                           ProofNodeManager* pnm)
    : d_state(s),
      d_out(out),
      d_statistics(statistics),
      d_hasStrCode(false),
      d_functionsTerms(s.getSatContext()),
      d_inputVars(s.getUserContext()),
      d_preregisteredTerms(s.getUserContext()),
      d_registeredTerms(s.getUserContext()),
      d_registeredTypes(s.getUserContext()),
      d_proxyVar(s.getUserContext()),
      d_proxyVarToLength(s.getUserContext()),
      d_lengthLemmaTermsCache(s.getUserContext()),
      d_epg(nullptr)
{
  NodeManager* nm = NodeManager::currentNM();
  d_zero = nm->mkConst(Rational(0));
  d_one = nm->mkConst(Rational(1));
  d_negOne = NodeManager::currentNM()->mkConst(Rational(-1));
  d_cardSize = utils::getAlphabetCardinality();
}

TermRegistry::~TermRegistry() {}

Node TermRegistry::eagerReduce(Node t, SkolemCache* sc)
{
  NodeManager* nm = NodeManager::currentNM();
  Node lemma;
  Kind tk = t.getKind();
  if (tk == STRING_TO_CODE)
  {
    // ite( str.len(s)==1, 0 <= str.code(s) < |A|, str.code(s)=-1 )
    Node code_len = utils::mkNLength(t[0]).eqNode(nm->mkConst(Rational(1)));
    Node code_eq_neg1 = t.eqNode(nm->mkConst(Rational(-1)));
    Node code_range = nm->mkNode(
        AND,
        nm->mkNode(GEQ, t, nm->mkConst(Rational(0))),
        nm->mkNode(
            LT, t, nm->mkConst(Rational(utils::getAlphabetCardinality()))));
    lemma = nm->mkNode(ITE, code_len, code_range, code_eq_neg1);
  }
  else if (tk == STRING_STRIDOF)
  {
    // (and (>= (str.indexof x y n) (- 1)) (<= (str.indexof x y n) (str.len
    // x)))
    Node l = utils::mkNLength(t[0]);
    lemma = nm->mkNode(AND,
                       nm->mkNode(GEQ, t, nm->mkConst(Rational(-1))),
                       nm->mkNode(LEQ, t, l));
  }
  else if (tk == STRING_STOI)
  {
    // (>= (str.to_int x) (- 1))
    lemma = nm->mkNode(GEQ, t, nm->mkConst(Rational(-1)));
  }
  else if (tk == STRING_STRCTN)
  {
    // ite( (str.contains s r), (= s (str.++ sk1 r sk2)), (not (= s r)))
    Node sk1 =
        sc->mkSkolemCached(t[0], t[1], SkolemCache::SK_FIRST_CTN_PRE, "sc1");
    Node sk2 =
        sc->mkSkolemCached(t[0], t[1], SkolemCache::SK_FIRST_CTN_POST, "sc2");
    lemma = t[0].eqNode(utils::mkNConcat(sk1, t[1], sk2));
    lemma = nm->mkNode(ITE, t, lemma, t[0].eqNode(t[1]).notNode());
  }
  return lemma;
}

Node TermRegistry::lengthPositive(Node t)
{
  NodeManager* nm = NodeManager::currentNM();
  Node zero = nm->mkConst(Rational(0));
  Node emp = Word::mkEmptyWord(t.getType());
  Node tlen = nm->mkNode(STRING_LENGTH, t);
  Node tlenEqZero = tlen.eqNode(zero);
  Node tEqEmp = t.eqNode(emp);
  Node caseEmpty = nm->mkNode(AND, tlenEqZero, tEqEmp);
  Node caseNEmpty = nm->mkNode(GT, tlen, zero);
  // (or (and (= (str.len t) 0) (= t "")) (> (str.len t) 0))
  return nm->mkNode(OR, caseEmpty, caseNEmpty);
}

void TermRegistry::preRegisterTerm(TNode n)
{
  if (d_preregisteredTerms.find(n) != d_preregisteredTerms.end())
  {
    return;
  }
  eq::EqualityEngine* ee = d_state.getEqualityEngine();
  d_preregisteredTerms.insert(n);
  Trace("strings-preregister")
      << "TheoryString::preregister : " << n << std::endl;
  // check for logic exceptions
  Kind k = n.getKind();
  if (!options::stringExp())
  {
    if (k == STRING_STRIDOF || k == STRING_ITOS || k == STRING_STOI
        || k == STRING_STRREPL || k == STRING_STRREPLALL
        || k == STRING_REPLACE_RE || k == STRING_REPLACE_RE_ALL
        || k == STRING_STRCTN || k == STRING_LEQ || k == STRING_TOLOWER
        || k == STRING_TOUPPER || k == STRING_REV || k == STRING_UPDATE)
    {
      std::stringstream ss;
      ss << "Term of kind " << k
         << " not supported in default mode, try --strings-exp";
      throw LogicException(ss.str());
    }
  }
  if (k == EQUAL)
  {
    if (n[0].getType().isRegExp())
    {
      std::stringstream ss;
      ss << "Equality between regular expressions is not supported";
      throw LogicException(ss.str());
    }
    ee->addTriggerEquality(n);
    return;
  }
  else if (k == STRING_IN_REGEXP)
  {
    d_out.requirePhase(n, true);
    ee->addTriggerPredicate(n);
    ee->addTerm(n[0]);
    ee->addTerm(n[1]);
    return;
  }
  else if (k == STRING_TO_CODE)
  {
    d_hasStrCode = true;
  }
  registerTerm(n, 0);
  TypeNode tn = n.getType();
  if (tn.isRegExp() && n.isVar())
  {
    std::stringstream ss;
    ss << "Regular expression variables are not supported.";
    throw LogicException(ss.str());
  }
  if (tn.isString())  // string-only
  {
    // all characters of constants should fall in the alphabet
    if (n.isConst())
    {
      std::vector<unsigned> vec = n.getConst<String>().getVec();
      for (unsigned u : vec)
      {
        if (u >= d_cardSize)
        {
          std::stringstream ss;
          ss << "Characters in string \"" << n
             << "\" are outside of the given alphabet.";
          throw LogicException(ss.str());
        }
      }
    }
    ee->addTerm(n);
  }
  else if (tn.isBoolean())
  {
    // Get triggered for both equal and dis-equal
    ee->addTriggerPredicate(n);
  }
  else
  {
    // Function applications/predicates
    ee->addTerm(n);
  }
  // Set d_functionsTerms stores all function applications that are
  // relevant to theory combination. Notice that this is a subset of
  // the applications whose kinds are function kinds in the equality
  // engine. This means it does not include applications of operators
  // like re.++, which is not a function kind in the equality engine.
  // Concatenation terms do not need to be considered here because
  // their arguments have string type and do not introduce any shared
  // terms.
  if (n.hasOperator() && ee->isFunctionKind(k) && k != STRING_CONCAT)
  {
    d_functionsTerms.push_back(n);
  }
  if (options::stringFMF())
  {
    if (tn.isStringLike())
    {
      // Our decision strategy will minimize the length of this term if it is a
      // variable but not an internally generated Skolem, or a term that does
      // not belong to this theory.
      if (n.isVar() ? !d_skCache.isSkolem(n)
                    : kindToTheoryId(k) != THEORY_STRINGS)
      {
        d_inputVars.insert(n);
        Trace("strings-preregister") << "input variable: " << n << std::endl;
      }
    }
  }
}

void TermRegistry::registerTerm(Node n, int effort)
{
  TypeNode tn = n.getType();
  bool do_register = true;
  if (!tn.isStringLike())
  {
    if (options::stringEagerLen())
    {
      do_register = effort == 0;
    }
    else
    {
      do_register = effort > 0 || n.getKind() != STRING_CONCAT;
    }
  }
  if (!do_register)
  {
    return;
  }
  if (d_registeredTerms.find(n) != d_registeredTerms.end())
  {
    return;
  }
  d_registeredTerms.insert(n);
  // ensure the type is registered
  registerType(tn);
  Debug("strings-register") << "TheoryStrings::registerTerm() " << n
                            << ", effort = " << effort << std::endl;
  TrustNode regTermLem;
  if (tn.isStringLike())
  {
    // register length information:
    //  for variables, split on empty vs positive length
    //  for concat/const/replace, introduce proxy var and state length relation
    regTermLem = getRegisterTermLemma(n);
  }
  else if (n.getKind() != STRING_STRCTN)
  {
    // we don't send out eager reduction lemma for str.contains currently
    Node eagerRedLemma = eagerReduce(n, &d_skCache);
    if (!eagerRedLemma.isNull())
    {
      // if there was an eager reduction, we make the trust node for it
      if (d_epg != nullptr)
      {
        regTermLem = d_epg->mkTrustNode(
            eagerRedLemma, PfRule::STRING_EAGER_REDUCTION, {n});
      }
      else
      {
        regTermLem = TrustNode::mkTrustLemma(eagerRedLemma, nullptr);
      }
    }
  }
  if (!regTermLem.isNull())
  {
    Trace("strings-lemma") << "Strings::Lemma REG-TERM : " << regTermLem
                           << std::endl;
    Trace("strings-assert")
        << "(assert " << regTermLem.getNode() << ")" << std::endl;
    ++(d_statistics.d_lemmasRegisterTerm);
    d_out.trustedLemma(regTermLem);
  }
}

void TermRegistry::registerType(TypeNode tn)
{
  if (d_registeredTypes.find(tn) != d_registeredTypes.end())
  {
    return;
  }
  d_registeredTypes.insert(tn);
  if (tn.isStringLike())
  {
    // preregister the empty word for the type
    Node emp = Word::mkEmptyWord(tn);
    if (!d_state.hasTerm(emp))
    {
      preRegisterTerm(emp);
    }
  }
}

TrustNode TermRegistry::getRegisterTermLemma(Node n)
{
  Assert(n.getType().isStringLike());
  NodeManager* nm = NodeManager::currentNM();
  // register length information:
  //  for variables, split on empty vs positive length
  //  for concat/const/replace, introduce proxy var and state length relation
  Node lsum;
  if (n.getKind() != STRING_CONCAT && !n.isConst())
  {
    Node lsumb = nm->mkNode(STRING_LENGTH, n);
    lsum = Rewriter::rewrite(lsumb);
    // can register length term if it does not rewrite
    if (lsum == lsumb)
    {
      registerTermAtomic(n, LENGTH_SPLIT);
      return TrustNode::null();
    }
  }
  Node sk = d_skCache.mkSkolemCached(n, SkolemCache::SK_PURIFY, "lsym");
  StringsProxyVarAttribute spva;
  sk.setAttribute(spva, true);
  Node eq = Rewriter::rewrite(sk.eqNode(n));
  d_proxyVar[n] = sk;
  // If we are introducing a proxy for a constant or concat term, we do not
  // need to send lemmas about its length, since its length is already
  // implied.
  if (n.isConst() || n.getKind() == STRING_CONCAT)
  {
    // do not send length lemma for sk.
    registerTermAtomic(sk, LENGTH_IGNORE);
  }
  Node skl = nm->mkNode(STRING_LENGTH, sk);
  if (n.getKind() == STRING_CONCAT)
  {
    std::vector<Node> nodeVec;
    for (const Node& nc : n)
    {
      if (nc.getAttribute(StringsProxyVarAttribute()))
      {
        Assert(d_proxyVarToLength.find(nc) != d_proxyVarToLength.end());
        nodeVec.push_back(d_proxyVarToLength[nc]);
      }
      else
      {
        Node lni = nm->mkNode(STRING_LENGTH, nc);
        nodeVec.push_back(lni);
      }
    }
    lsum = nm->mkNode(PLUS, nodeVec);
    lsum = Rewriter::rewrite(lsum);
  }
  else if (n.isConst())
  {
    lsum = nm->mkConst(Rational(Word::getLength(n)));
  }
  Assert(!lsum.isNull());
  d_proxyVarToLength[sk] = lsum;
  Node ceq = Rewriter::rewrite(skl.eqNode(lsum));

  Node ret = nm->mkNode(AND, eq, ceq);

  // it is a simple rewrite to justify this
  if (d_epg != nullptr)
  {
    return d_epg->mkTrustNode(ret, PfRule::MACRO_SR_PRED_INTRO, {ret});
  }
  return TrustNode::mkTrustLemma(ret, nullptr);
}

void TermRegistry::registerTermAtomic(Node n, LengthStatus s)
{
  if (d_lengthLemmaTermsCache.find(n) != d_lengthLemmaTermsCache.end())
  {
    return;
  }
  d_lengthLemmaTermsCache.insert(n);

  if (s == LENGTH_IGNORE)
  {
    // ignore it
    return;
  }
  std::map<Node, bool> reqPhase;
  TrustNode lenLem = getRegisterTermAtomicLemma(n, s, reqPhase);
  if (!lenLem.isNull())
  {
    Trace("strings-lemma") << "Strings::Lemma REGISTER-TERM-ATOMIC : " << lenLem
                           << std::endl;
    Trace("strings-assert")
        << "(assert " << lenLem.getNode() << ")" << std::endl;
    ++(d_statistics.d_lemmasRegisterTermAtomic);
    d_out.trustedLemma(lenLem);
  }
  for (const std::pair<const Node, bool>& rp : reqPhase)
  {
    d_out.requirePhase(rp.first, rp.second);
  }
}

SkolemCache* TermRegistry::getSkolemCache() { return &d_skCache; }

const context::CDList<TNode>& TermRegistry::getFunctionTerms() const
{
  return d_functionsTerms;
}

const context::CDHashSet<Node, NodeHashFunction>& TermRegistry::getInputVars()
    const
{
  return d_inputVars;
}

bool TermRegistry::hasStringCode() const { return d_hasStrCode; }

TrustNode TermRegistry::getRegisterTermAtomicLemma(
    Node n, LengthStatus s, std::map<Node, bool>& reqPhase)
{
  if (n.isConst())
  {
    // No need to send length for constant terms. This case may be triggered
    // for cases where the skolem cache automatically replaces a skolem by
    // a constant.
    return TrustNode::null();
  }
  Assert(n.getType().isStringLike());
  NodeManager* nm = NodeManager::currentNM();
  Node n_len = nm->mkNode(kind::STRING_LENGTH, n);
  Node emp = Word::mkEmptyWord(n.getType());
  if (s == LENGTH_GEQ_ONE)
  {
    Node neq_empty = n.eqNode(emp).negate();
    Node len_n_gt_z = nm->mkNode(GT, n_len, d_zero);
    Node len_geq_one = nm->mkNode(AND, neq_empty, len_n_gt_z);
    Trace("strings-lemma") << "Strings::Lemma SK-GEQ-ONE : " << len_geq_one
                           << std::endl;
    Trace("strings-assert") << "(assert " << len_geq_one << ")" << std::endl;
    if (options::proofNewPedantic() > 0)
    {
      Unhandled() << "Unhandled lemma Strings::Lemma SK-GEQ-ONE : "
                  << len_geq_one << std::endl;
    }
    return TrustNode::mkTrustLemma(len_geq_one, nullptr);
  }

  if (s == LENGTH_ONE)
  {
    Node len_one = n_len.eqNode(d_one);
    Trace("strings-lemma") << "Strings::Lemma SK-ONE : " << len_one
                           << std::endl;
    Trace("strings-assert") << "(assert " << len_one << ")" << std::endl;
    if (options::proofNewPedantic() > 0)
    {
      Unhandled() << "Unhandled lemma Strings::Lemma SK-ONE : " << len_one
                  << std::endl;
    }
    return TrustNode::mkTrustLemma(len_one, nullptr);
  }
  Assert(s == LENGTH_SPLIT);

  // get the positive length lemma
  Node lenLemma = lengthPositive(n);
  // split whether the string is empty
  Node n_len_eq_z = n_len.eqNode(d_zero);
  Node n_len_eq_z_2 = n.eqNode(emp);
  Node case_empty = nm->mkNode(AND, n_len_eq_z, n_len_eq_z_2);
  Node case_emptyr = Rewriter::rewrite(case_empty);
  if (!case_emptyr.isConst())
  {
    // prefer trying the empty case first
    // notice that requirePhase must only be called on rewritten literals that
    // occur in the CNF stream.
    n_len_eq_z = Rewriter::rewrite(n_len_eq_z);
    Assert(!n_len_eq_z.isConst());
    reqPhase[n_len_eq_z] = true;
    n_len_eq_z_2 = Rewriter::rewrite(n_len_eq_z_2);
    Assert(!n_len_eq_z_2.isConst());
    reqPhase[n_len_eq_z_2] = true;
  }
  else
  {
    // If n = "" ---> true or len( n ) = 0 ----> true, then we expect that
    // n ---> "". Since this method is only called on non-constants n, it must
    // be that n = "" ^ len( n ) = 0 does not rewrite to true.
    Assert(!case_emptyr.getConst<bool>());
  }

  if (d_epg != nullptr)
  {
    return d_epg->mkTrustNode(lenLemma, PfRule::STRING_LENGTH_POS, {n});
  }
  return TrustNode::mkTrustLemma(lenLemma, nullptr);
}

Node TermRegistry::getSymbolicDefinition(Node n, std::vector<Node>& exp) const
{
  if (n.getNumChildren() == 0)
  {
    Node pn = getProxyVariableFor(n);
    if (pn.isNull())
    {
      return Node::null();
    }
    Node eq = n.eqNode(pn);
    eq = Rewriter::rewrite(eq);
    if (std::find(exp.begin(), exp.end(), eq) == exp.end())
    {
      exp.push_back(eq);
    }
    return pn;
  }
  std::vector<Node> children;
  if (n.getMetaKind() == metakind::PARAMETERIZED)
  {
    children.push_back(n.getOperator());
  }
  for (const Node& nc : n)
  {
    if (n.getType().isRegExp())
    {
      children.push_back(nc);
    }
    else
    {
      Node ns = getSymbolicDefinition(nc, exp);
      if (ns.isNull())
      {
        return Node::null();
      }
      else
      {
        children.push_back(ns);
      }
    }
  }
  return NodeManager::currentNM()->mkNode(n.getKind(), children);
}

Node TermRegistry::getProxyVariableFor(Node n) const
{
  NodeNodeMap::const_iterator it = d_proxyVar.find(n);
  if (it != d_proxyVar.end())
  {
    return (*it).second;
  }
  return Node::null();
}

Node TermRegistry::ensureProxyVariableFor(Node n)
{
  Node proxy = getProxyVariableFor(n);
  if (proxy.isNull())
  {
    registerTerm(n, 0);
    proxy = getProxyVariableFor(n);
  }
  Assert(!proxy.isNull());
  return proxy;
}

void TermRegistry::inferSubstitutionProxyVars(Node n,
                                              std::vector<Node>& vars,
                                              std::vector<Node>& subs,
                                              std::vector<Node>& unproc) const
{
  if (n.getKind() == AND)
  {
    for (const Node& nc : n)
    {
      inferSubstitutionProxyVars(nc, vars, subs, unproc);
    }
    return;
  }
  if (n.getKind() == EQUAL)
  {
    Node ns = n.substitute(vars.begin(), vars.end(), subs.begin(), subs.end());
    ns = Rewriter::rewrite(ns);
    if (ns.getKind() == EQUAL)
    {
      Node s;
      Node v;
      for (unsigned i = 0; i < 2; i++)
      {
        Node ss;
        // determine whether this side has a proxy variable
        if (ns[i].getAttribute(StringsProxyVarAttribute()))
        {
          // it is a proxy variable
          ss = ns[i];
        }
        else if (ns[i].isConst())
        {
          ss = getProxyVariableFor(ns[i]);
        }
        if (!ss.isNull())
        {
          v = ns[1 - i];
          // if the other side is a constant or variable
          if (v.getNumChildren() == 0)
          {
            if (s.isNull())
            {
              s = ss;
            }
            else
            {
              // both sides of the equality correspond to a proxy variable
              if (ss == s)
              {
                // it is a trivial equality, e.g. between a proxy variable
                // and its definition
                return;
              }
              else
              {
                // equality between proxy variables, non-trivial
                s = Node::null();
              }
            }
          }
        }
      }
      if (!s.isNull())
      {
        // the equality can be turned into a substitution
        subs.push_back(s);
        vars.push_back(v);
        return;
      }
    }
    else
    {
      n = ns;
    }
  }
  if (!n.isConst() || !n.getConst<bool>())
  {
    unproc.push_back(n);
  }
}

}  // namespace strings
}  // namespace theory
}  // namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback