summaryrefslogtreecommitdiff
path: root/src/theory/strings/regexp_solver.h
blob: b44c6c8d9d12e155c6516993193cf5825fb186a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*********************                                                        */
/*! \file regexp_solver.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Tianyi Liang, Andres Noetzli
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Regular expression solver for the theory of strings.
 **
 **/

#include "cvc4_private.h"

#ifndef CVC4__THEORY__STRINGS__REGEXP_SOLVER_H
#define CVC4__THEORY__STRINGS__REGEXP_SOLVER_H

#include <map>
#include "context/cdhashset.h"
#include "context/cdlist.h"
#include "context/context.h"
#include "expr/node.h"
#include "theory/strings/extf_solver.h"
#include "theory/strings/inference_manager.h"
#include "theory/strings/regexp_operation.h"
#include "theory/strings/sequences_stats.h"
#include "theory/strings/solver_state.h"
#include "util/string.h"

namespace CVC4 {
namespace theory {
namespace strings {

class RegExpSolver
{
  typedef context::CDList<Node> NodeList;
  typedef context::CDHashMap<Node, bool, NodeHashFunction> NodeBoolMap;
  typedef context::CDHashMap<Node, int, NodeHashFunction> NodeIntMap;
  typedef context::CDHashMap<Node, unsigned, NodeHashFunction> NodeUIntMap;
  typedef context::CDHashMap<Node, Node, NodeHashFunction> NodeNodeMap;
  typedef context::CDHashSet<Node, NodeHashFunction> NodeSet;

 public:
  RegExpSolver(SolverState& s,
               InferenceManager& im,
               CoreSolver& cs,
               ExtfSolver& es,
               SequencesStatistics& stats,
               context::Context* c,
               context::UserContext* u);
  ~RegExpSolver() {}

  /** check regular expression memberships
   *
   * This checks the satisfiability of all regular expression memberships
   * of the form (not) s in R. We use various heuristic techniques based on
   * unrolling, combined with techniques from Liang et al, "A Decision Procedure
   * for Regular Membership and Length Constraints over Unbounded Strings",
   * FroCoS 2015.
   */
  void checkMemberships();

 private:
  /** check
   *
   * Tells this solver to check whether the regular expressions in mems
   * are consistent. If they are not, then this class will call the
   * sendInference method of its parent TheoryString object, indicating that
   * it requires a conflict or lemma to be processed.
   *
   * The argument mems maps representative string terms r to memberships of the
   * form (t in R) or ~(t in R), where t = r currently holds in the equality
   * engine of the theory of strings.
   */
  void check(const std::map<Node, std::vector<Node>>& mems);
  /**
   * Check memberships in equivalence class for regular expression
   * inclusion.
   *
   * This method returns false if it discovered a conflict for this set of
   * assertions, and true otherwise. It discovers a conflict e.g. if mems
   * contains str.in.re(xi, Ri) and ~str.in.re(xj, Rj) and Rj includes Ri.
   *
   * @param mems Vector of memberships of the form: (~)str.in.re(x1, R1)
   *             ... (~)str.in.re(xn, Rn) where x1 = ... = xn in the
   *             current context. The function removes elements from this
   *             vector that were marked as reduced.
   * @param expForRe Additional explanations for regular expressions.
   * @return False if a conflict was detected, true otherwise
   */
  bool checkEqcInclusion(std::vector<Node>& mems);

  /**
   * Check memberships for equivalence class.
   * The vector mems is a vector of memberships of the form:
   *   (~) (x1 in R1 ) ... (~) (xn in Rn)
   * where x1 = ... = xn in the current context.
   *
   * This method may add lemmas or conflicts via the inference manager.
   *
   * This method returns false if it discovered a conflict for this set of
   * assertions, and true otherwise. It discovers a conflict e.g. if mems
   * contains (xi in Ri) and (xj in Rj) and intersect(xi,xj) is empty.
   */
  bool checkEqcIntersect(const std::vector<Node>& mems);
  // Constants
  Node d_emptyString;
  Node d_emptyRegexp;
  Node d_true;
  Node d_false;
  /** The solver state of the parent of this object */
  SolverState& d_state;
  /** the output channel of the parent of this object */
  InferenceManager& d_im;
  /** reference to the core solver, used for certain queries */
  CoreSolver& d_csolver;
  /** reference to the extended function solver of the parent */
  ExtfSolver& d_esolver;
  /** Reference to the statistics for the theory of strings/sequences. */
  SequencesStatistics& d_statistics;
  // check membership constraints
  Node mkAnd(Node c1, Node c2);
  /**
   * Check partial derivative
   *
   * Returns false if a lemma pertaining to checking the partial derivative
   * of x in r was added. In this case, addedLemma is updated to true.
   *
   * The argument atom is the assertion that explains x in r, which is the
   * normalized form of atom that may be modified using a substitution whose
   * explanation is nf_exp.
   */
  bool checkPDerivative(
      Node x, Node r, Node atom, bool& addedLemma, std::vector<Node>& nf_exp);
  Node getMembership(Node n, bool isPos, unsigned i);
  unsigned getNumMemberships(Node n, bool isPos);
  CVC4::String getHeadConst(Node x);
  bool deriveRegExp(Node x, Node r, Node atom, std::vector<Node>& ant);
  Node getNormalSymRegExp(Node r, std::vector<Node>& nf_exp);
  // regular expression memberships
  NodeSet d_regexp_ucached;
  NodeSet d_regexp_ccached;
  // semi normal forms for symbolic expression
  std::map<Node, Node> d_nf_regexps;
  std::map<Node, std::vector<Node> > d_nf_regexps_exp;
  // processed memberships
  NodeSet d_processed_memberships;
  /** regular expression operation module */
  RegExpOpr d_regexp_opr;
}; /* class TheoryStrings */

}  // namespace strings
}  // namespace theory
}  // namespace CVC4

#endif /* CVC4__THEORY__STRINGS__THEORY_STRINGS_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback