summaryrefslogtreecommitdiff
path: root/src/theory/strings/extf_solver.cpp
blob: 98f7d7d7cc0d8c679a87acf9032b70b0bab99e90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Gereon Kremer, Andres Noetzli
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Implementation of solver for extended functions of theory of strings.
 */

#include "theory/strings/extf_solver.h"

#include "options/strings_options.h"
#include "theory/strings/sequences_rewriter.h"
#include "theory/strings/theory_strings_preprocess.h"
#include "theory/strings/theory_strings_utils.h"
#include "util/statistics_registry.h"

using namespace std;
using namespace cvc5::context;
using namespace cvc5::kind;

namespace cvc5 {
namespace theory {
namespace strings {

ExtfSolver::ExtfSolver(SolverState& s,
                       InferenceManager& im,
                       TermRegistry& tr,
                       StringsRewriter& rewriter,
                       BaseSolver& bs,
                       CoreSolver& cs,
                       ExtTheory& et,
                       SequencesStatistics& statistics)
    : d_state(s),
      d_im(im),
      d_termReg(tr),
      d_rewriter(rewriter),
      d_bsolver(bs),
      d_csolver(cs),
      d_extt(et),
      d_statistics(statistics),
      d_preproc(d_termReg.getSkolemCache(), &statistics.d_reductions),
      d_hasExtf(s.getSatContext(), false),
      d_extfInferCache(s.getSatContext()),
      d_reduced(s.getUserContext())
{
  d_extt.addFunctionKind(kind::STRING_SUBSTR);
  d_extt.addFunctionKind(kind::STRING_UPDATE);
  d_extt.addFunctionKind(kind::STRING_INDEXOF);
  d_extt.addFunctionKind(kind::STRING_INDEXOF_RE);
  d_extt.addFunctionKind(kind::STRING_ITOS);
  d_extt.addFunctionKind(kind::STRING_STOI);
  d_extt.addFunctionKind(kind::STRING_REPLACE);
  d_extt.addFunctionKind(kind::STRING_REPLACE_ALL);
  d_extt.addFunctionKind(kind::STRING_REPLACE_RE);
  d_extt.addFunctionKind(kind::STRING_REPLACE_RE_ALL);
  d_extt.addFunctionKind(kind::STRING_CONTAINS);
  d_extt.addFunctionKind(kind::STRING_IN_REGEXP);
  d_extt.addFunctionKind(kind::STRING_LEQ);
  d_extt.addFunctionKind(kind::STRING_TO_CODE);
  d_extt.addFunctionKind(kind::STRING_TOLOWER);
  d_extt.addFunctionKind(kind::STRING_TOUPPER);
  d_extt.addFunctionKind(kind::STRING_REV);
  d_extt.addFunctionKind(kind::SEQ_UNIT);
  d_extt.addFunctionKind(kind::SEQ_NTH);

  d_true = NodeManager::currentNM()->mkConst(true);
  d_false = NodeManager::currentNM()->mkConst(false);
}

ExtfSolver::~ExtfSolver() {}

bool ExtfSolver::doReduction(int effort, Node n)
{
  Assert(d_extfInfoTmp.find(n) != d_extfInfoTmp.end());
  if (!d_extfInfoTmp[n].d_modelActive)
  {
    // n is not active in the model, no need to reduce
  Trace("strings-extf-debug") << "...skip due to model active" << std::endl;
    return false;
  }
  if (d_reduced.find(n)!=d_reduced.end())
  {
    // already sent a reduction lemma
    Trace("strings-extf-debug") << "...skip due to reduced" << std::endl;
    return false;
  }
  // determine the effort level to process the extf at
  // 0 - at assertion time, 1+ - after no other reduction is applicable
  int r_effort = -1;
  // polarity : 1 true, -1 false, 0 neither
  int pol = 0;
  Kind k = n.getKind();
  if (n.getType().isBoolean() && !d_extfInfoTmp[n].d_const.isNull())
  {
    pol = d_extfInfoTmp[n].d_const.getConst<bool>() ? 1 : -1;
  }
  if (k == STRING_CONTAINS)
  {
    if (pol == 1)
    {
      r_effort = 1;
    }
    else if (pol == -1)
    {
      if (effort == 2)
      {
        Node x = n[0];
        Node s = n[1];
        std::vector<Node> lexp;
        Node lenx = d_state.getLength(x, lexp);
        Node lens = d_state.getLength(s, lexp);
        if (d_state.areEqual(lenx, lens))
        {
          Trace("strings-extf-debug")
              << "  resolve extf : " << n
              << " based on equal lengths disequality." << std::endl;
          // We can reduce negative contains to a disequality when lengths are
          // equal. In other words, len( x ) = len( s ) implies
          //   ~contains( x, s ) reduces to x != s.
          if (!d_state.areDisequal(x, s))
          {
            // len( x ) = len( s ) ^ ~contains( x, s ) => x != s
            lexp.push_back(lenx.eqNode(lens));
            lexp.push_back(n.negate());
            Node xneqs = x.eqNode(s).negate();
            d_im.sendInference(
                lexp, xneqs, InferenceId::STRINGS_CTN_NEG_EQUAL, false, true);
          }
          // this depends on the current assertions, so this
          // inference is context-dependent
          d_extt.markReduced(n, ExtReducedId::STRINGS_NEG_CTN_DEQ, true);
          return true;
        }
        else
        {
          r_effort = 2;
        }
      }
    }
  }
  else if (k == STRING_SUBSTR)
  {
    r_effort = 1;
  }
  else if (k == SEQ_UNIT)
  {
    // never necessary to reduce seq.unit
    return false;
  }
  else if (k != STRING_IN_REGEXP)
  {
    r_effort = 2;
  }
  if (effort != r_effort)
  {
    Trace("strings-extf-debug") << "...skip due to effort" << std::endl;
    // not the right effort level to reduce
    return false;
  }
  Node c_n = pol == -1 ? n.negate() : n;
  Trace("strings-process-debug")
      << "Process reduction for " << n << ", pol = " << pol << std::endl;
  if (k == STRING_CONTAINS && pol == 1)
  {
    Node x = n[0];
    Node s = n[1];
    // positive contains reduces to a equality
    SkolemCache* skc = d_termReg.getSkolemCache();
    Node eq = d_termReg.eagerReduce(n, skc);
    Assert(!eq.isNull());
    Assert(eq.getKind() == ITE && eq[0] == n);
    eq = eq[1];
    std::vector<Node> expn;
    expn.push_back(n);
    d_im.sendInference(expn, expn, eq, InferenceId::STRINGS_CTN_POS, false, true);
    Trace("strings-extf-debug")
        << "  resolve extf : " << n << " based on positive contain reduction."
        << std::endl;
    Trace("strings-red-lemma") << "Reduction (positive contains) lemma : " << n
                               << " => " << eq << std::endl;
    // context-dependent because it depends on the polarity of n itself
    d_extt.markReduced(n, ExtReducedId::STRINGS_POS_CTN, true);
  }
  else if (k != kind::STRING_TO_CODE)
  {
    NodeManager* nm = NodeManager::currentNM();
    Assert(k == STRING_SUBSTR || k == STRING_UPDATE || k == STRING_CONTAINS
           || k == STRING_INDEXOF || k == STRING_INDEXOF_RE || k == STRING_ITOS
           || k == STRING_STOI || k == STRING_REPLACE || k == STRING_REPLACE_ALL
           || k == SEQ_NTH || k == STRING_REPLACE_RE
           || k == STRING_REPLACE_RE_ALL || k == STRING_LEQ
           || k == STRING_TOLOWER || k == STRING_TOUPPER || k == STRING_REV);
    std::vector<Node> new_nodes;
    Node res = d_preproc.simplify(n, new_nodes);
    Assert(res != n);
    new_nodes.push_back(n.eqNode(res));
    Node nnlem =
        new_nodes.size() == 1 ? new_nodes[0] : nm->mkNode(AND, new_nodes);
    Trace("strings-red-lemma")
        << "Reduction_" << effort << " lemma : " << nnlem << std::endl;
    Trace("strings-red-lemma") << "...from " << n << std::endl;
    Trace("strings-red-lemma")
        << "Reduction_" << effort << " rewritten : " << Rewriter::rewrite(nnlem) << std::endl;
    d_im.sendInference(d_emptyVec, nnlem, InferenceId::STRINGS_REDUCTION, false, true);
    Trace("strings-extf-debug")
        << "  resolve extf : " << n << " based on reduction." << std::endl;
    // add as reduction lemma
    d_reduced.insert(n);
  }
  return true;
}

void ExtfSolver::checkExtfReductions(int effort)
{
  // Notice we don't make a standard call to ExtTheory::doReductions here,
  // since certain optimizations like context-dependent reductions and
  // stratifying effort levels are done in doReduction below.
  std::vector<Node> extf = d_extt.getActive();
  Trace("strings-process") << "  checking " << extf.size() << " active extf"
                           << std::endl;
  for (const Node& n : extf)
  {
    Assert(!d_state.isInConflict());
    Trace("strings-process")
        << "  check " << n
        << ", active in model=" << d_extfInfoTmp[n].d_modelActive << std::endl;
    bool ret = doReduction(effort, n);
    if (ret)
    {
      // we do not mark as reduced, since we may want to evaluate
      if (d_im.hasProcessed())
      {
        return;
      }
    }
  }
}

void ExtfSolver::checkExtfEval(int effort)
{
  Trace("strings-extf-list")
      << "Active extended functions, effort=" << effort << " : " << std::endl;
  d_extfInfoTmp.clear();
  NodeManager* nm = NodeManager::currentNM();
  bool has_nreduce = false;
  std::vector<Node> terms = d_extt.getActive();
  // the set of terms we have done extf inferences for
  std::unordered_set<Node> inferProcessed;
  for (const Node& n : terms)
  {
    // Setup information about n, including if it is equal to a constant.
    ExtfInfoTmp& einfo = d_extfInfoTmp[n];
    Node r = d_state.getRepresentative(n);
    einfo.d_const = d_bsolver.getConstantEqc(r);
    // Get the current values of the children of n.
    // Notice that we look up the value of the direct children of n, and not
    // their free variables. In other words, given a term:
    //   t = (str.replace "B" (str.replace x "A" "B") "C")
    // we may build the explanation that:
    //   ((str.replace x "A" "B") = "B") => t = (str.replace "B" "B" "C")
    // instead of basing this on the free variable x:
    //   (x = "A") => t = (str.replace "B" (str.replace "A" "A" "B") "C")
    // Although both allow us to infer t = "C", it is important to use the
    // first kind of inference since it ensures that its subterms have the
    // expected values. Otherwise, we may in rare cases fail to realize that
    // the subterm (str.replace x "A" "B") does not currently have the correct
    // value, say in this example that (str.replace x "A" "B") != "B".
    std::vector<Node> exp;
    std::vector<Node> schildren;
    bool schanged = false;
    for (const Node& nc : n)
    {
      Node sc = getCurrentSubstitutionFor(effort, nc, exp);
      schildren.push_back(sc);
      schanged = schanged || sc != nc;
    }
    // If there is information involving the children, attempt to do an
    // inference and/or mark n as reduced.
    bool reduced = false;
    Node to_reduce = n;
    if (schanged)
    {
      Node sn = nm->mkNode(n.getKind(), schildren);
      Trace("strings-extf-debug")
          << "Check extf " << n << " == " << sn
          << ", constant = " << einfo.d_const << ", effort=" << effort << "..."
          << std::endl;
      einfo.d_exp.insert(einfo.d_exp.end(), exp.begin(), exp.end());
      // inference is rewriting the substituted node
      Node nrc = Rewriter::rewrite(sn);
      // if rewrites to a constant, then do the inference and mark as reduced
      if (nrc.isConst())
      {
        if (effort < 3)
        {
          d_extt.markReduced(n, ExtReducedId::STRINGS_SR_CONST);
          Trace("strings-extf-debug")
              << "  resolvable by evaluation..." << std::endl;
          std::vector<Node> exps;
          // The following optimization gets the "symbolic definition" of
          // an extended term. The symbolic definition of a term t is a term
          // t' where constants are replaced by their corresponding proxy
          // variables.
          // For example, if lsym is a proxy variable for "", then
          // str.replace( lsym, lsym, lsym ) is the symbolic definition for
          // str.replace( "", "", "" ). It is generally better to use symbolic
          // definitions when doing cd-rewriting for the purpose of minimizing
          // clauses, e.g. we infer the unit equality:
          //    str.replace( lsym, lsym, lsym ) == ""
          // instead of making this inference multiple times:
          //    x = "" => str.replace( x, x, x ) == ""
          //    y = "" => str.replace( y, y, y ) == ""
          Trace("strings-extf-debug")
              << "  get symbolic definition..." << std::endl;
          Node nrs;
          // only use symbolic definitions if option is set
          if (options::stringInferSym())
          {
            nrs = d_termReg.getSymbolicDefinition(sn, exps);
          }
          if (!nrs.isNull())
          {
            Trace("strings-extf-debug")
                << "  rewrite " << nrs << "..." << std::endl;
            Node nrsr = Rewriter::rewrite(nrs);
            // ensure the symbolic form is not rewritable
            if (nrsr != nrs)
            {
              // we cannot use the symbolic definition if it rewrites
              Trace("strings-extf-debug")
                  << "  symbolic definition is trivial..." << std::endl;
              nrs = Node::null();
            }
          }
          else
          {
            Trace("strings-extf-debug")
                << "  could not infer symbolic definition." << std::endl;
          }
          Node conc;
          if (!nrs.isNull())
          {
            Trace("strings-extf-debug")
                << "  symbolic def : " << nrs << std::endl;
            if (!d_state.areEqual(nrs, nrc))
            {
              // infer symbolic unit
              if (n.getType().isBoolean())
              {
                conc = nrc == d_true ? nrs : nrs.negate();
              }
              else
              {
                conc = nrs.eqNode(nrc);
              }
              einfo.d_exp.clear();
            }
          }
          else
          {
            if (!d_state.areEqual(n, nrc))
            {
              if (n.getType().isBoolean())
              {
                if (d_state.areEqual(n, nrc == d_true ? d_false : d_true))
                {
                  einfo.d_exp.push_back(nrc == d_true ? n.negate() : n);
                  conc = d_false;
                }
                else
                {
                  conc = nrc == d_true ? n : n.negate();
                }
              }
              else
              {
                conc = n.eqNode(nrc);
              }
            }
          }
          if (!conc.isNull())
          {
            Trace("strings-extf")
                << "  resolve extf : " << sn << " -> " << nrc << std::endl;
            InferenceId inf = effort == 0 ? InferenceId::STRINGS_EXTF : InferenceId::STRINGS_EXTF_N;
            d_im.sendInference(einfo.d_exp, conc, inf, false, true);
            d_statistics.d_cdSimplifications << n.getKind();
          }
        }
        else
        {
          // check if it is already equal, if so, mark as reduced. Otherwise, do
          // nothing.
          if (d_state.areEqual(n, nrc))
          {
            Trace("strings-extf")
                << "  resolved extf, since satisfied by model: " << n
                << std::endl;
            einfo.d_modelActive = false;
          }
        }
        reduced = true;
      }
      else
      {
        // if this was a predicate which changed after substitution + rewriting
        if (!einfo.d_const.isNull() && nrc.getType().isBoolean() && nrc != n)
        {
          bool pol = einfo.d_const == d_true;
          Node nrcAssert = pol ? nrc : nrc.negate();
          Node nAssert = pol ? n : n.negate();
          Assert(effort < 3);
          einfo.d_exp.push_back(nAssert);
          Trace("strings-extf-debug") << "  decomposable..." << std::endl;
          Trace("strings-extf") << "  resolve extf : " << sn << " -> " << nrc
                                << ", const = " << einfo.d_const << std::endl;
          // We send inferences internal here, which may help show unsat.
          // However, we do not make a determination whether n can be marked
          // reduced since this argument may be circular: we may infer than n
          // can be reduced to something else, but that thing may argue that it
          // can be reduced to n, in theory.
          InferenceId infer =
              effort == 0 ? InferenceId::STRINGS_EXTF_D : InferenceId::STRINGS_EXTF_D_N;
          d_im.sendInternalInference(einfo.d_exp, nrcAssert, infer);
        }
        to_reduce = nrc;
      }
    }
    // We must use the original n here to avoid circular justifications for
    // why extended functions are reduced. In particular, n should never be a
    // duplicate of another term considered in the block of code for
    // checkExtfInference below.
    // if not reduced and not processed
    if (!reduced && !n.isNull()
        && inferProcessed.find(n) == inferProcessed.end())
    {
      inferProcessed.insert(n);
      Assert(effort < 3);
      if (effort == 1)
      {
        Trace("strings-extf")
            << "  cannot rewrite extf : " << to_reduce << std::endl;
      }
      // we take to_reduce to be the (partially) reduced version of n, which
      // is justified by the explanation in einfo.
      checkExtfInference(n, to_reduce, einfo, effort);
      if (Trace.isOn("strings-extf-list"))
      {
        Trace("strings-extf-list") << "  * " << to_reduce;
        if (!einfo.d_const.isNull())
        {
          Trace("strings-extf-list") << ", const = " << einfo.d_const;
        }
        if (n != to_reduce)
        {
          Trace("strings-extf-list") << ", from " << n;
        }
        Trace("strings-extf-list") << std::endl;
      }
      if (d_extt.isActive(n) && einfo.d_modelActive)
      {
        has_nreduce = true;
      }
    }
    if (d_state.isInConflict())
    {
      Trace("strings-extf-debug") << "  conflict, return." << std::endl;
      return;
    }
  }
  d_hasExtf = has_nreduce;
}

void ExtfSolver::checkExtfInference(Node n,
                                    Node nr,
                                    ExtfInfoTmp& in,
                                    int effort)
{
  if (in.d_const.isNull())
  {
    return;
  }
  NodeManager* nm = NodeManager::currentNM();
  Trace("strings-extf-infer") << "checkExtfInference: " << n << " : " << nr
                              << " == " << in.d_const << std::endl;

  // add original to explanation
  if (n.getType().isBoolean())
  {
    // if Boolean, it's easy
    in.d_exp.push_back(in.d_const.getConst<bool>() ? n : n.negate());
  }
  else
  {
    // otherwise, must explain via base node
    Node r = d_state.getRepresentative(n);
    // explain using the base solver
    d_bsolver.explainConstantEqc(n, r, in.d_exp);
  }

  // d_extfInferCache stores whether we have made the inferences associated
  // with a node n,
  // this may need to be generalized if multiple inferences apply

  if (nr.getKind() == STRING_CONTAINS)
  {
    Assert(in.d_const.isConst());
    bool pol = in.d_const.getConst<bool>();
    if ((pol && nr[1].getKind() == STRING_CONCAT)
        || (!pol && nr[0].getKind() == STRING_CONCAT))
    {
      // If str.contains( x, str.++( y1, ..., yn ) ),
      //   we may infer str.contains( x, y1 ), ..., str.contains( x, yn )
      // The following recognizes two situations related to the above reasoning:
      // (1) If ~str.contains( x, yi ) holds for some i, we are in conflict,
      // (2) If str.contains( x, yj ) already holds for some j, then the term
      // str.contains( x, yj ) is irrelevant since it is satisfied by all models
      // for str.contains( x, str.++( y1, ..., yn ) ).

      // Notice that the dual of the above reasoning also holds, i.e.
      // If ~str.contains( str.++( x1, ..., xn ), y ),
      //   we may infer ~str.contains( x1, y ), ..., ~str.contains( xn, y )
      // This is also handled here.
      if (d_extfInferCache.find(nr) == d_extfInferCache.end())
      {
        d_extfInferCache.insert(nr);

        int index = pol ? 1 : 0;
        std::vector<Node> children;
        children.push_back(nr[0]);
        children.push_back(nr[1]);
        for (const Node& nrc : nr[index])
        {
          children[index] = nrc;
          Node conc = nm->mkNode(STRING_CONTAINS, children);
          conc = Rewriter::rewrite(pol ? conc : conc.negate());
          // check if it already (does not) hold
          if (d_state.hasTerm(conc))
          {
            if (d_state.areEqual(conc, d_false))
            {
              // we are in conflict
              d_im.addToExplanation(conc, d_false, in.d_exp);
              d_im.sendInference(
                  in.d_exp, d_false, InferenceId::STRINGS_CTN_DECOMPOSE);
              Assert(d_state.isInConflict());
              return;
            }
            else if (d_extt.hasFunctionKind(conc.getKind()))
            {
              // can mark as reduced, since model for n implies model for conc
              d_extt.markReduced(conc, ExtReducedId::STRINGS_CTN_DECOMPOSE);
            }
          }
        }
      }
    }
    else
    {
      if (std::find(d_extfInfoTmp[nr[0]].d_ctn[pol].begin(),
                    d_extfInfoTmp[nr[0]].d_ctn[pol].end(),
                    nr[1])
          == d_extfInfoTmp[nr[0]].d_ctn[pol].end())
      {
        Trace("strings-extf-debug") << "  store contains info : " << nr[0]
                                    << " " << pol << " " << nr[1] << std::endl;
        // Store s (does not) contains t, since nr = (~)contains( s, t ) holds.
        d_extfInfoTmp[nr[0]].d_ctn[pol].push_back(nr[1]);
        d_extfInfoTmp[nr[0]].d_ctnFrom[pol].push_back(n);
        // Do transistive closure on contains, e.g.
        // if contains( s, t ) and ~contains( s, r ), then ~contains( t, r ).

        // The following infers new (negative) contains based on the above
        // reasoning, provided that ~contains( t, r ) does not
        // already hold in the current context. We test this by checking that
        // contains( t, r ) is not already asserted false in the current
        // context. We also handle the case where contains( t, r ) is equivalent
        // to t = r, in which case we check that t != r does not already hold
        // in the current context.

        // Notice that form of the above inference is enough to find
        // conflicts purely due to contains predicates. For example, if we
        // have only positive occurrences of contains, then no conflicts due to
        // contains predicates are possible and this schema does nothing. For
        // example, note that contains( s, t ) and contains( t, r ) implies
        // contains( s, r ), which we could but choose not to infer. Instead,
        // we prefer being lazy: only if ~contains( s, r ) appears later do we
        // infer ~contains( t, r ), which suffices to show a conflict.
        bool opol = !pol;
        for (unsigned i = 0, size = d_extfInfoTmp[nr[0]].d_ctn[opol].size();
             i < size;
             i++)
        {
          Node onr = d_extfInfoTmp[nr[0]].d_ctn[opol][i];
          Node concOrig =
              nm->mkNode(STRING_CONTAINS, pol ? nr[1] : onr, pol ? onr : nr[1]);
          Node conc = Rewriter::rewrite(concOrig);
          // For termination concerns, we only do the inference if the contains
          // does not rewrite (and thus does not introduce new terms).
          if (conc == concOrig)
          {
            bool do_infer = false;
            conc = conc.negate();
            bool pol2 = conc.getKind() != NOT;
            Node lit = pol2 ? conc : conc[0];
            if (lit.getKind() == EQUAL)
            {
              do_infer = pol2 ? !d_state.areEqual(lit[0], lit[1])
                              : !d_state.areDisequal(lit[0], lit[1]);
            }
            else
            {
              do_infer = !d_state.areEqual(lit, pol2 ? d_true : d_false);
            }
            if (do_infer)
            {
              std::vector<Node> exp_c;
              exp_c.insert(exp_c.end(), in.d_exp.begin(), in.d_exp.end());
              Node ofrom = d_extfInfoTmp[nr[0]].d_ctnFrom[opol][i];
              Assert(d_extfInfoTmp.find(ofrom) != d_extfInfoTmp.end());
              exp_c.insert(exp_c.end(),
                           d_extfInfoTmp[ofrom].d_exp.begin(),
                           d_extfInfoTmp[ofrom].d_exp.end());
              d_im.sendInference(exp_c, conc, InferenceId::STRINGS_CTN_TRANS);
            }
          }
        }
      }
      else
      {
        // If we already know that s (does not) contain t, then n may be
        // redundant. However, we do not mark n as reduced here, since strings
        // reductions may require dependencies between extended functions.
        // Marking reduced here could lead to incorrect models if an
        // extended function is marked reduced based on an assignment to
        // something that depends on n.
        Trace("strings-extf-debug") << "  redundant." << std::endl;
      }
    }
    return;
  }

  // If it's not a predicate, see if we can solve the equality n = c, where c
  // is the constant that extended term n is equal to.
  Node inferEq = nr.eqNode(in.d_const);
  Node inferEqr = Rewriter::rewrite(inferEq);
  Node inferEqrr = inferEqr;
  if (inferEqr.getKind() == EQUAL)
  {
    // try to use the extended rewriter for equalities
    inferEqrr = d_rewriter.rewriteEqualityExt(inferEqr);
  }
  if (inferEqrr != inferEqr)
  {
    inferEqrr = Rewriter::rewrite(inferEqrr);
    Trace("strings-extf-infer") << "checkExtfInference: " << inferEq
                                << " ...reduces to " << inferEqrr << std::endl;
    d_im.sendInternalInference(in.d_exp, inferEqrr, InferenceId::STRINGS_EXTF_EQ_REW);
  }
}

Node ExtfSolver::getCurrentSubstitutionFor(int effort,
                                           Node n,
                                           std::vector<Node>& exp)
{
  if (effort >= 3)
  {
    // model values
    Node mv = d_state.getModel()->getRepresentative(n);
    Trace("strings-subs") << "   model val : " << mv << std::endl;
    return mv;
  }
  Node nr = d_state.getRepresentative(n);
  Node c = d_bsolver.explainBestContentEqc(n, nr, exp);
  if (!c.isNull())
  {
    return c;
  }
  else if (effort >= 1 && n.getType().isStringLike())
  {
    Assert(effort < 3);
    // normal forms
    NormalForm& nfnr = d_csolver.getNormalForm(nr);
    Node ns = d_csolver.getNormalString(nfnr.d_base, exp);
    Trace("strings-subs") << "   normal eqc : " << ns << " " << nfnr.d_base
                          << " " << nr << std::endl;
    if (!nfnr.d_base.isNull())
    {
      d_im.addToExplanation(n, nfnr.d_base, exp);
    }
    return ns;
  }
  return n;
}

const std::map<Node, ExtfInfoTmp>& ExtfSolver::getInfo() const
{
  return d_extfInfoTmp;
}
bool ExtfSolver::hasExtendedFunctions() const { return d_hasExtf.get(); }

std::vector<Node> ExtfSolver::getActive(Kind k) const
{
  return d_extt.getActive(k);
}

bool StringsExtfCallback::getCurrentSubstitution(
    int effort,
    const std::vector<Node>& vars,
    std::vector<Node>& subs,
    std::map<Node, std::vector<Node> >& exp)
{
  Trace("strings-subs") << "getCurrentSubstitution, effort = " << effort
                        << std::endl;
  for (const Node& v : vars)
  {
    Trace("strings-subs") << "  get subs for " << v << "..." << std::endl;
    Node s = d_esolver->getCurrentSubstitutionFor(effort, v, exp[v]);
    subs.push_back(s);
  }
  return true;
}

std::string ExtfSolver::debugPrintModel()
{
  std::stringstream ss;
  std::vector<Node> extf;
  d_extt.getTerms(extf);
  // each extended function should have at least one annotation below
  for (const Node& n : extf)
  {
    ss << "- " << n;
    ExtReducedId id;
    if (!d_extt.isActive(n, id))
    {
      ss << " :extt-inactive " << id;
    }
    if (!d_extfInfoTmp[n].d_modelActive)
    {
      ss << " :model-inactive";
    }
    if (d_reduced.find(n) != d_reduced.end())
    {
      ss << " :reduced";
    }
    ss << std::endl;
  }
  return ss.str();
}

}  // namespace strings
}  // namespace theory
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback