summaryrefslogtreecommitdiff
path: root/src/theory/sets/card_unused_implementation.cpp
blob: 488ee1026975431621bfdc18eeca7bfcdfe3fe7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Removing old cardinality implementation, dumping it here.

///////////////////////////////////////////////////////////////
// Commenting out processCard, creates confusion when writing
// processCard2
///////////////////////////////////////////////////////////////


// void TheorySetsPrivate::processCard(Theory::Effort level) {
//   if(level != Theory::EFFORT_FULL) return;


//   Trace("sets-card") << "[sets-card] processCard( " << level << ")" << std::endl;
//   Trace("sets-card") << "[sets-card]   # processed terms = " << d_processedCardTerms.size() << std::endl;
//   Trace("sets-card") << "[sets-card]   # processed pairs = " << d_processedCardPairs.size() << std::endl;
//   NodeManager* nm = NodeManager::currentNM();

//   bool newLemmaGenerated = false;
  
//   // Introduce lemma
//   for(typeof(d_cardTerms.begin()) it = d_cardTerms.begin();
//       it != d_cardTerms.end(); ++it) {

//     for(eq::EqClassIterator j(d_equalityEngine.getRepresentative((*it)[0]), &d_equalityEngine);
//         !j.isFinished(); ++j) {

//       Node n = nm->mkNode(kind::CARD, (*j));

//       if(d_processedCardTerms.find(n) != d_processedCardTerms.end()) {
//         continue;
//       }

//       Trace("sets-card") << "[sets-card]  Processing " << n << " in eq cl of " << (*it) << std::endl;

//       newLemmaGenerated = true;
//       d_processedCardTerms.insert(n);
      
//       Kind k = n[0].getKind();

//       if(k == kind::SINGLETON) {
//         d_external.d_out->lemma(nm->mkNode(kind::EQUAL,
//                                            n,
//                                            nm->mkConst(Rational(1))));
//         continue;
//       } else {
//         d_external.d_out->lemma(nm->mkNode(kind::GEQ,
//                                            n,
//                                            nm->mkConst(Rational(0))));
//       }

//       // rest of the processing is for compound terms
//       if(k != kind::UNION && k != kind::INTERSECTION && k != kind::SETMINUS) {
//         continue;
//       }
  
//       Node s = min(n[0][0], n[0][1]);
//       Node t = max(n[0][0], n[0][1]);
//       bool isUnion = (k == kind::UNION);
//       Assert(Rewriter::rewrite(s) == s);
//       Assert(Rewriter::rewrite(t) == t);

//       typeof(d_processedCardPairs.begin()) processedInfo = d_processedCardPairs.find(make_pair(s, t));

//       if(processedInfo == d_processedCardPairs.end()) {

//         Node sNt = nm->mkNode(kind::INTERSECTION, s, t);
//         sNt = Rewriter::rewrite(sNt);
//         Node sMt = nm->mkNode(kind::SETMINUS, s, t);
//         sMt = Rewriter::rewrite(sMt);
//         Node tMs = nm->mkNode(kind::SETMINUS, t, s);
//         tMs = Rewriter::rewrite(tMs);

//         Node card_s = nm->mkNode(kind::CARD, s);
//         Node card_t = nm->mkNode(kind::CARD, t);
//         Node card_sNt = nm->mkNode(kind::CARD, sNt);
//         Node card_sMt = nm->mkNode(kind::CARD, sMt);
//         Node card_tMs = nm->mkNode(kind::CARD, tMs);

//         Node lem;
      
//         // for s
//         lem = nm->mkNode(kind::EQUAL,
//                          card_s,
//                          nm->mkNode(kind::PLUS, card_sNt, card_sMt));
//         d_external.d_out->lemma(lem);

//         // for t
//         lem = nm->mkNode(kind::EQUAL,
//                          card_t,
//                          nm->mkNode(kind::PLUS, card_sNt, card_tMs));

//         d_external.d_out->lemma(lem);

//         // for union
//         if(isUnion) {
//           lem = nm->mkNode(kind::EQUAL,
//                            n,     // card(s union t)
//                            nm->mkNode(kind::PLUS, card_sNt, card_sMt, card_tMs));
//           d_external.d_out->lemma(lem);
//         }
      
//         d_processedCardPairs.insert(make_pair(make_pair(s, t), isUnion));

//       } else if(isUnion && processedInfo->second == false) {
      
//         Node sNt = nm->mkNode(kind::INTERSECTION, s, t);
//         sNt = Rewriter::rewrite(sNt);
//         Node sMt = nm->mkNode(kind::SETMINUS, s, t);
//         sMt = Rewriter::rewrite(sMt);
//         Node tMs = nm->mkNode(kind::SETMINUS, t, s);
//         tMs = Rewriter::rewrite(tMs);

//         Node card_s = nm->mkNode(kind::CARD, s);
//         Node card_t = nm->mkNode(kind::CARD, t);
//         Node card_sNt = nm->mkNode(kind::CARD, sNt);
//         Node card_sMt = nm->mkNode(kind::CARD, sMt);
//         Node card_tMs = nm->mkNode(kind::CARD, tMs);

//         Assert(Rewriter::rewrite(n[0]) == n[0]);

//         Node lem = nm->mkNode(kind::EQUAL,
//                               n,     // card(s union t)
//                               nm->mkNode(kind::PLUS, card_sNt, card_sMt, card_tMs));
//         d_external.d_out->lemma(lem);

//         processedInfo->second = true;
//       }
    
//     }//equivalence class loop

//   }//d_cardTerms loop

//   if(newLemmaGenerated) {
//     Trace("sets-card") << "[sets-card] New introduce done. Returning." << std::endl;
//     return;
//   }



//   // Leaves disjoint lemmas
//   buildGraph();

//   // Leaves disjoint lemmas
//   for(typeof(leaves.begin()) it = leaves.begin(); it != leaves.end(); ++it) {
//     TNode l1 = (*it);
//     if(d_equalityEngine.getRepresentative(l1).getKind() == kind::EMPTYSET) continue;
//     for(typeof(leaves.begin()) jt = leaves.begin(); jt != leaves.end(); ++jt) {
//       TNode l2 = (*jt);

//       if(d_equalityEngine.getRepresentative(l2).getKind() == kind::EMPTYSET) continue;

//       if( l1 == l2 ) continue;

//       Node l1_inter_l2 = nm->mkNode(kind::INTERSECTION, min(l1, l2), max(l1, l2));
//       l1_inter_l2 = Rewriter::rewrite(l1_inter_l2);
//       Node emptySet = nm->mkConst<EmptySet>(EmptySet(nm->toType(l1_inter_l2.getType())));
//       if(d_equalityEngine.hasTerm(l1_inter_l2) &&
//          d_equalityEngine.hasTerm(emptySet) &&
//          d_equalityEngine.areEqual(l1_inter_l2, emptySet)) {
//         Debug("sets-card-graph") << "[sets-card-graph] Disjoint (asserted): " << l1 << " and " << l2 << std::endl;
//         continue;               // known to be disjoint
//       }

//       std::set<TNode> l1_ancestors = getReachable(edgesBk, l1);
//       std::set<TNode> l2_ancestors = getReachable(edgesBk, l2);

//       // have a disjoint edge
//       bool loop = true;
//       bool equality = false;
//       for(typeof(l1_ancestors.begin()) l1_it = l1_ancestors.begin();
//           l1_it != l1_ancestors.end() && loop; ++l1_it) {
//         for(typeof(l2_ancestors.begin()) l2_it = l2_ancestors.begin();
//             l2_it != l2_ancestors.end() && loop; ++l2_it) {
//           TNode n1 = (*l1_it);
//           TNode n2 = (*l2_it);
//           if(disjoint.find(make_pair(n1, n2)) != disjoint.find(make_pair(n2, n1))) {
//             loop = false;
//           }
//           if(n1 == n2) {
//             equality = true;
//           }
//           if(d_equalityEngine.hasTerm(n1) && d_equalityEngine.hasTerm(n2) &&
//              d_equalityEngine.areEqual(n1, n2)) {
//             equality = true;
//           }
//         }
//       }
//       if(loop == false) {
//         Debug("sets-card-graph") << "[sets-card-graph] Disjoint (always): " << l1 << " and " << l2 << std::endl;
//         continue;
//       }
//       if(equality == false) {
//         Debug("sets-card-graph") << "[sets-card-graph] No equality found: " << l1 << " and " << l2 << std::endl;
//         continue;
//       }

//       Node lem = nm->mkNode(kind::OR,
//                             nm->mkNode(kind::EQUAL, l1_inter_l2, emptySet),
//                             nm->mkNode(kind::LT, nm->mkConst(Rational(0)),
//                                        nm->mkNode(kind::CARD, l1_inter_l2)));

//       d_external.d_out->lemma(lem);
//       Trace("sets-card") << "[sets-card] Guessing disjointness of : " << l1 << " and " << l2 << std::endl;
//       if(Debug.isOn("sets-card-disjoint")) {
//         Debug("sets-card-disjoint") << "[sets-card-disjoint] Lemma for " << l1 << " and " << l2 << " generated because:" << std::endl;
//         for(typeof(disjoint.begin()) it = disjoint.begin(); it != disjoint.end(); ++it) {
//           Debug("sets-card-disjoint") << "[sets-card-disjoint]   " << it->first << " " << it->second << std::endl;
//         }
//       }
//       newLemmaGenerated = true;
//       Trace("sets-card") << "[sets-card] New intersection being empty lemma generated. Returning." << std::endl;
//       return;
//     }
//   }

//   Assert(!newLemmaGenerated);



//   // Elements being either equal or disequal
  
//   for(typeof(leaves.begin()) it = leaves.begin();
//       it != leaves.end(); ++it) {
//     Assert(d_equalityEngine.hasTerm(*it));
//     Node n = d_equalityEngine.getRepresentative(*it);
//     Assert(n.getKind() == kind::EMPTYSET || leaves.find(n) != leaves.end());
//     if(n != *it) continue;
//     const CDTNodeList* l = d_termInfoManager->getMembers(*it);
//     std::set<TNode> elems;
//     for(typeof(l->begin()) l_it = l->begin(); l_it != l->end(); ++l_it) {
//       elems.insert(d_equalityEngine.getRepresentative(*l_it));
//     }
//     for(typeof(elems.begin()) e1_it = elems.begin(); e1_it != elems.end(); ++e1_it) {
//       for(typeof(elems.begin()) e2_it = elems.begin(); e2_it != elems.end(); ++e2_it) {
//         if(*e1_it == *e2_it) continue;
//         if(!d_equalityEngine.areDisequal(*e1_it, *e2_it, false)) {
//           Node lem = nm->mkNode(kind::EQUAL, *e1_it, *e2_it);
//           lem = nm->mkNode(kind::OR, lem, nm->mkNode(kind::NOT, lem));
//           d_external.d_out->lemma(lem);
//           newLemmaGenerated = true;
//         }
//       }
//     }
//   }

//   if(newLemmaGenerated) {
//     Trace("sets-card") << "[sets-card] Members arrangments lemmas. Returning." << std::endl;
//     return;
//   }


//   // Guess leaf nodes being empty or non-empty
//   for(typeof(leaves.begin()) it = leaves.begin(); it != leaves.end(); ++it) {
//     Node n = d_equalityEngine.getRepresentative(*it);
//     if(n.getKind() == kind::EMPTYSET) continue;
//     if(d_termInfoManager->getMembers(n)->size() > 0) continue;
//     Node emptySet = nm->mkConst<EmptySet>(EmptySet(nm->toType(n.getType())));
//     if(!d_equalityEngine.hasTerm(emptySet)) {
//       d_equalityEngine.addTerm(emptySet);
//     }
//     if(!d_equalityEngine.areDisequal(n, emptySet, false)) {
//       Node lem = nm->mkNode(kind::EQUAL, n, emptySet);
//       lem = nm->mkNode(kind::OR, lem, nm->mkNode(kind::NOT, lem));
//       Assert(d_cardLowerLemmaCache.find(lem) == d_cardLowerLemmaCache.end());
//       d_cardLowerLemmaCache.insert(lem);
//       d_external.d_out->lemma(lem);
//       newLemmaGenerated = true;
//       break;
//     }
//   }

//   if(newLemmaGenerated) {
//     Trace("sets-card") << "[sets-card] New guessing leaves being empty done." << std::endl;
//     return;
//   }

//   // Assert Lower bound
//   for(typeof(leaves.begin()) it = leaves.begin();
//       it != leaves.end(); ++it) {
//     Assert(d_equalityEngine.hasTerm(*it));
//     Node n = d_equalityEngine.getRepresentative(*it);
//     Assert(n.getKind() == kind::EMPTYSET || leaves.find(n) != leaves.end());
//     if(n != *it) continue;
//     const CDTNodeList* l = d_termInfoManager->getMembers(n);
//     std::set<TNode> elems;
//     for(typeof(l->begin()) l_it = l->begin(); l_it != l->end(); ++l_it) {
//       elems.insert(d_equalityEngine.getRepresentative(*l_it));
//     }
//     if(elems.size() == 0) continue;
//     NodeBuilder<> nb(kind::OR);
//     nb << ( nm->mkNode(kind::LEQ, nm->mkConst(Rational(elems.size())), nm->mkNode(kind::CARD, n)) );
//     if(elems.size() > 1) {
//       for(typeof(elems.begin()) e1_it = elems.begin(); e1_it != elems.end(); ++e1_it) {
//         for(typeof(elems.begin()) e2_it = elems.begin(); e2_it != elems.end(); ++e2_it) {
//           if(*e1_it == *e2_it) continue;
//           nb << (nm->mkNode(kind::EQUAL, *e1_it, *e2_it));
//         }
//       }
//     }
//     for(typeof(elems.begin()) e_it = elems.begin(); e_it != elems.end(); ++e_it) {
//       nb << nm->mkNode(kind::NOT, nm->mkNode(kind::MEMBER, *e_it, n));
//     }
//     Node lem = Node(nb);
//     if(d_cardLowerLemmaCache.find(lem) == d_cardLowerLemmaCache.end()) {
//       Trace("sets-card") << "[sets-card] Card Lower: " << lem << std::endl;
//       d_external.d_out->lemma(lem);
//       d_cardLowerLemmaCache.insert(lem);
//       newLemmaGenerated = true;
//     }
//   }  
// }

generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback