summaryrefslogtreecommitdiff
path: root/src/theory/rep_set.cpp
blob: b7d2da7133d9e98c605ff17a469b771001943bba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*********************                                                        */
/*! \file rep_set.cpp
 ** \verbatim
 ** Original author: ajreynol
 ** Major contributors: none
 ** Minor contributors (to current version): none
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009, 2010, 2011  The Analysis of Computer Systems Group (ACSys)
 ** Courant Institute of Mathematical Sciences
 ** New York University
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Implementation of representative set
 **/

#include "theory/rep_set.h"
#include "theory/type_enumerator.h"

using namespace std;
using namespace CVC4;
using namespace CVC4::kind;
using namespace CVC4::context;
using namespace CVC4::theory;

void RepSet::clear(){
  d_type_reps.clear();
  d_type_complete.clear();
  d_tmap.clear();
}

int RepSet::getNumRepresentatives( TypeNode tn ) const{
  std::map< TypeNode, std::vector< Node > >::const_iterator it = d_type_reps.find( tn );
  if( it!=d_type_reps.end() ){
    return (int)it->second.size();
  }else{
    return 0;
  }
}

void RepSet::add( Node n ){
  TypeNode t = n.getType();
  d_tmap[ n ] = (int)d_type_reps[t].size();
  d_type_reps[t].push_back( n );
}

int RepSet::getIndexFor( Node n ) const {
  std::map< Node, int >::const_iterator it = d_tmap.find( n );
  if( it!=d_tmap.end() ){
    return it->second;
  }else{
    return -1;
  }
}

void RepSet::complete( TypeNode t ){
  if( d_type_complete.find( t )==d_type_complete.end() ){
    d_type_complete[t] = true;
    TypeEnumerator te(t);
    while( !te.isFinished() ){
      Node n = *te;
      if( std::find( d_type_reps[t].begin(), d_type_reps[t].end(), n )==d_type_reps[t].end() ){
        add( n );
      }
      ++te;
    }
    for( size_t i=0; i<d_type_reps[t].size(); i++ ){
      Trace("reps-complete") << d_type_reps[t][i] << " ";
    }
    Trace("reps-complete") << std::endl;
  }
}

void RepSet::toStream(std::ostream& out){
#if 0
  for( std::map< TypeNode, std::vector< Node > >::iterator it = d_type_reps.begin(); it != d_type_reps.end(); ++it ){
    out << it->first << " : " << std::endl;
    for( int i=0; i<(int)it->second.size(); i++ ){
      out << "   " << i << ": " << it->second[i] << std::endl;
    }
  }
#else
  for( std::map< TypeNode, std::vector< Node > >::iterator it = d_type_reps.begin(); it != d_type_reps.end(); ++it ){
    if( !it->first.isFunction() && !it->first.isPredicate() ){
      out << "(" << it->first << " " << it->second.size();
      out << " (";
      for( int i=0; i<(int)it->second.size(); i++ ){
        if( i>0 ){ out << " "; }
        out << it->second[i];
      }
      out << ")";
      out << ")" << std::endl;
    }
  }
#endif
}


RepSetIterator::RepSetIterator( RepSet* rs ) : d_rep_set( rs ){
  d_incomplete = false;

}

void RepSetIterator::setQuantifier( Node f ){
  Assert( d_types.empty() );
  //store indicies
  for( size_t i=0; i<f[0].getNumChildren(); i++ ){
    d_types.push_back( f[0][i].getType() );
  }
  initialize();
}

void RepSetIterator::setFunctionDomain( Node op ){
  Assert( d_types.empty() );
  TypeNode tn = op.getType();
  for( size_t i=0; i<tn.getNumChildren()-1; i++ ){
    d_types.push_back( tn[i] );
  }
  initialize();
}

void RepSetIterator::initialize(){
  for( size_t i=0; i<d_types.size(); i++ ){
    d_index.push_back( 0 );
    //store default index order
    d_index_order.push_back( i );
    d_var_order[i] = i;
    //store default domain
    d_domain.push_back( RepDomain() );
    TypeNode tn = d_types[i];
    if( tn.isSort() ){
      if( !d_rep_set->hasType( tn ) ){
        Node var = NodeManager::currentNM()->mkSkolem( "repSet_$$", tn, "is a variable created by the RepSetIterator" );
        Trace("mkVar") << "RepSetIterator:: Make variable " << var << " : " << tn << std::endl;
        d_rep_set->add( var );
      }
    }else if( tn.isInteger() || tn.isReal() ){
      Trace("fmf-incomplete") << "Incomplete because of infinite type " << tn << std::endl;
      d_incomplete = true;
    }else if( tn.isDatatype() ){
      const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
      //if finite, then complete all values of the domain
      if( dt.isFinite() ){
        d_rep_set->complete( tn );
        //d_incomplete = true;
      }else{
        Trace("fmf-incomplete") << "Incomplete because of infinite datatype " << tn << std::endl;
        d_incomplete = true;
      }
    }else{
      Trace("fmf-incomplete") << "Incomplete because of type " << tn << std::endl;
      d_incomplete = true;
    }
    if( d_rep_set->hasType( tn ) ){
      for( size_t j=0; j<d_rep_set->d_type_reps[tn].size(); j++ ){
        d_domain[i].push_back( j );
      }
    }else{
      Trace("fmf-incomplete") << "Incomplete, unknown type " << tn << std::endl;
      d_incomplete = true;
      Unimplemented("Cannot create representative set iterator for unknown type quantifier");
    }
  }
}

void RepSetIterator::setIndexOrder( std::vector< int >& indexOrder ){
  d_index_order.clear();
  d_index_order.insert( d_index_order.begin(), indexOrder.begin(), indexOrder.end() );
  //make the d_var_order mapping
  for( int i=0; i<(int)d_index_order.size(); i++ ){
    d_var_order[d_index_order[i]] = i;
  }
}

void RepSetIterator::setDomain( std::vector< RepDomain >& domain ){
  d_domain.clear();
  d_domain.insert( d_domain.begin(), domain.begin(), domain.end() );
  //we are done if a domain is empty
  for( int i=0; i<(int)d_domain.size(); i++ ){
    if( d_domain[i].empty() ){
      d_index.clear();
    }
  }
}

void RepSetIterator::increment2( int counter ){
  Assert( !isFinished() );
#ifdef DISABLE_EVAL_SKIP_MULTIPLE
  counter = (int)d_index.size()-1;
#endif
  //increment d_index
  while( counter>=0 && d_index[counter]==(int)(d_domain[counter].size()-1) ){
    counter--;
  }
  if( counter==-1 ){
    d_index.clear();
  }else{
    for( int i=(int)d_index.size()-1; i>counter; i-- ){
      d_index[i] = 0;
    }
    d_index[counter]++;
  }
}

void RepSetIterator::increment(){
  if( !isFinished() ){
    increment2( (int)d_index.size()-1 );
  }
}

bool RepSetIterator::isFinished(){
  return d_index.empty();
}

Node RepSetIterator::getTerm( int i ){
  TypeNode tn = d_types[d_index_order[i]];
  Assert( d_rep_set->d_type_reps.find( tn )!=d_rep_set->d_type_reps.end() );
  int index = d_index_order[i];
  return d_rep_set->d_type_reps[tn][d_domain[index][d_index[index]]];
}

void RepSetIterator::debugPrint( const char* c ){
  for( int i=0; i<(int)d_index.size(); i++ ){
    Debug( c ) << i << " : " << d_index[i] << " : " << getTerm( i ) << std::endl;
  }
}

void RepSetIterator::debugPrintSmall( const char* c ){
  Debug( c ) << "RI: ";
  for( int i=0; i<(int)d_index.size(); i++ ){
    Debug( c ) << d_index[i] << ": " << getTerm( i ) << " ";
  }
  Debug( c ) << std::endl;
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback