summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/sygus/synth_conjecture.h
blob: d7635c8161d147fa6cae05ddddf5ee7c8fae21ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Mathias Preiner, Abdalrhman Mohamed
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Class that encapsulates techniques for a single (SyGuS) synthesis
 * conjecture.
 */

#include "cvc5_private.h"

#ifndef CVC5__THEORY__QUANTIFIERS__SYNTH_CONJECTURE_H
#define CVC5__THEORY__QUANTIFIERS__SYNTH_CONJECTURE_H

#include <memory>

#include "smt/env_obj.h"
#include "theory/quantifiers/expr_miner_manager.h"
#include "theory/quantifiers/sygus/ce_guided_single_inv.h"
#include "theory/quantifiers/sygus/cegis.h"
#include "theory/quantifiers/sygus/cegis_core_connective.h"
#include "theory/quantifiers/sygus/cegis_unif.h"
#include "theory/quantifiers/sygus/enum_val_generator.h"
#include "theory/quantifiers/sygus/example_eval_cache.h"
#include "theory/quantifiers/sygus/example_infer.h"
#include "theory/quantifiers/sygus/sygus_process_conj.h"
#include "theory/quantifiers/sygus/sygus_repair_const.h"
#include "theory/quantifiers/sygus/sygus_stats.h"
#include "theory/quantifiers/sygus/synth_verify.h"
#include "theory/quantifiers/sygus/template_infer.h"

namespace cvc5 {
namespace theory {
namespace quantifiers {

class CegGrammarConstructor;
class SygusPbe;
class SygusStatistics;
class EnumValueManager;

/** a synthesis conjecture
 * This class implements approaches for a synthesis conjecture, given by data
 * member d_quant.
 * This includes both approaches for synthesis in Reynolds et al CAV 2015. It
 * determines which approach and optimizations are applicable to the
 * conjecture, and has interfaces for implementing them.
 */
class SynthConjecture : protected EnvObj
{
 public:
  SynthConjecture(Env& env,
                  QuantifiersState& qs,
                  QuantifiersInferenceManager& qim,
                  QuantifiersRegistry& qr,
                  TermRegistry& tr,
                  SygusStatistics& s);
  ~SynthConjecture();
  /** presolve */
  void presolve();
  /** get original version of conjecture */
  Node getConjecture() const { return d_quant; }
  /** get deep embedding version of conjecture */
  Node getEmbeddedConjecture() const { return d_embed_quant; }
  //-------------------------------for counterexample-guided check/refine
  /** whether the conjecture is waiting for a call to doCheck below */
  bool needsCheck();
  /** whether the conjecture is waiting for a call to doRefine below */
  bool needsRefinement() const;
  /** do syntax-guided enumerative check
   *
   * This is step 2(a) of Figure 3 of Reynolds et al CAV 2015.
   *
   * The method returns true if this conjecture is finished trying solutions
   * for the given call to SynthEngine::check.
   *
   * Notice that we make multiple calls to doCheck on one call to
   * SynthEngine::check. For example, if we are using an actively-generated
   * enumerator, one enumerated (abstract) term may correspond to multiple
   * concrete terms t1, ..., tn to check, where we make up to n calls to doCheck
   * when each of t1, ..., tn fails to satisfy the current refinement lemmas.
   */
  bool doCheck();
  /** do refinement
   *
   * This is step 2(b) of Figure 3 of Reynolds et al CAV 2015.
   *
   * This method is run when needsRefinement() returns true, indicating that
   * the last call to doCheck found a counterexample to the last candidate.
   *
   * This method adds a refinement lemma on the output channel of quantifiers
   * engine. If the refinement lemma is a duplicate, then we manually
   * exclude the current candidate via excludeCurrentSolution. This should
   * only occur when the synthesis conjecture for the current candidate fails
   * to evaluate to false for a given counterexample point, but regardless its
   * negation is satisfiable for the current candidate and that point. This is
   * exclusive to theories with partial functions, e.g. (non-linear) division.
   *
   * This method returns true if a lemma was added on the output channel, and
   * false otherwise.
   */
  bool doRefine();
  //-------------------------------end for counterexample-guided check/refine
  /**
   * Prints the current synthesis solution to output stream out. This is
   * currently used for printing solutions for sygusStream only. We do not
   * enclose solutions in parentheses.
   */
  void printSynthSolutionInternal(std::ostream& out);
  /** get synth solutions
   *
   * This method returns true if this class has a solution available to the
   * conjecture that it was assigned.
   *
   * Let q be the synthesis conjecture assigned to this class.
   * This method adds entries to sol_map[q] that map functions-to-synthesize to
   * their builtin solution, which has the same type. For example, for synthesis
   * conjecture exists f. forall x. f( x )>x, this function will update
   * sol_map[q] to contain the entry:
   *   f -> (lambda x. x+1)
   */
  bool getSynthSolutions(std::map<Node, std::map<Node, Node> >& sol_map);
  /**
   * The feasible guard whose semantics are "this conjecture is feasiable".
   * This is "G" in Figure 3 of Reynolds et al CAV 2015.
   */
  Node getGuard() const;
  /** is ground */
  bool isGround() { return d_inner_vars.empty(); }
  /** are we using single invocation techniques */
  bool isSingleInvocation() const;
  /** preregister conjecture
   * This is used as a heuristic for solution reconstruction, so that we
   * remember expressions in the conjecture before preprocessing, since they
   * may be helpful during solution reconstruction (Figure 5 of Reynolds et al
   * CAV 2015)
   */
  void preregisterConjecture(Node q);
  /** assign conjecture q to this class */
  void assign(Node q);
  /** has a conjecture been assigned to this class */
  bool isAssigned() { return !d_embed_quant.isNull(); }
  /**
   * Get model value for term n.
   */
  Node getModelValue(Node n);

  /** get utility for static preprocessing and analysis of conjectures */
  SynthConjectureProcess* getProcess() { return d_ceg_proc.get(); }
  /** get constant repair utility */
  SygusRepairConst* getRepairConst() { return d_sygus_rconst.get(); }
  /** get example inference utility */
  ExampleInfer* getExampleInfer() { return d_exampleInfer.get(); }
  /** get the example evaluation cache utility for enumerator e */
  ExampleEvalCache* getExampleEvalCache(Node e);
  /** get program by examples module */
  SygusPbe* getPbe() { return d_ceg_pbe.get(); }
  /** get the symmetry breaking predicate for type */
  Node getSymmetryBreakingPredicate(
      Node x, Node e, TypeNode tn, unsigned tindex, unsigned depth);
  /** print out debug information about this conjecture */
  void debugPrint(const char* c);
  /** check side condition
   *
   * This returns false if the solution { d_candidates -> cvals } does not
   * satisfy the side condition of the conjecture maintained by this class,
   * if it exists, and true otherwise.
   */
  bool checkSideCondition(const std::vector<Node>& cvals) const;

  /** get a reference to the statistics of parent */
  SygusStatistics& getSygusStatistics() { return d_stats; };

 private:
  /** Reference to the quantifiers state */
  QuantifiersState& d_qstate;
  /** Reference to the quantifiers inference manager */
  QuantifiersInferenceManager& d_qim;
  /** The quantifiers registry */
  QuantifiersRegistry& d_qreg;
  /** Reference to the term registry */
  TermRegistry& d_treg;
  /** reference to the statistics of parent */
  SygusStatistics& d_stats;
  /** term database sygus of d_qe */
  TermDbSygus* d_tds;
  /** The synthesis verify utility */
  SynthVerify d_verify;
  /** The feasible guard. */
  Node d_feasible_guard;
  /**
   * Do we have a solution in this solve context? This flag is reset to false
   * on every call to presolve.
   */
  bool d_hasSolution;
  /** the decision strategy for the feasible guard */
  std::unique_ptr<DecisionStrategy> d_feasible_strategy;
  /** single invocation utility */
  std::unique_ptr<CegSingleInv> d_ceg_si;
  /** template inference utility */
  std::unique_ptr<SygusTemplateInfer> d_templInfer;
  /** utility for static preprocessing and analysis of conjectures */
  std::unique_ptr<SynthConjectureProcess> d_ceg_proc;
  /** grammar utility */
  std::unique_ptr<CegGrammarConstructor> d_ceg_gc;
  /** repair constant utility */
  std::unique_ptr<SygusRepairConst> d_sygus_rconst;
  /** example inference utility */
  std::unique_ptr<ExampleInfer> d_exampleInfer;
  /** map from enumerators to their enumerator manager */
  std::map<Node, std::unique_ptr<EnumValueManager>> d_enumManager;

  //------------------------modules
  /** program by examples module */
  std::unique_ptr<SygusPbe> d_ceg_pbe;
  /** CEGIS module */
  std::unique_ptr<Cegis> d_ceg_cegis;
  /** CEGIS UNIF module */
  std::unique_ptr<CegisUnif> d_ceg_cegisUnif;
  /** connective core utility */
  std::unique_ptr<CegisCoreConnective> d_sygus_ccore;
  /** the set of active modules (subset of the above list) */
  std::vector<SygusModule*> d_modules;
  /** master module
   *
   * This is the module (one of those above) that takes sole responsibility
   * for this conjecture, determined during assign(...).
   */
  SygusModule* d_master;
  //------------------------end modules

  //------------------------enumerators
  /**
   * Get model values for terms n, store in vector v. This method returns true
   * if and only if all values added to v are non-null.
   *
   * The argument activeIncomplete indicates whether n contains an active
   * enumerator that is currently not finished enumerating values, but returned
   * null on a call to getEnumeratedValue. This value is used for determining
   * whether we should call getEnumeratedValues again within a call to
   * SynthConjecture::check.
   *
   * It removes terms from n that correspond to "inactive" enumerators, that
   * is, enumerators whose values have been exhausted.
   */
  bool getEnumeratedValues(std::vector<Node>& n,
                           std::vector<Node>& v,
                           bool& activeIncomplete);
  /**
   * Get or make enumerator manager for the enumerator e.
   */
  EnumValueManager* getEnumValueManagerFor(Node e);
  //------------------------end enumerators

  /** list of constants for quantified formula
   * The outer Skolems for the negation of d_embed_quant.
   */
  std::vector<Node> d_candidates;
  /** base instantiation
   * If d_embed_quant is forall d. exists y. P( d, y ), then
   * this is the formula  exists y. P( d_candidates, y ). Notice that
   * (exists y. F) is shorthand above for ~( forall y. ~F ).
   */
  Node d_base_inst;
  /** list of variables on inner quantification */
  std::vector<Node> d_inner_vars;
  /**
   * The set of skolems for the current "verification" lemma, if one exists.
   * This may be added to during calls to doCheck(). The model values for these
   * skolems are analyzed during doRefine().
   */
  std::vector<Node> d_ce_sk_vars;
  /**
   * If we have already tested the satisfiability of the current verification
   * lemma, this stores the model values of d_ce_sk_vars in the current
   * (satisfiable, failed) verification lemma.
   */
  std::vector<Node> d_ce_sk_var_mvs;
  /**
   * Whether the above vector has been set. We have this flag since the above
   * vector may be set to empty (e.g. for ground synthesis conjectures).
   */
  bool d_set_ce_sk_vars;

  /** the asserted (negated) conjecture */
  Node d_quant;
  /**
   * The side condition for solving the conjecture, after conversion to deep
   * embedding.
   */
  Node d_embedSideCondition;
  /** (negated) conjecture after simplification */
  Node d_simp_quant;
  /** (negated) conjecture after simplification, conversion to deep embedding */
  Node d_embed_quant;
  /** candidate information */
  class CandidateInfo
  {
   public:
    CandidateInfo() {}
    /** list of terms we have instantiated candidates with */
    std::vector<Node> d_inst;
  };
  std::map<Node, CandidateInfo> d_cinfo;
  /**
   * The first index of an instantiation in CandidateInfo::d_inst that we have
   * not yet tried to repair.
   */
  unsigned d_repair_index;
  /** record solution (this is used to construct solutions later) */
  void recordSolution(std::vector<Node>& vs);
  /** get synth solutions internal
   *
   * This function constructs the body of solutions for all
   * functions-to-synthesize in this conjecture and stores them in sols, in
   * order. For each solution added to sols, we add an integer indicating what
   * kind of solution n is, where if sols[i] = n, then
   *   if status[i] = 0: n is the (builtin term) corresponding to the solution,
   *   if status[i] = 1: n is the sygus representation of the solution.
   * We store builtin versions under some conditions (such as when the sygus
   * grammar is being ignored).
   *
   * This consults the single invocation module to get synthesis solutions if
   * isSingleInvocation() returns true.
   *
   * For example, for conjecture exists fg. forall x. f(x)>g(x), this function
   * may set ( sols, status ) to ( { x+1, d_x() }, { 1, 0 } ), where d_x() is
   * the sygus datatype constructor corresponding to variable x.
   */
  bool getSynthSolutionsInternal(std::vector<Node>& sols,
                                 std::vector<int8_t>& status);
  //-------------------------------- sygus stream
  /**
   * Prints the current synthesis solution to the output stream indicated by
   * the Options object, send a lemma blocking the current solution to the
   * output channel, which we refer to as a "stream exclusion lemma".
   *
   * The argument enums is the set of enumerators that comprise the current
   * solution, and values is their current values.
   */
  void printAndContinueStream(const std::vector<Node>& enums,
                              const std::vector<Node>& values);
  /** exclude the current solution { enums -> values } */
  void excludeCurrentSolution(const std::vector<Node>& enums,
                              const std::vector<Node>& values);
  /**
   * Whether we have guarded a stream exclusion lemma when using sygusStream.
   * This is an optimization that allows us to guard only the first stream
   * exclusion lemma.
   */
  bool d_guarded_stream_exc;
  //-------------------------------- end sygus stream
  /** expression miner managers for each function-to-synthesize
   *
   * Notice that for each function-to-synthesize, we enumerate a stream of
   * candidate solutions, where each of these streams is independent. Thus,
   * we maintain separate expression miner managers for each of them.
   *
   * This is used for the sygusRewSynth() option to synthesize new candidate
   * rewrite rules.
   */
  std::map<Node, std::unique_ptr<ExpressionMinerManager>> d_exprm;
};

}  // namespace quantifiers
}  // namespace theory
}  // namespace cvc5

#endif
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback