summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/sygus/sygus_unif.h
blob: 9bb321a0957b6f659258ef3989a961fcb92dd2a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/*********************                                                        */
/*! \file sygus_unif.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief sygus_unif
 **/

#include "cvc4_private.h"

#ifndef __CVC4__THEORY__QUANTIFIERS__SYGUS_UNIF_H
#define __CVC4__THEORY__QUANTIFIERS__SYGUS_UNIF_H

#include <map>
#include "expr/node.h"
#include "theory/quantifiers/sygus/sygus_unif_strat.h"
#include "theory/quantifiers_engine.h"

namespace CVC4 {
namespace theory {
namespace quantifiers {

class SygusUnif;

/** Unification context
  *
  * This class maintains state information during calls to
  * SygusUnif::constructSolution, which implements unification-based
  * approaches for construction solutions to synthesis conjectures.
  */
class UnifContext
{
 public:
  UnifContext();
  /**
   * This intiializes this context based on information in pbe regarding the
   * kinds of examples it contains.
   */
  void initialize(SygusUnif* pbe);

  //----------for ITE strategy
  /** the value of the context conditional
  *
  * This stores a list of Boolean constants that is the same length of the
  * number of input/output example pairs we are considering. For each i,
  * if d_vals[i] = true, i/o pair #i is active according to this context
  * if d_vals[i] = false, i/o pair #i is inactive according to this context
  */
  std::vector<Node> d_vals;
  /** update the examples
  *
  * if pol=true, this method updates d_vals to d_vals & vals
  * if pol=false, this method updates d_vals to d_vals & ( ~vals )
  */
  bool updateContext(SygusUnif* pbe, std::vector<Node>& vals, bool pol);
  //----------end for ITE strategy

  //----------for CONCAT strategies
  /** the position in the strings
  *
  * For each i/o example pair, this stores the length of the current solution
  * for the input of the pair, where the solution for that input is a prefix
  * or
  * suffix of the output of the pair. For example, if our i/o pairs are:
  *   f( "abcd" ) = "abcdcd"
  *   f( "aa" ) = "aacd"
  * If the solution we have currently constructed is str.++( x1, "c", ... ),
  * then d_str_pos = ( 5, 3 ), where notice that
  *   str.++( "abc", "c" ) is a prefix of "abcdcd" and
  *   str.++( "aa", "c" ) is a prefix of "aacd".
  */
  std::vector<unsigned> d_str_pos;
  /** has string position
  *
  * Whether the solution positions indicate a prefix or suffix of the output
  * examples. If this is role_invalid, then we have not updated the string
  * position.
  */
  NodeRole d_has_string_pos;
  /** update the string examples
  *
  * This method updates d_str_pos to d_str_pos + pos.
  */
  bool updateStringPosition(SygusUnif* pbe, std::vector<unsigned>& pos);
  /** get current strings
  *
  * This returns the prefix/suffix of the string constants stored in vals
  * of size d_str_pos, and stores the result in ex_vals. For example, if vals
  * is (abcdcd", "aacde") and d_str_pos = ( 5, 3 ), then we add
  * "d" and "de" to ex_vals.
  */
  void getCurrentStrings(SygusUnif* pbe,
                         const std::vector<Node>& vals,
                         std::vector<String>& ex_vals);
  /** get string increment
  *
  * If this method returns true, then inc and tot are updated such that
  *   for all active indices i,
  *      vals[i] is a prefix (or suffix if isPrefix=false) of ex_vals[i], and
  *      inc[i] = str.len(vals[i])
  *   for all inactive indices i, inc[i] = 0
  * We set tot to the sum of inc[i] for i=1,...,n. This indicates the total
  * number of characters incremented across all examples.
  */
  bool getStringIncrement(SygusUnif* pbe,
                          bool isPrefix,
                          const std::vector<String>& ex_vals,
                          const std::vector<Node>& vals,
                          std::vector<unsigned>& inc,
                          unsigned& tot);
  /** returns true if ex_vals[i] = vals[i] for all active indices i. */
  bool isStringSolved(SygusUnif* pbe,
                      const std::vector<String>& ex_vals,
                      const std::vector<Node>& vals);
  //----------end for CONCAT strategies

  /** is return value modified?
  *
  * This returns true if we are currently in a state where the return value
  * of the solution has been modified, e.g. by a previous node that solved
  * for a prefix.
  */
  bool isReturnValueModified();
  /** visited role
  *
  * This is the current set of enumerator/node role pairs we are currently
  * visiting. This set is cleared when the context is updated.
  */
  std::map<Node, std::map<NodeRole, bool> > d_visit_role;

  /** unif context enumerator information */
  class UEnumInfo
  {
   public:
    UEnumInfo() {}
    /** map from conditions and branch positions to a solved node
    *
    * For example, if we have:
    *   f( 1 ) = 2 ^ f( 3 ) = 4 ^ f( -1 ) = 1
    * Then, valid entries in this map is:
    *   d_look_ahead_sols[x>0][1] = x+1
    *   d_look_ahead_sols[x>0][2] = 1
    * For the first entry, notice that  for all input examples such that x>0
    * evaluates to true, which are (1) and (3), we have that their output
    * values for x+1 under the substitution that maps x to the input value,
    * resulting in 2 and 4, are equal to the output value for the respective
    * pairs.
    */
    std::map<Node, std::map<unsigned, Node> > d_look_ahead_sols;
  };
  /** map from enumerators to the above info class */
  std::map<Node, UEnumInfo> d_uinfo;

 private:
  /** true and false nodes */
  Node d_true;
  Node d_false;
};

/** Subsumption trie
*
* This class manages a set of terms for a PBE sygus enumerator.
*
* In PBE sygus, we are interested in, for each term t, the set of I/O examples
* that it satisfies, which can be represented by a vector of Booleans.
* For example, given conjecture:
*   f( 1 ) = 2 ^ f( 3 ) = 4 ^ f( -1 ) = 1 ^ f( 5 ) = 5
* If solutions for f are of the form (lambda x. [term]), then:
*   Term x satisfies 0001,
*   Term x+1 satisfies 1100,
*   Term 2 satisfies 0100.
* Above, term 2 is subsumed by term x+1, since the set of I/O examples that
* x+1 satisfies are a superset of those satisfied by 2.
*/
class SubsumeTrie
{
 public:
  SubsumeTrie() {}
  /**
  * Adds term t to the trie, removes all terms that are subsumed by t from the
  * trie and adds them to subsumed. The set of I/O examples that t satisfies
  * is given by (pol ? vals : !vals).
  */
  Node addTerm(Node t,
               const std::vector<Node>& vals,
               bool pol,
               std::vector<Node>& subsumed);
  /**
  * Adds term c to the trie, without calculating/updating based on
  * subsumption. This is useful for using this class to store conditionals
  * in ITE strategies, where any conditional whose set of vals is unique
  * (as opposed to not subsumed) is useful.
  */
  Node addCond(Node c, const std::vector<Node>& vals, bool pol);
  /**
    * Returns the set of terms that are subsumed by (pol ? vals : !vals).
    */
  void getSubsumed(const std::vector<Node>& vals,
                   bool pol,
                   std::vector<Node>& subsumed);
  /**
    * Returns the set of terms that subsume (pol ? vals : !vals). This
    * is for instance useful when determining whether there exists a term
    * that satisfies all active examples in the decision tree learning
    * algorithm.
    */
  void getSubsumedBy(const std::vector<Node>& vals,
                     bool pol,
                     std::vector<Node>& subsumed_by);
  /**
  * Get the leaves of the trie, which we store in the map v.
  * v[-1] stores the children that always evaluate to !pol,
  * v[1] stores the children that always evaluate to pol,
  * v[0] stores the children that both evaluate to true and false for at least
  * one example.
  */
  void getLeaves(const std::vector<Node>& vals,
                 bool pol,
                 std::map<int, std::vector<Node> >& v);
  /** is this trie empty? */
  bool isEmpty() { return d_term.isNull() && d_children.empty(); }
  /** clear this trie */
  void clear()
  {
    d_term = Node::null();
    d_children.clear();
  }

 private:
  /** the term at this node */
  Node d_term;
  /** the children nodes of this trie */
  std::map<Node, SubsumeTrie> d_children;
  /** helper function for above functions */
  Node addTermInternal(Node t,
                       const std::vector<Node>& vals,
                       bool pol,
                       std::vector<Node>& subsumed,
                       bool spol,
                       unsigned index,
                       int status,
                       bool checkExistsOnly,
                       bool checkSubsume);
  /** helper function for above functions */
  void getLeavesInternal(const std::vector<Node>& vals,
                         bool pol,
                         std::map<int, std::vector<Node> >& v,
                         unsigned index,
                         int status);
};

/** Sygus unification utility
 *
 * This utility implements synthesis-by-unification style approaches for a
 * single function to synthesize f.
 * These approaches include a combination of:
 * (1) Decision tree learning, inspired by Alur et al TACAS 2017,
 * (2) Divide-and-conquer via string concatenation.
 *
 * This class maintains:
 * (1) A "strategy tree" based on the syntactic restrictions for f that is
 * constructed during initialize,
 * (2) A set of input/output examples that are the specification for f. This
 * can be updated via calls to resetExmaples/addExamples,
 * (3) A set of terms that have been enumerated for enumerators. This can be
 * updated via calls to notifyEnumeration.
 *
 * Based on the above, solutions can be constructed via calls to
 * constructSolution.
 */
class SygusUnif
{
  friend class UnifContext;

 public:
  SygusUnif();
  ~SygusUnif();

  /** initialize
   *
   * This initializes this class with function-to-synthesize f. We also call
   * f the candidate variable.
   *
   * This call constructs a set of enumerators for the relevant subfields of
   * the grammar of f and adds them to enums. These enumerators are those that
   * should be later given to calls to notifyEnumeration below.
   *
   * This also may result in lemmas being added to lemmas,
   * which correspond to static symmetry breaking predicates (for example,
   * those that exclude ITE from enumerators whose role is enum_io when the
   * strategy is ITE_strat).
   */
  void initialize(QuantifiersEngine* qe,
                  Node f,
                  std::vector<Node>& enums,
                  std::vector<Node>& lemmas);
  /** reset examples
   *
   * Reset the specification for f.
   *
   * Notice that this does not reset the
   */
  void resetExamples();
  /** add example
   *
   * This adds input -> output to the specification for f. The arity of
   * input should be equal to the number of arguments in the sygus variable
   * list of the grammar of f. That is, if we are searching for solutions for f
   * of the form (lambda v1...vn. t), then the arity of input should be n.
   */
  void addExample(const std::vector<Node>& input, Node output);

  /**
   * Notify that the value v has been enumerated for enumerator e. This call
   * will add lemmas L to lemmas such that L entails e^M != v for all future
   * models M.
   */
  void notifyEnumeration(Node e, Node v, std::vector<Node>& lemmas);
  /** construct solution
   *
   * This attempts to construct a solution based on the current set of
   * enumerated values. Returns null if it cannot (for example, if the
   * set of enumerated values is insufficient, or if a non-deterministic
   * strategy aborts).
   */
  Node constructSolution();

 private:
  /** reference to quantifier engine */
  QuantifiersEngine* d_qe;
  /** sygus term database of d_qe */
  quantifiers::TermDbSygus* d_tds;
  /** true and false nodes */
  Node d_true;
  Node d_false;
  /** input of I/O examples */
  std::vector<std::vector<Node> > d_examples;
  /** output of I/O examples */
  std::vector<Node> d_examples_out;

  //-----------------------debug printing
  /** print ind indentations on trace c */
  static void indent(const char* c, int ind);
  /** print (pol ? vals : !vals) as a bit-string on trace c  */
  static void print_val(const char* c,
                        std::vector<Node>& vals,
                        bool pol = true);
  //-----------------------end debug printing

  //------------------------------ representation of a enumeration strategy
  /**
  * This class stores information regarding an enumerator, including:
  * - Information regarding the role of this enumerator (see EnumRole), its
  * parent, whether it is templated, its slave enumerators, and so on, and
  * - A database of values that have been enumerated for this enumerator.
  *
  * We say an enumerator is a master enumerator if it is the variable that
  * we use to enumerate values for its sort. Master enumerators may have
  * (possibly multiple) slave enumerators, stored in d_enum_slave. We make
  * the first enumerator for each type a master enumerator, and any additional
  * ones slaves of it.
  */
  class EnumInfo
  {
   public:
    EnumInfo() : d_role(enum_io), d_is_conditional(false) {}
    /** initialize this class
    *
    * c is the parent function-to-synthesize
    * role is the "role" the enumerator plays in the high-level strategy,
    *   which is one of enum_* above.
    */
    void initialize(EnumRole role);
    /** is this enumerator associated with a template? */
    bool isTemplated() { return !d_template.isNull(); }
    /** set conditional
      *
      * This flag is set to true if this enumerator may not apply to all
      * input/output examples. For example, if this enumerator is used
      * as an output value beneath a conditional in an instance of strat_ITE,
      * then this enumerator is conditional.
      */
    void setConditional() { d_is_conditional = true; }
    /** is conditional */
    bool isConditional() { return d_is_conditional; }
    /** get the role of this enumerator */
    EnumRole getRole() { return d_role; }
    /** enumerator template
    *
    * If d_template non-null, enumerated values V are immediately transformed to
    * d_template { d_template_arg -> V }.
    */
    Node d_template;
    Node d_template_arg;
    /**
    * Slave enumerators of this enumerator. These are other enumerators that
    * have the same type, but a different role in the strategy tree. We
    * generally
    * only use one enumerator per type, and hence these slaves are notified when
    * values are enumerated for this enumerator.
    */
    std::vector<Node> d_enum_slave;

    //---------------------------enumerated values
    /**
    * Notify this class that the term v has been enumerated for this enumerator.
    * Its evaluation under the set of examples in pbe are stored in results.
    */
    void addEnumValue(SygusUnif* pbe, Node v, std::vector<Node>& results);
    /**
    * Notify this class that slv is the complete solution to the synthesis
    * conjecture. This occurs rarely, for instance, when during an ITE strategy
    * we find that a single enumerated term covers all examples.
    */
    void setSolved(Node slv);
    /** Have we been notified that a complete solution exists? */
    bool isSolved() { return !d_enum_solved.isNull(); }
    /** Get the complete solution to the synthesis conjecture. */
    Node getSolved() { return d_enum_solved; }
    /** Values that have been enumerated for this enumerator */
    std::vector<Node> d_enum_vals;
    /**
      * This either stores the values of f( I ) for inputs
      * or the value of f( I ) = O if d_role==enum_io
      */
    std::vector<std::vector<Node> > d_enum_vals_res;
    /**
    * The set of values in d_enum_vals that have been "subsumed" by others
    * (see SubsumeTrie for explanation of subsumed).
    */
    std::vector<Node> d_enum_subsume;
    /** Map from values to their index in d_enum_vals. */
    std::map<Node, unsigned> d_enum_val_to_index;
    /**
    * A subsumption trie containing the values in d_enum_vals. Depending on the
    * role of this enumerator, values may either be added to d_term_trie with
    * subsumption (if role=enum_io), or without (if role=enum_ite_condition or
    * enum_concat_term).
    */
    SubsumeTrie d_term_trie;
    //---------------------------end enumerated values
   private:
    /**
      * Whether an enumerated value for this conjecture has solved the entire
      * conjecture.
      */
    Node d_enum_solved;
    /** the role of this enumerator (one of enum_* above). */
    EnumRole d_role;
    /** is this enumerator conditional */
    bool d_is_conditional;
  };
  /** maps enumerators to the information above */
  std::map<Node, EnumInfo> d_einfo;

  class CandidateInfo;
  class EnumTypeInfoStrat;

  /** represents a node in the strategy graph
   *
   * It contains a list of possible strategies which are tried during calls
   * to constructSolution.
   */
  class StrategyNode
  {
   public:
    StrategyNode() {}
    ~StrategyNode();
    /** the set of strategies to try at this node in the strategy graph */
    std::vector<EnumTypeInfoStrat*> d_strats;
  };

  /** stores enumerators and strategies for a SyGuS datatype type */
  class EnumTypeInfo
  {
   public:
    EnumTypeInfo() : d_parent(NULL) {}
    /** the parent candidate info (see below) */
    CandidateInfo* d_parent;
    /** the type that this information is for */
    TypeNode d_this_type;
    /** map from enum roles to enumerators for this type */
    std::map<EnumRole, Node> d_enum;
    /** map from node roles to strategy nodes */
    std::map<NodeRole, StrategyNode> d_snodes;
  };

  /** stores strategy and enumeration information for a function-to-synthesize
   */
  class CandidateInfo
  {
   public:
    CandidateInfo() : d_check_sol(false), d_cond_count(0) {}
    Node d_this_candidate;
    /**
     * The root sygus datatype for the function-to-synthesize,
     * which encodes the overall syntactic restrictions on the space
     * of solutions.
     */
    TypeNode d_root;
    /** Info for sygus datatype type occurring in a field of d_root */
    std::map<TypeNode, EnumTypeInfo> d_tinfo;
    /** list of all enumerators for the function-to-synthesize */
    std::vector<Node> d_esym_list;
    /**
     * Maps sygus datatypes to their search enumerator. This is the (single)
     * enumerator of that type that we enumerate values for.
     */
    std::map<TypeNode, Node> d_search_enum;
    bool d_check_sol;
    unsigned d_cond_count;
    Node d_solution;
    void initialize(Node c);
    void initializeType(TypeNode tn);
    Node getRootEnumerator();
  };
  /** the candidate for this class */
  Node d_candidate;
  /** maps a function-to-synthesize to the above information */
  CandidateInfo d_cinfo;

  //------------------------------ representation of an enumeration strategy
  /** domain-specific enumerator exclusion techniques
   *
   * Returns true if the value v for x can be excluded based on a
   * domain-specific exclusion technique like the ones below.
   *
   * results : the values of v under the input examples,
   * ei : the enumerator information for x,
   * exp : if this function returns true, then exp contains a (possibly
   * generalize) explanation for why v can be excluded.
   */
  bool getExplanationForEnumeratorExclude(Node x,
                                          Node v,
                                          std::vector<Node>& results,
                                          EnumInfo& ei,
                                          std::vector<Node>& exp);
  /** returns true if we can exlude values of x based on negative str.contains
   *
   * Values v for x may be excluded if we realize that the value of v under the
   * substitution for some input example will never be contained in some output
   * example. For details on this technique, see NegContainsSygusInvarianceTest
   * in sygus_invariance.h.
   *
   * This function depends on whether x is being used to enumerate values
   * for any node that is conditional in the strategy graph. For example,
   * nodes that are children of ITE strategy nodes are conditional. If any node
   * is conditional, then this function returns false.
   */
  bool useStrContainsEnumeratorExclude(Node x, EnumInfo& ei);
  /** cache for the above function */
  std::map<Node, bool> d_use_str_contains_eexc;

  //------------------------------ strategy registration
  /** collect enumerator types
   *
   * This builds the strategy for enumerated values of type tn for the given
   * role of nrole, for solutions to function-to-synthesize of this class.
   */
  void collectEnumeratorTypes(TypeNode tn, NodeRole nrole);
  /** register enumerator
   *
   * This registers that et is an enumerator of type tn, having enumerator
   * role enum_role.
   *
   * inSearch is whether we will enumerate values based on this enumerator.
   * A strategy node is represented by a (enumerator, node role) pair. Hence,
   * we may use enumerators for which this flag is false to represent strategy
   * nodes that have child strategies.
   */
  void registerEnumerator(Node et,
                          TypeNode tn,
                          EnumRole enum_role,
                          bool inSearch);
  /** infer template */
  bool inferTemplate(unsigned k,
                     Node n,
                     std::map<Node, unsigned>& templ_var_index,
                     std::map<unsigned, unsigned>& templ_injection);
  /** static learn redundant operators
   *
   * This learns static lemmas for pruning enumerative space based on the
   * strategy for the function-to-synthesize of this class, and stores these
   * into lemmas.
   */
  void staticLearnRedundantOps(std::vector<Node>& lemmas);
  /** helper for static learn redundant operators
   *
   * (e, nrole) specify the strategy node in the graph we are currently
   * analyzing, visited stores the nodes we have already visited.
   *
   * This method builds the mapping needs_cons, which maps (master) enumerators
   * to a map from the constructors that it needs.
   *
   * ind is the depth in the strategy graph we are at (for debugging).
   *
   * isCond is whether the current enumerator is conditional (beneath a
   * conditional of an strat_ITE strategy).
   */
  void staticLearnRedundantOps(
      Node e,
      NodeRole nrole,
      std::map<Node, std::map<NodeRole, bool> >& visited,
      std::map<Node, std::map<unsigned, bool> >& needs_cons,
      int ind,
      bool isCond);
  //------------------------------ end strategy registration

  /** helper function for construct solution.
   *
   * Construct a solution based on enumerator e for function-to-synthesize of
   * this class with node role nrole in context x.
   *
   * ind is the term depth of the context (for debugging).
   */
  Node constructSolution(Node e, NodeRole nrole, UnifContext& x, int ind);
  /** Heuristically choose the best solved term from solved in context x,
   * currently return the first. */
  Node constructBestSolvedTerm(std::vector<Node>& solved, UnifContext& x);
  /** Heuristically choose the best solved string term  from solved in context
   * x, currently  return the first. */
  Node constructBestStringSolvedTerm(std::vector<Node>& solved, UnifContext& x);
  /** Heuristically choose the best solved conditional term  from solved in
   * context x, currently random */
  Node constructBestSolvedConditional(std::vector<Node>& solved,
                                      UnifContext& x);
  /** Heuristically choose the best conditional term  from conds in context x,
   * currently random */
  Node constructBestConditional(std::vector<Node>& conds, UnifContext& x);
  /** Heuristically choose the best string to concatenate from strs to the
  * solution in context x, currently random
  * incr stores the vector of indices that are incremented by this solution in
  * example outputs.
  * total_inc[x] is the sum of incr[x] for each x in strs.
  */
  Node constructBestStringToConcat(std::vector<Node> strs,
                                   std::map<Node, unsigned> total_inc,
                                   std::map<Node, std::vector<unsigned> > incr,
                                   UnifContext& x);
  //------------------------------ end constructing solutions

  /** represents a strategy for a SyGuS datatype type
   *
   * This represents a possible strategy to apply when processing a strategy
   * node in constructSolution. When applying the strategy represented by this
   * class, we may make recursive calls to the children of the strategy,
   * given in d_cenum. If all recursive calls to constructSolution for these
   * children are successful, say:
   *   constructSolution( d_cenum[1], ... ) = t1,
   *    ...,
   *   constructSolution( d_cenum[n], ... ) = tn,
   * Then, the solution returned by this strategy is
   *   d_sol_templ * { d_sol_templ_args -> (t1,...,tn) }
   * where * is application of substitution.
   */
  class EnumTypeInfoStrat
  {
   public:
    /** the type of strategy this represents */
    StrategyType d_this;
    /** the sygus datatype constructor that induced this strategy
     *
     * For example, this may be a sygus datatype whose sygus operator is ITE,
     * if the strategy type above is strat_ITE.
     */
    Node d_cons;
    /** children of this strategy */
    std::vector<std::pair<Node, NodeRole> > d_cenum;
    /** the arguments for the (templated) solution */
    std::vector<Node> d_sol_templ_args;
    /** the template for the solution */
    Node d_sol_templ;
    /** Returns true if argument is valid strategy in context x */
    bool isValid(SygusUnif* pbe, UnifContext& x);
  };
};

} /* CVC4::theory::quantifiers namespace */
} /* CVC4::theory namespace */
} /* CVC4 namespace */

#endif /* __CVC4__THEORY__QUANTIFIERS__SYGUS_UNIF_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback