summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/sygus/sygus_pbe.h
blob: 3738c40b7708d18152685fe64df29f45a7b7f506 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*********************                                                        */
/*! \file sygus_pbe.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Haniel Barbosa
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief utility for processing programming by examples synthesis conjectures
 **/

#include "cvc4_private.h"

#ifndef __CVC4__THEORY__QUANTIFIERS__SYGUS_PBE_H
#define __CVC4__THEORY__QUANTIFIERS__SYGUS_PBE_H

#include "context/cdhashmap.h"
#include "theory/quantifiers/sygus/sygus_module.h"
#include "theory/quantifiers/sygus/sygus_unif_io.h"

namespace CVC4 {
namespace theory {
namespace quantifiers {

class SynthConjecture;

/** SygusPbe
 *
 * This class implements optimizations that target synthesis conjectures
 * that are in Programming-By-Examples (PBE) form.
 *
 * [EX#1] An example of a synthesis conjecture in PBE form is :
 * exists f. forall x.
 * ( x = 0 => f( x ) = 2 ) ^ ( x = 5 => f( x ) = 7 ) ^ ( x = 6 => f( x ) = 8 )
 *
 * We say that the above conjecture has I/O examples (0)->2, (5)->7, (6)->8.
 *
 * Internally, this class does the following for SyGuS inputs:
 *
 * (1) Infers whether the input conjecture is in PBE form or not.
 * (2) Based on this information and on the syntactic restrictions, it
 *     devises a strategy for enumerating terms and construction solutions,
 *     which is inspired by Alur et al. "Scaling Enumerative Program Synthesis
 *     via Divide and Conquer" TACAS 2017. In particular, it may consider
 *     strategies for constructing decision trees when the grammar permits ITEs
 *     and a strategy for divide-and-conquer string synthesis when the grammar
 *     permits string concatenation. This is managed through the SygusUnif
 *     utilities, d_sygus_unif.
 * (3) It makes (possibly multiple) calls to
 *     TermDatabaseSygus::regstierEnumerator(...) based
 *     on the strategy, which inform the rest of the system to enumerate values
 *     of particular types in the grammar through use of fresh variables which
 *     we call "enumerators".
 *
 * Points (1)-(3) happen within a call to SygusPbe::initialize(...).
 *
 * Notice that each enumerator is associated with a single
 * function-to-synthesize, but a function-to-sythesize may be mapped to multiple
 * enumerators. Some public functions of this class expect an enumerator as
 * input, which we map to a function-to-synthesize via
 * TermDatabaseSygus::getSynthFunFor(e).
 *
 * An enumerator is initially "active" but may become inactive if the
 * enumeration exhausts all possible values in the datatype corresponding to
 * syntactic restrictions for it. The search may continue unless all enumerators
 * become inactive.
 *
 * (4) During search, the extension of quantifier-free datatypes procedure for
 *     SyGuS datatypes may ask this class whether current candidates can be
 *     discarded based on inferring when two candidate solutions are equivalent
 *     up to examples. For example, the candidate solutions:
 *     f = \x ite( x < 0, x+1, x ) and f = \x x
 *     are equivalent up to examples on the above conjecture, since they have
 * the same value on the points x = 0,5,6. Hence, we need only consider one of
 *     them. The interface for querying this is
 *       SygusPbe::addSearchVal(...).
 *     For details, see Reynolds et al. SYNT 2017.
 *
 * (5) When the extension of quantifier-free datatypes procedure for SyGuS
 *     datatypes terminates with a model, the parent of this class calls
 *     SygusPbe::getCandidateList(...), where this class returns the list
 *     of active enumerators.
 * (6) The parent class subsequently calls
 *     SygusPbe::constructValues(...), which informs this class that new
 *     values have been enumerated for active enumerators, as indicated by the
 *     current model. This call also requests that based on these
 *     newly enumerated values, whether this class is now able to construct a
 *     solution based on the high-level strategy (stored in d_sygus_unif).
 *
 * This class is not designed to work in incremental mode, since there is no way
 * to specify incremental problems in SyguS.
 */
class SygusPbe : public SygusModule
{
 public:
  SygusPbe(QuantifiersEngine* qe, SynthConjecture* p);
  ~SygusPbe();

  /** initialize this class
  *
  * This function may add lemmas to the vector lemmas corresponding
  * to initial lemmas regarding static analysis of enumerators it
  * introduced. For example, we may say that the top-level symbol
  * of an enumerator is not ITE if it is being used to construct
  * return values for decision trees.
  */
  bool initialize(Node n,
                  const std::vector<Node>& candidates,
                  std::vector<Node>& lemmas) override;
  /** get term list
   *
  * Adds all active enumerators associated with functions-to-synthesize in
  * candidates to terms.
  */
  void getTermList(const std::vector<Node>& candidates,
                   std::vector<Node>& terms) override;
  /**
   * PBE allows partial models to handle multiple enumerators if we are not
   * using a strictly fair enumeration strategy.
   */
  bool allowPartialModel() override;
  /** construct candidates
   *
   * This function attempts to use unification-based approaches for constructing
   * solutions for all functions-to-synthesize (indicated by candidates). These
   * approaches include decision tree learning and a divide-and-conquer
   * algorithm based on string concatenation.
   *
   * Calls to this function are such that terms is the list of active
   * enumerators (returned by getTermList), and term_values are their current
   * model values. This function registers { terms -> terms_values } in
   * the database of values that have been enumerated, which are in turn used
   * for constructing candidate solutions when possible.
   *
   * This function also excludes models where (terms = terms_values) by adding
   * blocking clauses to lems. For example, for grammar:
   *   A -> A+A | x | 1 | 0
   * and a call where terms = { d } and term_values = { +( x, 1 ) }, it adds:
   *   ~G V ~is_+( d ) V ~is_x( d.1 ) V ~is_1( d.2 )
   * to lems, where G is active guard of the enumerator d (see
   * TermDatabaseSygus::getActiveGuardForEnumerator). This blocking clause
   * indicates that d should not be given the model value +( x, 1 ) anymore,
   * since { d -> +( x, 1 ) } has now been added to the database of this class.
   */
  bool constructCandidates(const std::vector<Node>& terms,
                           const std::vector<Node>& term_values,
                           const std::vector<Node>& candidates,
                           std::vector<Node>& candidate_values,
                           std::vector<Node>& lems) override;
  /** is PBE enabled for any enumerator? */
  bool isPbe() { return d_is_pbe; }
  /** is the enumerator e associated with I/O example pairs? */
  bool hasExamples(Node e);
  /** get number of I/O example pairs for enumerator e */
  unsigned getNumExamples(Node e);
  /** get the input arguments for i^th I/O example for e, which is added to the
   * vector ex */
  void getExample(Node e, unsigned i, std::vector<Node>& ex);
  /** get the output value of the i^th I/O example for enumerator e */
  Node getExampleOut(Node e, unsigned i);

  /** add the search val
  * This function is called by the extension of quantifier-free datatypes
  * procedure for SyGuS datatypes when we are considering a value of
  * enumerator e of sygus type tn whose analog in the signature of builtin
  * theory is bvr.
  *
  * For example, bvr = x + 1 when e is the datatype value Plus( x(), One() ) and
  * tn is a sygus datatype that encodes a subsignature of the integers.
  *
  * This returns either:
  * - A SyGuS term whose analog is equivalent to bvr up to examples
  *   In the above example,
  *   it may return a term t of the form Plus( One(), x() ), such that this
  *   function was previously called with t as input.
  * - e, indicating that no previous terms are equivalent to e up to examples.
  */
  Node addSearchVal(TypeNode tn, Node e, Node bvr);
  /** evaluate builtin
  * This returns the evaluation of bn on the i^th example for the
  * function-to-synthesis
  * associated with enumerator e. If there are not at least i examples, it
  * returns the rewritten form of bn.
  * For example, if bn = x+5, e is an enumerator for f in the above example
  * [EX#1], then
  *   evaluateBuiltin( tn, bn, e, 0 ) = 7
  *   evaluateBuiltin( tn, bn, e, 1 ) = 9
  *   evaluateBuiltin( tn, bn, e, 2 ) = 10
  */
  Node evaluateBuiltin(TypeNode tn, Node bn, Node e, unsigned i);

 private:
  /** true and false nodes */
  Node d_true;
  Node d_false;
  /** is this a PBE conjecture for any function? */
  bool d_is_pbe;
  /** for each candidate variable f (a function-to-synthesize), whether the
  * conjecture is purely PBE for that variable
  * In other words, all occurrences of f are guarded by equalities that
  * constraint its arguments to constants.
  */
  std::map<Node, bool> d_examples_invalid;
  /** for each candidate variable (function-to-synthesize), whether the
  * conjecture is purely PBE for that variable.
  * An example of a conjecture for which d_examples_invalid is false but
  * d_examples_out_invalid is true is:
  *   exists f. forall x. ( x = 0 => f( x ) > 2 )
  * another example is:
  *   exists f. forall x. ( ( x = 0 => f( x ) = 2 ) V ( x = 3 => f( x ) = 3 ) )
  * since the formula is not a conjunction (the example values are not
  * entailed).
  * However, the domain of f in both cases is finite, which can be used for
  * search space pruning.
  */
  std::map<Node, bool> d_examples_out_invalid;
  /**
   * Map from candidates to sygus unif utility. This class implements
   * the core algorithm (e.g. decision tree learning) that this module relies
   * upon.
   */
  std::map<Node, SygusUnifIo> d_sygus_unif;
  /**
   * map from candidates to the list of enumerators that are being used to
   * build solutions for that candidate by the above utility.
   */
  std::map<Node, std::vector<Node> > d_candidate_to_enum;
  /** reverse map of above */
  std::map<Node, Node> d_enum_to_candidate;
  /** for each candidate variable (function-to-synthesize), input of I/O
   * examples */
  std::map<Node, std::vector<std::vector<Node> > > d_examples;
  /** for each candidate variable (function-to-synthesize), output of I/O
   * examples */
  std::map<Node, std::vector<Node> > d_examples_out;
  /** the list of example terms
   * For the example [EX#1] above, this is f( 0 ), f( 5 ), f( 6 )
   */
  std::map<Node, std::vector<Node> > d_examples_term;
  /**
   * Map from example input terms to their output, for example [EX#1] above,
   * this is { f( 0 ) -> 2, f( 5 ) -> 7, f( 6 ) -> 8 }.
   */
  std::map<Node, Node> d_exampleTermMap;
  /** collect the PBE examples in n
   * This is called on the input conjecture, and will populate the above
   * vectors, where hasPol/pol denote the polarity of n in the conjecture. This
   * function returns false if it finds two examples that are contradictory.
   */
  bool collectExamples(Node n,
                       std::map<Node, bool>& visited,
                       bool hasPol,
                       bool pol);

  //--------------------------------- PBE search values
  /**
   * This class is an index of candidate solutions for PBE synthesis and their
   * (concrete) evaluation on the set of input examples. For example, if the
   * set of input examples for (x,y) is (0,1), (1,3), then:
   *   term x is indexed by 0,1
   *   term x+y is indexed by 1,4
   *   term 0 is indexed by 0,0.
   */
  class PbeTrie
  {
   public:
    PbeTrie() {}
    ~PbeTrie() {}
    /** the children for this node in the trie */
    std::map<Node, PbeTrie> d_children;
    /** clear this trie */
    void clear() { d_children.clear(); }
    /**
     * Add term b whose value on examples is exOut to the trie. Return
     * the first term registered to this trie whose evaluation was exOut.
     */
    Node addTerm(Node b, const std::vector<Node>& exOut);
  };
  /** trie of candidate solutions tried
  * This stores information for each (enumerator, type),
  * where type is a type in the grammar of the space of solutions for a subterm
  * of e. This is used for symmetry breaking in quantifier-free reasoning
  * about SyGuS datatypes.
  */
  std::map<Node, std::map<TypeNode, PbeTrie> > d_pbe_trie;
  //--------------------------------- end PBE search values
};

} /* namespace CVC4::theory::quantifiers */
} /* namespace CVC4::theory */
} /* namespace CVC4 */

#endif
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback