summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/model_builder.cpp
blob: a5ec16e3a00aac97c2539c5289a7e44c882b5d37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
/*********************                                                        */
/*! \file model_builder.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Tim King
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2016 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Implementation of model builder class
 **/

#include "theory/quantifiers/model_builder.h"

#include "options/quantifiers_options.h"
#include "theory/quantifiers/first_order_model.h"
#include "theory/quantifiers/model_engine.h"
#include "theory/quantifiers/quantifiers_attributes.h"
#include "theory/quantifiers/term_database.h"
#include "theory/quantifiers/trigger.h"
#include "theory/theory_engine.h"
#include "theory/uf/equality_engine.h"
#include "theory/uf/theory_uf.h"
#include "theory/uf/theory_uf_model.h"
#include "theory/uf/theory_uf_strong_solver.h"

using namespace std;
using namespace CVC4;
using namespace CVC4::kind;
using namespace CVC4::context;
using namespace CVC4::theory;
using namespace CVC4::theory::quantifiers;


QModelBuilder::QModelBuilder( context::Context* c, QuantifiersEngine* qe ) :
TheoryEngineModelBuilder( qe->getTheoryEngine() ), d_curr_model( c, NULL ), d_qe( qe ){

}

bool QModelBuilder::optUseModel() {
  return options::mbqiMode()!=MBQI_NONE || options::fmfBound();
}

void QModelBuilder::preProcessBuildModel(TheoryModel* m, bool fullModel) {
  preProcessBuildModelStd( m, fullModel );
}

void QModelBuilder::preProcessBuildModelStd(TheoryModel* m, bool fullModel) {
  if( !fullModel ){
    if( options::fmfEmptySorts() || options::fmfFunWellDefinedRelevant() ){
      FirstOrderModel * fm = (FirstOrderModel*)m;
      //traverse equality engine
      std::map< TypeNode, bool > eqc_usort;
      eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( fm->d_equalityEngine );
      while( !eqcs_i.isFinished() ){
        TypeNode tr = (*eqcs_i).getType();
        eqc_usort[tr] = true;
        ++eqcs_i;
      }
      //look at quantified formulas
      for( unsigned i=0; i<fm->getNumAssertedQuantifiers(); i++ ){
        Node q = fm->getAssertedQuantifier( i, true );
        if( fm->isQuantifierActive( q ) ){
          //check if any of these quantified formulas can be set inactive
          if( options::fmfEmptySorts() ){
            for( unsigned i=0; i<q[0].getNumChildren(); i++ ){
              TypeNode tn = q[0][i].getType();
              //we are allowed to assume the type is empty
              if( tn.isSort() && eqc_usort.find( tn )==eqc_usort.end() ){
                Trace("model-engine-debug") << "Empty domain quantified formula : " << q << std::endl;
                fm->setQuantifierActive( q, false );
              }
            }
          }else if( options::fmfFunWellDefinedRelevant() ){
            if( q[0].getNumChildren()==1 ){
              TypeNode tn = q[0][0].getType();
              if( tn.getAttribute(AbsTypeFunDefAttribute()) ){
                //Trace("model-engine-debug2") << "...possible irrelevant function def : " << q << ", #rr = " << d_quantEngine->getModel()->d_rep_set.getNumRelevantGroundReps( tn ) << std::endl;
                //we are allowed to assume the introduced type is empty
                if( eqc_usort.find( tn )==eqc_usort.end() ){
                  Trace("model-engine-debug") << "Irrelevant function definition : " << q << std::endl;
                  fm->setQuantifierActive( q, false );
                }
              }
            }
          }
        }
      }
    }
  }
}

void QModelBuilder::debugModel( FirstOrderModel* fm ){
  //debug the model: cycle through all instantiations for all quantifiers, report ones that are not true
  if( Trace.isOn("quant-check-model") ){
    Trace("quant-check-model") << "Testing quantifier instantiations..." << std::endl;
    int tests = 0;
    int bad = 0;
    for( unsigned i=0; i<fm->getNumAssertedQuantifiers(); i++ ){
      Node f = fm->getAssertedQuantifier( i );
      std::vector< Node > vars;
      for( unsigned j=0; j<f[0].getNumChildren(); j++ ){
        vars.push_back( f[0][j] );
      }
      RepSetIterator riter( d_qe, &(fm->d_rep_set) );
      if( riter.setQuantifier( f ) ){
        while( !riter.isFinished() ){
          tests++;
          std::vector< Node > terms;
          for( int k=0; k<riter.getNumTerms(); k++ ){
            terms.push_back( riter.getCurrentTerm( k ) );
          }
          Node n = d_qe->getInstantiation( f, vars, terms );
          Node val = fm->getValue( n );
          if( val!=fm->d_true ){
            Trace("quant-check-model") << "*******  Instantiation " << n << " for " << std::endl;
            Trace("quant-check-model") << "         " << f << std::endl;
            Trace("quant-check-model") << "         Evaluates to " << val << std::endl;
            bad++;
          }
          riter.increment();
        }
        Trace("quant-check-model") << "Tested " << tests << " instantiations";
        if( bad>0 ){
          Trace("quant-check-model") << ", " << bad << " failed" << std::endl;
        }
        Trace("quant-check-model") << "." << std::endl;
      }else{
        if( riter.isIncomplete() ){
          Trace("quant-check-model") << "Warning: Could not test quantifier " << f << std::endl;
        }
      }
    }
  }
}



bool TermArgBasisTrie::addTerm2( FirstOrderModel* fm, Node n, int argIndex ){
  if( argIndex<(int)n.getNumChildren() ){
    Node r;
    if( n[ argIndex ].getAttribute(ModelBasisAttribute()) ){
      r = n[ argIndex ];
    }else{
      r = fm->getRepresentative( n[ argIndex ] );
    }
    std::map< Node, TermArgBasisTrie >::iterator it = d_data.find( r );
    if( it==d_data.end() ){
      d_data[r].addTerm2( fm, n, argIndex+1 );
      return true;
    }else{
      return it->second.addTerm2( fm, n, argIndex+1 );
    }
  }else{
    return false;
  }
}


QModelBuilderIG::QModelBuilderIG( context::Context* c, QuantifiersEngine* qe ) :
QModelBuilder( c, qe ), d_basisNoMatch( c ) {

}

Node QModelBuilderIG::getCurrentUfModelValue( FirstOrderModel* fm, Node n, std::vector< Node > & args, bool partial ) {
  return n;
}

void QModelBuilderIG::processBuildModel( TheoryModel* m, bool fullModel ) {
  FirstOrderModel* f = (FirstOrderModel*)m;
  FirstOrderModelIG* fm = f->asFirstOrderModelIG();
  Trace("model-engine-debug") << "Process build model, fullModel = " << fullModel << " " << optUseModel() << std::endl;
  if( fullModel ){
    Assert( d_curr_model==fm );
    //update models
    for( std::map< Node, uf::UfModelTree >::iterator it = fm->d_uf_model_tree.begin(); it != fm->d_uf_model_tree.end(); ++it ){
      it->second.update( fm );
      Trace("model-func") << "QModelBuilder: Make function value from tree " << it->first << std::endl;
      //construct function values
      fm->d_uf_models[ it->first ] = it->second.getFunctionValue( "$x" );
    }
    TheoryEngineModelBuilder::processBuildModel( m, fullModel );
    //mark that the model has been set
    fm->markModelSet();
    //debug the model
    debugModel( fm );
  }else{
    d_curr_model = fm;
    d_didInstGen = false;
    //reset the internal information
    reset( fm );
    //only construct first order model if optUseModel() is true
    if( optUseModel() ){
      Trace("model-engine-debug") << "Initializing " << fm->getNumAssertedQuantifiers() << " quantifiers..." << std::endl;
      //check if any quantifiers are un-initialized
      for( unsigned i=0; i<fm->getNumAssertedQuantifiers(); i++ ){
        Node q = fm->getAssertedQuantifier( i );
        if( d_qe->getModel()->isQuantifierActive( q ) ){
          int lems = initializeQuantifier( q, q );
          d_statistics.d_init_inst_gen_lemmas += lems;
          d_addedLemmas += lems;
          if( d_qe->inConflict() ){
            break;
          }
        }
      }
      if( d_addedLemmas>0 ){
        Trace("model-engine") << "Initialize, Added Lemmas = " << d_addedLemmas << std::endl;
      }else{
        Assert( !d_qe->inConflict() );
        //initialize model
        fm->initialize();
        //analyze the functions
        Trace("model-engine-debug") << "Analyzing model..." << std::endl;
        analyzeModel( fm );
        //analyze the quantifiers
        Trace("model-engine-debug") << "Analyzing quantifiers..." << std::endl;
        d_uf_prefs.clear();
        for( unsigned i=0; i<fm->getNumAssertedQuantifiers(); i++ ){
          Node q = fm->getAssertedQuantifier( i );
          analyzeQuantifier( fm, q );
        }

        //if applicable, find exceptions to model via inst-gen
        if( options::fmfInstGen() ){
          d_didInstGen = true;
          d_instGenMatches = 0;
          d_numQuantSat = 0;
          d_numQuantInstGen = 0;
          d_numQuantNoInstGen = 0;
          d_numQuantNoSelForm = 0;
          //now, see if we know that any exceptions via InstGen exist
          Trace("model-engine-debug") << "Perform InstGen techniques for quantifiers..." << std::endl;
          for( unsigned i=0; i<fm->getNumAssertedQuantifiers(); i++ ){
            Node f = fm->getAssertedQuantifier( i );
            if( d_qe->getModel()->isQuantifierActive( f ) ){
              int lems = doInstGen( fm, f );
              d_statistics.d_inst_gen_lemmas += lems;
              d_addedLemmas += lems;
              //temporary
              if( lems>0 ){
                d_numQuantInstGen++;
              }else if( hasInstGen( f ) ){
                d_numQuantNoInstGen++;
              }else{
                d_numQuantNoSelForm++;
              }
              if( d_qe->inConflict() || ( options::fmfInstGenOneQuantPerRound() && lems>0 ) ){
                break;
              }
            }else{
              d_numQuantSat++;
            }
          }
          Trace("model-engine-debug") << "Quantifiers sat/ig/n-ig/null " << d_numQuantSat << " / " << d_numQuantInstGen << " / ";
          Trace("model-engine-debug") << d_numQuantNoInstGen << " / " << d_numQuantNoSelForm << std::endl;
          Trace("model-engine-debug") << "Inst-gen # matches examined = " << d_instGenMatches << std::endl;
          if( Trace.isOn("model-engine") ){
            if( d_addedLemmas>0 ){
              Trace("model-engine") << "InstGen, added lemmas = " << d_addedLemmas << std::endl;
            }else{
              Trace("model-engine") << "No InstGen lemmas..." << std::endl;
            }
          }
        }
        //construct the model if necessary
        if( d_addedLemmas==0 ){
          //if no immediate exceptions, build the model
          //  this model will be an approximation that will need to be tested via exhaustive instantiation
          Trace("model-engine-debug") << "Building model..." << std::endl;
          //build model for UF
          for( std::map< Node, uf::UfModelTree >::iterator it = fm->d_uf_model_tree.begin(); it != fm->d_uf_model_tree.end(); ++it ){
            Trace("model-engine-debug-uf") << "Building model for " << it->first << "..." << std::endl;
            constructModelUf( fm, it->first );
          }
          Trace("model-engine-debug") << "Done building models." << std::endl;
        }
      }
    }
  }
}

int QModelBuilderIG::initializeQuantifier( Node f, Node fp ){
  if( d_quant_basis_match_added.find( f )==d_quant_basis_match_added.end() ){
    //create the basis match if necessary
    if( d_quant_basis_match.find( f )==d_quant_basis_match.end() ){
      Trace("inst-fmf-init") << "Initialize " << f << std::endl;
      //add the model basis instantiation
      // This will help produce the necessary information for model completion.
      // We do this by extending distinguish ground assertions (those
      //   containing terms with "model basis" attribute) to hold for all cases.

      ////first, check if any variables are required to be equal
      //for( std::map< Node, bool >::iterator it = d_quantEngine->d_phase_reqs[f].begin();
      //    it != d_quantEngine->d_phase_reqs[f].end(); ++it ){
      //  Node n = it->first;
      //  if( n.getKind()==EQUAL && n[0].getKind()==INST_CONSTANT && n[1].getKind()==INST_CONSTANT ){
      //    Notice() << "Unhandled phase req: " << n << std::endl;
      //  }
      //}
      d_quant_basis_match[f] = InstMatch( f );
      for( int j=0; j<(int)f[0].getNumChildren(); j++ ){
        Node t = d_qe->getTermDatabase()->getModelBasisTerm( f[0][j].getType() );
        //calculate the basis match for f
        d_quant_basis_match[f].setValue( j, t );
      }
      ++(d_statistics.d_num_quants_init);
    }
    //try to add it
    Trace("inst-fmf-init") << "Init: try to add match " << d_quant_basis_match[f] << std::endl;
    //add model basis instantiation
    if( d_qe->addInstantiation( fp, d_quant_basis_match[f] ) ){
      d_quant_basis_match_added[f] = true;
      return 1;
    }else{
      //shouldn't happen usually, but will occur if x != y is a required literal for f.
      //Notice() << "No model basis for " << f << std::endl;
      d_quant_basis_match_added[f] = false;
    }
  }
  return 0;
}

void QModelBuilderIG::analyzeModel( FirstOrderModel* fm ){
  FirstOrderModelIG* fmig = fm->asFirstOrderModelIG();
  d_uf_model_constructed.clear();
  //determine if any functions are constant
  for( std::map< Node, uf::UfModelTree >::iterator it = fmig->d_uf_model_tree.begin(); it != fmig->d_uf_model_tree.end(); ++it ){
    Node op = it->first;
    TermArgBasisTrie tabt;
    for( size_t i=0; i<fmig->d_uf_terms[op].size(); i++ ){
      Node n = fmig->d_uf_terms[op][i];
      //for calculating if op is constant
      if( d_qe->getTermDatabase()->isTermActive( n ) ){
        Node v = fmig->getRepresentative( n );
        if( i==0 ){
          d_uf_prefs[op].d_const_val = v;
        }else if( v!=d_uf_prefs[op].d_const_val ){
          d_uf_prefs[op].d_const_val = Node::null();
          break;
        }
      }
      //for calculating terms that we don't need to consider
      if( d_qe->getTermDatabase()->isTermActive( n ) || n.getAttribute(ModelBasisArgAttribute())!=0 ){
        if( d_basisNoMatch.find( n )==d_basisNoMatch.end() ){
          //need to consider if it is not congruent modulo model basis
          if( !tabt.addTerm( fmig, n ) ){
            d_basisNoMatch[n] = true;
          }
        }
      }
    }
    if( !d_uf_prefs[op].d_const_val.isNull() ){
      fmig->d_uf_model_gen[op].setDefaultValue( d_uf_prefs[op].d_const_val );
      fmig->d_uf_model_gen[op].makeModel( fmig, it->second );
      Debug("fmf-model-cons") << "Function " << op << " is the constant function ";
      fmig->printRepresentativeDebug( "fmf-model-cons", d_uf_prefs[op].d_const_val );
      Debug("fmf-model-cons") << std::endl;
      d_uf_model_constructed[op] = true;
    }else{
      d_uf_model_constructed[op] = false;
    }
  }
}

bool QModelBuilderIG::hasConstantDefinition( Node n ){
  Node lit = n.getKind()==NOT ? n[0] : n;
  if( lit.getKind()==APPLY_UF ){
    Node op = lit.getOperator();
    if( !d_uf_prefs[op].d_const_val.isNull() ){
      return true;
    }
  }
  return false;
}

QModelBuilderIG::Statistics::Statistics():
  d_num_quants_init("QModelBuilderIG::Number_Quantifiers", 0),
  d_num_partial_quants_init("QModelBuilderIG::Number_Partial_Quantifiers", 0),
  d_init_inst_gen_lemmas("QModelBuilderIG::Initialize_Inst_Gen_Lemmas", 0 ),
  d_inst_gen_lemmas("QModelBuilderIG::Inst_Gen_Lemmas", 0 ),
  d_eval_formulas("QModelBuilderIG::Eval_Formulas", 0 ),
  d_eval_uf_terms("QModelBuilderIG::Eval_Uf_Terms", 0 ),
  d_eval_lits("QModelBuilderIG::Eval_Lits", 0 ),
  d_eval_lits_unknown("QModelBuilderIG::Eval_Lits_Unknown", 0 )
{
  smtStatisticsRegistry()->registerStat(&d_num_quants_init);
  smtStatisticsRegistry()->registerStat(&d_num_partial_quants_init);
  smtStatisticsRegistry()->registerStat(&d_init_inst_gen_lemmas);
  smtStatisticsRegistry()->registerStat(&d_inst_gen_lemmas);
  smtStatisticsRegistry()->registerStat(&d_eval_formulas);
  smtStatisticsRegistry()->registerStat(&d_eval_uf_terms);
  smtStatisticsRegistry()->registerStat(&d_eval_lits);
  smtStatisticsRegistry()->registerStat(&d_eval_lits_unknown);
}

QModelBuilderIG::Statistics::~Statistics(){
  smtStatisticsRegistry()->unregisterStat(&d_num_quants_init);
  smtStatisticsRegistry()->unregisterStat(&d_num_partial_quants_init);
  smtStatisticsRegistry()->unregisterStat(&d_init_inst_gen_lemmas);
  smtStatisticsRegistry()->unregisterStat(&d_inst_gen_lemmas);
  smtStatisticsRegistry()->unregisterStat(&d_eval_formulas);
  smtStatisticsRegistry()->unregisterStat(&d_eval_uf_terms);
  smtStatisticsRegistry()->unregisterStat(&d_eval_lits);
  smtStatisticsRegistry()->unregisterStat(&d_eval_lits_unknown);
}

bool QModelBuilderIG::isTermActive( Node n ){
  return d_qe->getTermDatabase()->isTermActive( n ) || //it is not congruent to another active term
         ( n.getAttribute(ModelBasisArgAttribute())!=0 && d_basisNoMatch.find( n )==d_basisNoMatch.end() ); //or it has model basis arguments
                                                                                                      //and is not congruent modulo model basis
                                                                                                      //to another active term
}

//do exhaustive instantiation
int QModelBuilderIG::doExhaustiveInstantiation( FirstOrderModel * fm, Node f, int effort ) {
  if( optUseModel() ){
    RepSetIterator riter( d_qe, &(d_qe->getModel()->d_rep_set) );
    if( riter.setQuantifier( f ) ){
      FirstOrderModelIG * fmig = (FirstOrderModelIG*)d_qe->getModel();
      Debug("inst-fmf-ei") << "Reset evaluate..." << std::endl;
      fmig->resetEvaluate();
      Debug("inst-fmf-ei") << "Begin instantiation..." << std::endl;
      while( !riter.isFinished() && ( d_addedLemmas==0 || !options::fmfOneInstPerRound() ) ){
        d_triedLemmas++;
        if( Debug.isOn("inst-fmf-ei-debug") ){
          for( int i=0; i<(int)riter.d_index.size(); i++ ){
            Debug("inst-fmf-ei-debug") << i << " : " << riter.d_index[i] << " : " << riter.getCurrentTerm( i ) << std::endl;
          }
        }
        int eval = 0;
        int depIndex;
        //see if instantiation is already true in current model
        if( Debug.isOn("fmf-model-eval") ){
          Debug("fmf-model-eval") << "Evaluating ";
          riter.debugPrintSmall("fmf-model-eval");
          Debug("fmf-model-eval") << "Done calculating terms." << std::endl;
        }
        //if evaluate(...)==1, then the instantiation is already true in the model
        //  depIndex is the index of the least significant variable that this evaluation relies upon
        depIndex = riter.getNumTerms()-1;
        Debug("fmf-model-eval") << "We will evaluate " << d_qe->getTermDatabase()->getInstConstantBody( f ) << std::endl;
        eval = fmig->evaluate( d_qe->getTermDatabase()->getInstConstantBody( f ), depIndex, &riter );
        if( eval==1 ){
          Debug("fmf-model-eval") << "  Returned success with depIndex = " << depIndex << std::endl;
        }else{
          Debug("fmf-model-eval") << "  Returned " << (eval==-1 ? "failure" : "unknown") << ", depIndex = " << depIndex << std::endl;
        }
        if( eval==1 ){
          //instantiation is already true -> skip
          riter.increment2( depIndex );
        }else{
          //instantiation was not shown to be true, construct the match
          InstMatch m( f );
          for( int i=0; i<riter.getNumTerms(); i++ ){
            m.set( d_qe, i, riter.getCurrentTerm( i ) );
          }
          Debug("fmf-model-eval") << "* Add instantiation " << m << std::endl;
          //add as instantiation
          if( d_qe->addInstantiation( f, m, true ) ){
            d_addedLemmas++;
            if( d_qe->inConflict() ){
              break;
            }
            //if the instantiation is show to be false, and we wish to skip multiple instantiations at once
            if( eval==-1 ){
              riter.increment2( depIndex );
            }else{
              riter.increment();
            }
          }else{
            Debug("fmf-model-eval") << "* Failed Add instantiation " << m << std::endl;
            riter.increment();
          }
        }
      }
      //print debugging information
      if( fmig ){
        d_statistics.d_eval_formulas += fmig->d_eval_formulas;
        d_statistics.d_eval_uf_terms += fmig->d_eval_uf_terms;
        d_statistics.d_eval_lits += fmig->d_eval_lits;
        d_statistics.d_eval_lits_unknown += fmig->d_eval_lits_unknown;
      }
      Trace("inst-fmf-ei") << "For " << f << ", finished: " << std::endl;
      Trace("inst-fmf-ei") << "   Inst Tried: " << d_triedLemmas << std::endl;
      Trace("inst-fmf-ei") << "   Inst Added: " << d_addedLemmas << std::endl;
      if( d_addedLemmas>1000 ){
        Trace("model-engine-warn") << "WARNING: many instantiations produced for " << f << ": " << std::endl;
        Trace("model-engine-warn") << "   Inst Tried: " << d_triedLemmas << std::endl;
        Trace("model-engine-warn") << "   Inst Added: " << d_addedLemmas << std::endl;
        Trace("model-engine-warn") << std::endl;
      }
    }
    //if the iterator is incomplete, we will return unknown instead of sat if no instantiations are added this round
    return riter.isIncomplete() ? -1 : 1;
  }else{
    return 0;
  }
}



void QModelBuilderDefault::reset( FirstOrderModel* fm ){
  d_quant_selection_lit.clear();
  d_quant_selection_lit_candidates.clear();
  d_quant_selection_lit_terms.clear();
  d_term_selection_lit.clear();
  d_op_selection_terms.clear();
}


int QModelBuilderDefault::getSelectionScore( std::vector< Node >& uf_terms ) {
  /*
  size_t maxChildren = 0;
  for( size_t i=0; i<uf_terms.size(); i++ ){
    if( uf_terms[i].getNumChildren()>maxChildren ){
      maxChildren = uf_terms[i].getNumChildren();
    }
  }
  //TODO: look at how many entries they have?
  return (int)maxChildren;
  */
  return 0;
}

void QModelBuilderDefault::analyzeQuantifier( FirstOrderModel* fm, Node f ){
  if( d_qe->getModel()->isQuantifierActive( f ) ){
    FirstOrderModelIG* fmig = fm->asFirstOrderModelIG();
    Debug("fmf-model-prefs") << "Analyze quantifier " << f << std::endl;
    //the pro/con preferences for this quantifier
    std::vector< Node > pro_con[2];
    //the terms in the selection literal we choose
    std::vector< Node > selectionLitTerms;
    Trace("inst-gen-debug-quant") << "Inst-gen analyze " << f << std::endl;
    //for each asserted quantifier f,
    // - determine selection literals
    // - check which function/predicates have good and bad definitions for satisfying f
    if( d_phase_reqs.find( f )==d_phase_reqs.end() ){
      d_phase_reqs[f].initialize( d_qe->getTermDatabase()->getInstConstantBody( f ), true );
    }
    int selectLitScore = -1;
    for( std::map< Node, bool >::iterator it = d_phase_reqs[f].d_phase_reqs.begin(); it != d_phase_reqs[f].d_phase_reqs.end(); ++it ){
      //the literal n is phase-required for quantifier f
      Node n = it->first;
      Node gn = d_qe->getTermDatabase()->getModelBasis( f, n );
      Debug("fmf-model-req") << "   Req: " << n << " -> " << it->second << std::endl;
      bool value;
      //if the corresponding ground abstraction literal has a SAT value
      if( d_qe->getValuation().hasSatValue( gn, value ) ){
        //collect the non-ground uf terms that this literal contains
        //  and compute if all of the symbols in this literal have
        //  constant definitions.
        bool isConst = true;
        std::vector< Node > uf_terms;
        if( TermDb::hasInstConstAttr(n) ){
          isConst = false;
          if( gn.getKind()==APPLY_UF ){
            uf_terms.push_back( gn );
            isConst = hasConstantDefinition( gn );
          }else if( gn.getKind()==EQUAL ){
            isConst = true;
            for( int j=0; j<2; j++ ){
              if( TermDb::hasInstConstAttr(n[j]) ){
                if( n[j].getKind()==APPLY_UF &&
                    fmig->d_uf_model_tree.find( gn[j].getOperator() )!=fmig->d_uf_model_tree.end() ){
                  uf_terms.push_back( gn[j] );
                  isConst = isConst && hasConstantDefinition( gn[j] );
                }else{
                  isConst = false;
                }
              }
            }
          }
        }
        //check if the value in the SAT solver matches the preference according to the quantifier
        int pref = 0;
        if( value!=it->second ){
          //we have a possible selection literal
          bool selectLit = d_quant_selection_lit[f].isNull();
          bool selectLitConstraints = true;
          //it is a constantly defined selection literal : the quantifier is sat
          if( isConst ){
            selectLit = selectLit || d_qe->getModel()->isQuantifierActive( f );
            d_qe->getModel()->setQuantifierActive( f, false );
            //check if choosing this literal would add any additional constraints to default definitions
            selectLitConstraints = false;
            for( int j=0; j<(int)uf_terms.size(); j++ ){
              Node op = uf_terms[j].getOperator();
              if( d_uf_prefs[op].d_reconsiderModel ){
                selectLitConstraints = true;
              }
            }
            if( !selectLitConstraints ){
              selectLit = true;
            }
          }
          //also check if it is naturally a better literal
          if( !selectLit ){
            int score = getSelectionScore( uf_terms );
            //Trace("inst-gen-debug") << "Check " << score << " < " << selectLitScore << std::endl;
            selectLit = score<selectLitScore;
          }
          //see if we wish to choose this as a selection literal
          d_quant_selection_lit_candidates[f].push_back( value ? n : n.notNode() );
          if( selectLit ){
            selectLitScore = getSelectionScore( uf_terms );
            Trace("inst-gen-debug") << "Choose selection literal " << gn << std::endl;
            Trace("inst-gen-debug") << "  flags: " << isConst << " " << selectLitConstraints << " " << selectLitScore << std::endl;
            d_quant_selection_lit[f] = value ? n : n.notNode();
            selectionLitTerms.clear();
            selectionLitTerms.insert( selectionLitTerms.begin(), uf_terms.begin(), uf_terms.end() );
            if( !selectLitConstraints ){
              break;
            }
          }
          pref = 1;
        }else{
          pref = -1;
        }
        //if we are not yet SAT, so we will add to preferences
        if( d_qe->getModel()->isQuantifierActive( f ) ){
          Debug("fmf-model-prefs") << "  It is " << ( pref==1 ? "pro" : "con" );
          Debug("fmf-model-prefs") << " the definition of " << n << std::endl;
          for( int j=0; j<(int)uf_terms.size(); j++ ){
            pro_con[ pref==1 ? 0 : 1 ].push_back( uf_terms[j] );
          }
        }
      }
    }
    //process information about selection literal for f
    if( !d_quant_selection_lit[f].isNull() ){
      d_quant_selection_lit_terms[f].insert( d_quant_selection_lit_terms[f].begin(), selectionLitTerms.begin(), selectionLitTerms.end() );
      for( int i=0; i<(int)selectionLitTerms.size(); i++ ){
        d_term_selection_lit[ selectionLitTerms[i] ] = d_quant_selection_lit[f];
        d_op_selection_terms[ selectionLitTerms[i].getOperator() ].push_back( selectionLitTerms[i] );
      }
    }else{
      Trace("inst-gen-warn") << "WARNING: " << f << " has no selection literals" << std::endl;
    }
    //process information about requirements and preferences of quantifier f
    if( !d_qe->getModel()->isQuantifierActive( f ) ){
      Debug("fmf-model-prefs") << "  * Constant SAT due to definition of ops: ";
      for( int i=0; i<(int)selectionLitTerms.size(); i++ ){
        Debug("fmf-model-prefs") << selectionLitTerms[i] << " ";
        d_uf_prefs[ selectionLitTerms[i].getOperator() ].d_reconsiderModel = false;
      }
      Debug("fmf-model-prefs") << std::endl;
    }else{
      //note quantifier's value preferences to models
      for( int k=0; k<2; k++ ){
        for( int j=0; j<(int)pro_con[k].size(); j++ ){
          Node op = pro_con[k][j].getOperator();
          Node r = fmig->getRepresentative( pro_con[k][j] );
          d_uf_prefs[op].setValuePreference( f, pro_con[k][j], r, k==0 );
        }
      }
    }
  }
}

int QModelBuilderDefault::doInstGen( FirstOrderModel* fm, Node f ){
  int addedLemmas = 0;
  //we wish to add all known exceptions to our selection literal for f. this will help to refine our current model.
  //This step is advantageous over exhaustive instantiation, since we are adding instantiations that involve model basis terms,
  //  effectively acting as partial instantiations instead of pointwise instantiations.
  if( !d_quant_selection_lit[f].isNull() ){
    Trace("inst-gen") << "Do Inst-Gen for " << f << std::endl;
    for( size_t i=0; i<d_quant_selection_lit_candidates[f].size(); i++ ){
      bool phase = d_quant_selection_lit_candidates[f][i].getKind()!=NOT;
      Node lit = d_quant_selection_lit_candidates[f][i].getKind()==NOT ? d_quant_selection_lit_candidates[f][i][0] : d_quant_selection_lit_candidates[f][i];
      Assert( TermDb::hasInstConstAttr(lit) );
      std::vector< Node > tr_terms;
      if( lit.getKind()==APPLY_UF ){
        //only match predicates that are contrary to this one, use literal matching
        Node eq = NodeManager::currentNM()->mkNode( IFF, lit, !phase ? fm->d_true : fm->d_false );
        tr_terms.push_back( eq );
      }else if( lit.getKind()==EQUAL ){
        //collect trigger terms
        for( int j=0; j<2; j++ ){
          if( TermDb::hasInstConstAttr(lit[j]) ){
            if( lit[j].getKind()==APPLY_UF ){
              tr_terms.push_back( lit[j] );
            }else{
              tr_terms.clear();
              break;
            }
          }
        }
        if( tr_terms.size()==1 && !phase ){
          //equality between a function and a ground term, use literal matching
          tr_terms.clear();
          tr_terms.push_back( lit );
        }
      }
      //if applicable, try to add exceptions here
      if( !tr_terms.empty() ){
        //make a trigger for these terms, add instantiations
        inst::Trigger* tr = inst::Trigger::mkTrigger( d_qe, f, tr_terms, true, inst::Trigger::TR_MAKE_NEW );
        //Notice() << "Trigger = " << (*tr) << std::endl;
        tr->resetInstantiationRound();
        tr->reset( Node::null() );
        //d_qe->d_optInstMakeRepresentative = false;
        //d_qe->d_optMatchIgnoreModelBasis = true;
        addedLemmas += tr->addInstantiations( d_quant_basis_match[f] );
      }
    }
  }
  return addedLemmas;
}

void QModelBuilderDefault::constructModelUf( FirstOrderModel* fm, Node op ){
  FirstOrderModelIG* fmig = fm->asFirstOrderModelIG();
  if( optReconsiderFuncConstants() ){
    //reconsider constant functions that weren't necessary
    if( d_uf_model_constructed[op] ){
      if( d_uf_prefs[op].d_reconsiderModel ){
        //if we are allowed to reconsider default value, then see if the default value can be improved
        Node v = d_uf_prefs[op].d_const_val;
        if( d_uf_prefs[op].d_value_pro_con[0][v].empty() ){
          Debug("fmf-model-cons-debug") << "Consider changing the default value for " << op << std::endl;
          fmig->d_uf_model_tree[op].clear();
          fmig->d_uf_model_gen[op].clear();
          d_uf_model_constructed[op] = false;
        }
      }
    }
  }
  if( !d_uf_model_constructed[op] ){
    //construct the model for the uninterpretted function/predicate
    bool setDefaultVal = true;
    Node defaultTerm = d_qe->getTermDatabase()->getModelBasisOpTerm( op );
    Trace("fmf-model-cons") << "Construct model for " << op << "..." << std::endl;
    //set the values in the model
    for( size_t i=0; i<fmig->d_uf_terms[op].size(); i++ ){
      Node n = fmig->d_uf_terms[op][i];
      if( isTermActive( n ) ){
        Node v = fmig->getRepresentative( n );
        Trace("fmf-model-cons") << "Set term " << n << " : " << fmig->d_rep_set.getIndexFor( v ) << " " << v << std::endl;
        //if this assertion did not help the model, just consider it ground
        //set n = v in the model tree
        //set it as ground value
        fmig->d_uf_model_gen[op].setValue( fm, n, v );
        if( fmig->d_uf_model_gen[op].optUsePartialDefaults() ){
          //also set as default value if necessary
          if( n.hasAttribute(ModelBasisArgAttribute()) && n.getAttribute(ModelBasisArgAttribute())!=0 ){
            Trace("fmf-model-cons") << "  Set as default." << std::endl;
            fmig->d_uf_model_gen[op].setValue( fm, n, v, false );
            if( n==defaultTerm ){
              //incidentally already set, we will not need to find a default value
              setDefaultVal = false;
            }
          }
        }else{
          if( n==defaultTerm ){
            fmig->d_uf_model_gen[op].setValue( fm, n, v, false );
            //incidentally already set, we will not need to find a default value
            setDefaultVal = false;
          }
        }
      }
    }
    //set the overall default value if not set already  (is this necessary??)
    if( setDefaultVal ){
      Trace("fmf-model-cons") << "  Choose default value..." << std::endl;
      //chose defaultVal based on heuristic, currently the best ratio of "pro" responses
      Node defaultVal = d_uf_prefs[op].getBestDefaultValue( defaultTerm, fm );
      if( defaultVal.isNull() ){
        if (!fmig->d_rep_set.hasType(defaultTerm.getType())) {
          Node mbt = d_qe->getTermDatabase()->getModelBasisTerm(defaultTerm.getType());
          fmig->d_rep_set.d_type_reps[defaultTerm.getType()].push_back(mbt);
        }
        defaultVal = fmig->d_rep_set.d_type_reps[defaultTerm.getType()][0];
      }
      Assert( !defaultVal.isNull() );
      Trace("fmf-model-cons") << "Set default term : " << fmig->d_rep_set.getIndexFor( defaultVal ) << std::endl;
      fmig->d_uf_model_gen[op].setValue( fm, defaultTerm, defaultVal, false );
    }
    Debug("fmf-model-cons") << "  Making model...";
    fmig->d_uf_model_gen[op].makeModel( fm, fmig->d_uf_model_tree[op] );
    d_uf_model_constructed[op] = true;
    Debug("fmf-model-cons") << "  Finished constructing model for " << op << "." << std::endl;
  }
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback