summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/model_builder.cpp
blob: 6fa02a8d36e126d315c92eca4035032bb586aa79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
/*********************                                                        */
/*! \file model_builder.cpp
 ** \verbatim
 ** Original author: ajreynol
 ** Major contributors: none
 ** Minor contributors (to current version): mdeters
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009-2012  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Implementation of model builder class
 **/

#include "theory/quantifiers/model_engine.h"
#include "theory/theory_engine.h"
#include "theory/uf/equality_engine.h"
#include "theory/uf/theory_uf.h"
#include "theory/uf/theory_uf_model.h"
#include "theory/uf/theory_uf_instantiator.h"
#include "theory/uf/theory_uf_strong_solver.h"
#include "theory/arrays/theory_arrays_model.h"
#include "theory/quantifiers/first_order_model.h"
#include "theory/quantifiers/term_database.h"
#include "theory/quantifiers/model_builder.h"
#include "theory/quantifiers/quantifiers_attributes.h"
#include "theory/quantifiers/inst_gen.h"

using namespace std;
using namespace CVC4;
using namespace CVC4::kind;
using namespace CVC4::context;
using namespace CVC4::theory;
using namespace CVC4::theory::quantifiers;

ModelEngineBuilder::ModelEngineBuilder( context::Context* c, QuantifiersEngine* qe ) :
TheoryEngineModelBuilder( qe->getTheoryEngine() ),
d_qe( qe ), d_curr_model( c, NULL ){
  d_considerAxioms = true;
}

void ModelEngineBuilder::processBuildModel( TheoryModel* m, bool fullModel ) {
  FirstOrderModel* fm = (FirstOrderModel*)m;
  if( fullModel ){
    Assert( d_curr_model==fm );
    //update models
    for( std::map< Node, uf::UfModelTree >::iterator it = fm->d_uf_model_tree.begin(); it != fm->d_uf_model_tree.end(); ++it ){
      it->second.update( fm );
      Trace("model-func") << "ModelEngineBuilder: Make function value from tree " << it->first << std::endl;
      //construct function values
      fm->d_uf_models[ it->first ] = it->second.getFunctionValue( "$x" );
    }
    TheoryEngineModelBuilder::processBuildModel( m, fullModel );
  }else{
    d_curr_model = fm;
    //build model for relevant symbols contained in quantified formulas
    d_addedLemmas = 0;
    //only construct first order model if optUseModel() is true
    if( optUseModel() ){
      if( optUseModel() ){
        //check if any quantifiers are un-initialized
        for( int i=0; i<fm->getNumAssertedQuantifiers(); i++ ){
          Node f = fm->getAssertedQuantifier( i );
          d_addedLemmas += initializeQuantifier( f );
        }
      }
      if( d_addedLemmas>0 ){
        Trace("model-engine") << "Initialize, Added Lemmas = " << d_addedLemmas << std::endl;
      }else{
        //initialize model
        fm->initialize( d_considerAxioms );
        //analyze the functions
        Trace("model-engine-debug") << "Analyzing model..." << std::endl;
        analyzeModel( fm );
        //analyze the quantifiers
        Trace("model-engine-debug") << "Analyzing quantifiers..." << std::endl;
        d_quant_sat.clear();
        d_uf_prefs.clear();
        analyzeQuantifiers( fm );
        //if applicable, find exceptions
        if( optInstGen() ){
          //now, see if we know that any exceptions via InstGen exist
          Trace("model-engine-debug") << "Perform InstGen techniques for quantifiers..." << std::endl;
          for( int i=0; i<fm->getNumAssertedQuantifiers(); i++ ){
            Node f = fm->getAssertedQuantifier( i );
            if( isQuantifierActive( f ) ){
              d_addedLemmas += doInstGen( fm, f );
              if( optOneQuantPerRoundInstGen() && d_addedLemmas>0 ){
                break;
              }
            }
          }
          if( Trace.isOn("model-engine") ){
            if( d_addedLemmas>0 ){
              Trace("model-engine") << "InstGen, added lemmas = " << d_addedLemmas << std::endl;
            }else{
              Trace("model-engine") << "No InstGen lemmas..." << std::endl;
            }
          }
        }
        if( d_addedLemmas==0 ){
          //if no immediate exceptions, build the model
          //  this model will be an approximation that will need to be tested via exhaustive instantiation
          Trace("model-engine-debug") << "Building model..." << std::endl;
          constructModel( fm );
        }
      }
    }
  }
}

int ModelEngineBuilder::initializeQuantifier( Node f ){
  if( d_quant_init.find( f )==d_quant_init.end() ){
    d_quant_init[f] = true;
    Debug("inst-fmf-init") << "Initialize " << f << std::endl;
    //add the model basis instantiation
    // This will help produce the necessary information for model completion.
    // We do this by extending distinguish ground assertions (those
    //   containing terms with "model basis" attribute) to hold for all cases.

    ////first, check if any variables are required to be equal
    //for( std::map< Node, bool >::iterator it = d_quantEngine->d_phase_reqs[f].begin();
    //    it != d_quantEngine->d_phase_reqs[f].end(); ++it ){
    //  Node n = it->first;
    //  if( n.getKind()==EQUAL && n[0].getKind()==INST_CONSTANT && n[1].getKind()==INST_CONSTANT ){
    //    Notice() << "Unhandled phase req: " << n << std::endl;
    //  }
    //}
    std::vector< Node > vars;
    std::vector< Node > terms;
    for( int j=0; j<(int)f[0].getNumChildren(); j++ ){
      Node ic = d_qe->getTermDatabase()->getInstantiationConstant( f, j );
      Node t = d_qe->getTermDatabase()->getModelBasisTerm( ic.getType() );
      vars.push_back( f[0][j] );
      terms.push_back( t );
      //calculate the basis match for f
      d_quant_basis_match[f].set( ic, t);
    }
    ++(d_statistics.d_num_quants_init);
    if( optInstGen() ){
      //add model basis instantiation
      if( d_qe->addInstantiation( f, vars, terms ) ){
        return 1;
      }else{
        //shouldn't happen usually, but will occur if x != y is a required literal for f.
        //Notice() << "No model basis for " << f << std::endl;
        ++(d_statistics.d_num_quants_init_fail);
      }
    }
  }
  return 0;
}

void ModelEngineBuilder::analyzeModel( FirstOrderModel* fm ){
  d_uf_model_constructed.clear();
  //determine if any functions are constant
  for( std::map< Node, uf::UfModelTree >::iterator it = fm->d_uf_model_tree.begin(); it != fm->d_uf_model_tree.end(); ++it ){
    Node op = it->first;
    for( size_t i=0; i<fm->d_uf_terms[op].size(); i++ ){
      Node n = fm->d_uf_terms[op][i];
      if( !n.getAttribute(NoMatchAttribute()) ){
        Node v = fm->getRepresentative( n );
        if( i==0 ){
          d_uf_prefs[op].d_const_val = v;
        }else if( v!=d_uf_prefs[op].d_const_val ){
          d_uf_prefs[op].d_const_val = Node::null();
          break;
        }
      }
    }
    if( !d_uf_prefs[op].d_const_val.isNull() ){
      fm->d_uf_model_gen[op].setDefaultValue( d_uf_prefs[op].d_const_val );
      fm->d_uf_model_gen[op].makeModel( fm, it->second );
      Debug("fmf-model-cons") << "Function " << op << " is the constant function ";
      fm->printRepresentativeDebug( "fmf-model-cons", d_uf_prefs[op].d_const_val );
      Debug("fmf-model-cons") << std::endl;
      d_uf_model_constructed[op] = true;
    }else{
      d_uf_model_constructed[op] = false;
    }
  }
}

void ModelEngineBuilder::constructModel( FirstOrderModel* fm ){
  //build model for UF
  for( std::map< Node, uf::UfModelTree >::iterator it = fm->d_uf_model_tree.begin(); it != fm->d_uf_model_tree.end(); ++it ){
    constructModelUf( fm, it->first );
  }
  /*
  //build model for arrays
  for( std::map< Node, arrays::ArrayModel >::iterator it = fm->d_array_model.begin(); it != fm->d_array_model.end(); ++it ){
    //consult the model basis select term
    // i.e. the default value for array A is the value of select( A, e ), where e is the model basis term
    TypeNode tn = it->first.getType();
    Node selModelBasis = NodeManager::currentNM()->mkNode( SELECT, it->first, fm->getTermDatabase()->getModelBasisTerm( tn[0] ) );
    it->second.setDefaultValue( fm->getRepresentative( selModelBasis ) );
  }
  */
  Trace("model-engine-debug") << "Done building models." << std::endl;
}

void ModelEngineBuilder::constructModelUf( FirstOrderModel* fm, Node op ){
  if( optReconsiderFuncConstants() ){
    //reconsider constant functions that weren't necessary
    if( d_uf_model_constructed[op] ){
      if( d_uf_prefs[op].d_reconsiderModel ){
        //if we are allowed to reconsider default value, then see if the default value can be improved
        Node v = d_uf_prefs[op].d_const_val;
        if( d_uf_prefs[op].d_value_pro_con[0][v].empty() ){
          Debug("fmf-model-cons-debug") << "Consider changing the default value for " << op << std::endl;
          fm->d_uf_model_tree[op].clear();
          fm->d_uf_model_gen[op].clear();
          d_uf_model_constructed[op] = false;
        }
      }
    }
  }
  if( !d_uf_model_constructed[op] ){
    //construct the model for the uninterpretted function/predicate
    bool setDefaultVal = true;
    Node defaultTerm = d_qe->getTermDatabase()->getModelBasisOpTerm( op );
    Debug("fmf-model-cons") << "Construct model for " << op << "..." << std::endl;
    //set the values in the model
    for( size_t i=0; i<fm->d_uf_terms[op].size(); i++ ){
      Node n = fm->d_uf_terms[op][i];
      if( !n.getAttribute(NoMatchAttribute()) || n.getAttribute(ModelBasisArgAttribute())==1 ){
        Node v = fm->getRepresentative( n );
        //if this assertion did not help the model, just consider it ground
        //set n = v in the model tree
        Debug("fmf-model-cons") << "  Set " << n << " = ";
        fm->printRepresentativeDebug( "fmf-model-cons", v );
        Debug("fmf-model-cons") << std::endl;
        //set it as ground value
        fm->d_uf_model_gen[op].setValue( fm, n, v );
        if( fm->d_uf_model_gen[op].optUsePartialDefaults() ){
          //also set as default value if necessary
          //if( n.getAttribute(ModelBasisArgAttribute())==1 && !d_term_pro_con[0][n].empty() ){
          if( shouldSetDefaultValue( n ) ){
            fm->d_uf_model_gen[op].setValue( fm, n, v, false );
            if( n==defaultTerm ){
              //incidentally already set, we will not need to find a default value
              setDefaultVal = false;
            }
          }
        }else{
          if( n==defaultTerm ){
            fm->d_uf_model_gen[op].setValue( fm, n, v, false );
            //incidentally already set, we will not need to find a default value
            setDefaultVal = false;
          }
        }
      }
    }
    //set the overall default value if not set already  (is this necessary??)
    if( setDefaultVal ){
      Debug("fmf-model-cons") << "  Choose default value..." << std::endl;
      //chose defaultVal based on heuristic, currently the best ratio of "pro" responses
      Node defaultVal = d_uf_prefs[op].getBestDefaultValue( defaultTerm, fm );
      Assert( !defaultVal.isNull() );
      fm->d_uf_model_gen[op].setValue( fm, defaultTerm, defaultVal, false );
    }
    Debug("fmf-model-cons") << "  Making model...";
    fm->d_uf_model_gen[op].makeModel( fm, fm->d_uf_model_tree[op] );
    d_uf_model_constructed[op] = true;
    Debug("fmf-model-cons") << "  Finished constructing model for " << op << "." << std::endl;
  }
}

bool ModelEngineBuilder::optUseModel() {
  return options::fmfModelBasedInst();
}

bool ModelEngineBuilder::optInstGen(){
  return options::fmfInstGen();
}

bool ModelEngineBuilder::optOneQuantPerRoundInstGen(){
  return options::fmfInstGenOneQuantPerRound();
}

bool ModelEngineBuilder::optReconsiderFuncConstants(){
  return false;
}

void ModelEngineBuilder::setEffort( int effort ){
  d_considerAxioms = effort>=1;
}

ModelEngineBuilder::Statistics::Statistics():
  d_pre_sat_quant("ModelEngineBuilder::Status_quant_pre_sat", 0),
  d_pre_nsat_quant("ModelEngineBuilder::Status_quant_pre_non_sat", 0),
  d_num_quants_init("ModelEngine::Num_Quants", 0 ),
  d_num_quants_init_fail("ModelEngine::Num_Quants_No_Basis", 0 )
{
  StatisticsRegistry::registerStat(&d_pre_sat_quant);
  StatisticsRegistry::registerStat(&d_pre_nsat_quant);
  StatisticsRegistry::registerStat(&d_num_quants_init);
  StatisticsRegistry::registerStat(&d_num_quants_init_fail);
}

ModelEngineBuilder::Statistics::~Statistics(){
  StatisticsRegistry::unregisterStat(&d_pre_sat_quant);
  StatisticsRegistry::unregisterStat(&d_pre_nsat_quant);
  StatisticsRegistry::unregisterStat(&d_num_quants_init);
  StatisticsRegistry::unregisterStat(&d_num_quants_init_fail);
}

bool ModelEngineBuilder::isQuantifierActive( Node f ){
  return ( d_considerAxioms || !f.getAttribute(AxiomAttribute()) ) && d_quant_sat.find( f )==d_quant_sat.end();
}





void ModelEngineBuilderDefault::analyzeQuantifiers( FirstOrderModel* fm ){
  d_quant_selection_lit.clear();
  d_quant_selection_lit_candidates.clear();
  d_quant_selection_lit_terms.clear();
  d_term_selection_lit.clear();
  d_op_selection_terms.clear();
  //analyze each quantifier
  for( int i=0; i<(int)fm->getNumAssertedQuantifiers(); i++ ){
    Node f = fm->getAssertedQuantifier( i );
    if( isQuantifierActive( f ) ){
      analyzeQuantifier( fm, f );
    }
  }
}


void ModelEngineBuilderDefault::analyzeQuantifier( FirstOrderModel* fm, Node f ){
  Debug("fmf-model-prefs") << "Analyze quantifier " << f << std::endl;
  //the pro/con preferences for this quantifier
  std::vector< Node > pro_con[2];
  //the terms in the selection literal we choose
  std::vector< Node > selectionLitTerms;
  //for each asserted quantifier f,
  // - determine selection literals
  // - check which function/predicates have good and bad definitions for satisfying f
  for( std::map< Node, bool >::iterator it = d_qe->d_phase_reqs[f].begin();
       it != d_qe->d_phase_reqs[f].end(); ++it ){
    //the literal n is phase-required for quantifier f
    Node n = it->first;
    Node gn = d_qe->getTermDatabase()->getModelBasis( f, n );
    Debug("fmf-model-req") << "   Req: " << n << " -> " << it->second << std::endl;
    bool value;
    //if the corresponding ground abstraction literal has a SAT value
    if( d_qe->getValuation().hasSatValue( gn, value ) ){
      //collect the non-ground uf terms that this literal contains
      //  and compute if all of the symbols in this literal have
      //  constant definitions.
      bool isConst = true;
      std::vector< Node > uf_terms;
      if( n.hasAttribute(InstConstantAttribute()) ){
        isConst = false;
        if( gn.getKind()==APPLY_UF ){
          uf_terms.push_back( gn );
          isConst = !d_uf_prefs[gn.getOperator()].d_const_val.isNull();
        }else if( gn.getKind()==EQUAL ){
          isConst = true;
          for( int j=0; j<2; j++ ){
            if( n[j].hasAttribute(InstConstantAttribute()) ){
              if( n[j].getKind()==APPLY_UF &&
                  fm->d_uf_model_tree.find( gn[j].getOperator() )!=fm->d_uf_model_tree.end() ){
                uf_terms.push_back( gn[j] );
                isConst = isConst && !d_uf_prefs[ gn[j].getOperator() ].d_const_val.isNull();
              }else{
                isConst = false;
              }
            }
          }
        }
      }
      //check if the value in the SAT solver matches the preference according to the quantifier
      int pref = 0;
      if( value!=it->second ){
        //we have a possible selection literal
        bool selectLit = d_quant_selection_lit[f].isNull();
        bool selectLitConstraints = true;
        //it is a constantly defined selection literal : the quantifier is sat
        if( isConst ){
          selectLit = selectLit || d_quant_sat.find( f )==d_quant_sat.end();
          d_quant_sat[f] = true;
          //check if choosing this literal would add any additional constraints to default definitions
          selectLitConstraints = false;
          for( int j=0; j<(int)uf_terms.size(); j++ ){
            Node op = uf_terms[j].getOperator();
            if( d_uf_prefs[op].d_reconsiderModel ){
              selectLitConstraints = true;
            }
          }
          if( !selectLitConstraints ){
            selectLit = true;
          }
        }
        //see if we wish to choose this as a selection literal
        d_quant_selection_lit_candidates[f].push_back( value ? n : n.notNode() );
        if( selectLit ){
          Trace("inst-gen-debug") << "Choose selection literal " << gn << std::endl;
          d_quant_selection_lit[f] = value ? n : n.notNode();
          selectionLitTerms.clear();
          selectionLitTerms.insert( selectionLitTerms.begin(), uf_terms.begin(), uf_terms.end() );
          if( !selectLitConstraints ){
            break;
          }
        }
        pref = 1;
      }else{
        pref = -1;
      }
      //if we are not yet SAT, so we will add to preferences
      if( d_quant_sat.find( f )==d_quant_sat.end() ){
        Debug("fmf-model-prefs") << "  It is " << ( pref==1 ? "pro" : "con" );
        Debug("fmf-model-prefs") << " the definition of " << n << std::endl;
        for( int j=0; j<(int)uf_terms.size(); j++ ){
          pro_con[ pref==1 ? 0 : 1 ].push_back( uf_terms[j] );
        }
      }
    }
  }
  //process information about selection literal for f
  if( !d_quant_selection_lit[f].isNull() ){
    d_quant_selection_lit_terms[f].insert( d_quant_selection_lit_terms[f].begin(), selectionLitTerms.begin(), selectionLitTerms.end() );
    for( int i=0; i<(int)selectionLitTerms.size(); i++ ){
      d_term_selection_lit[ selectionLitTerms[i] ] = d_quant_selection_lit[f];
      d_op_selection_terms[ selectionLitTerms[i].getOperator() ].push_back( selectionLitTerms[i] );
    }
  }else{
    Trace("inst-gen-warn") << "WARNING: " << f << " has no selection literals (is the body of f clausified?)" << std::endl;
  }
  //process information about requirements and preferences of quantifier f
  if( d_quant_sat.find( f )!=d_quant_sat.end() ){
    Debug("fmf-model-prefs") << "  * Constant SAT due to definition of ops: ";
    for( int i=0; i<(int)selectionLitTerms.size(); i++ ){
      Debug("fmf-model-prefs") << selectionLitTerms[i] << " ";
      d_uf_prefs[ selectionLitTerms[i].getOperator() ].d_reconsiderModel = false;
    }
    Debug("fmf-model-prefs") << std::endl;
    ++(d_statistics.d_pre_sat_quant);
  }else{
    ++(d_statistics.d_pre_nsat_quant);
    //note quantifier's value preferences to models
    for( int k=0; k<2; k++ ){
      for( int j=0; j<(int)pro_con[k].size(); j++ ){
        Node op = pro_con[k][j].getOperator();
        Node r = fm->getRepresentative( pro_con[k][j] );
        d_uf_prefs[op].setValuePreference( f, pro_con[k][j], r, k==0 );
      }
    }
  }
}

int ModelEngineBuilderDefault::doInstGen( FirstOrderModel* fm, Node f ){
  int addedLemmas = 0;
  //we wish to add all known exceptions to our selection literal for f. this will help to refine our current model.
  //This step is advantageous over exhaustive instantiation, since we are adding instantiations that involve model basis terms,
  //  effectively acting as partial instantiations instead of pointwise instantiations.
  if( !d_quant_selection_lit[f].isNull() ){
    Trace("inst-gen") << "Do Inst-Gen for " << f << std::endl;
    for( size_t i=0; i<d_quant_selection_lit_candidates[f].size(); i++ ){
      bool phase = d_quant_selection_lit_candidates[f][i].getKind()!=NOT;
      Node lit = d_quant_selection_lit_candidates[f][i].getKind()==NOT ? d_quant_selection_lit_candidates[f][i][0] : d_quant_selection_lit_candidates[f][i];
      Assert( lit.hasAttribute(InstConstantAttribute()) );
      std::vector< Node > tr_terms;
      if( lit.getKind()==APPLY_UF ){
        //only match predicates that are contrary to this one, use literal matching
        Node eq = NodeManager::currentNM()->mkNode( IFF, lit, !phase ? fm->d_true : fm->d_false );
        d_qe->getTermDatabase()->setInstantiationConstantAttr( eq, f );
        tr_terms.push_back( eq );
      }else if( lit.getKind()==EQUAL ){
        //collect trigger terms
        for( int j=0; j<2; j++ ){
          if( lit[j].hasAttribute(InstConstantAttribute()) ){
            if( lit[j].getKind()==APPLY_UF ){
              tr_terms.push_back( lit[j] );
            }else{
              tr_terms.clear();
              break;
            }
          }
        }
        if( tr_terms.size()==1 && !phase ){
          //equality between a function and a ground term, use literal matching
          tr_terms.clear();
          tr_terms.push_back( lit );
        }
      }
      //if applicable, try to add exceptions here
      if( !tr_terms.empty() ){
        //make a trigger for these terms, add instantiations
        inst::Trigger* tr = inst::Trigger::mkTrigger( d_qe, f, tr_terms );
        //Notice() << "Trigger = " << (*tr) << std::endl;
        tr->resetInstantiationRound();
        tr->reset( Node::null() );
        //d_qe->d_optInstMakeRepresentative = false;
        //d_qe->d_optMatchIgnoreModelBasis = true;
        addedLemmas += tr->addInstantiations( d_quant_basis_match[f] );
      }
    }
  }
  return addedLemmas;
}

bool ModelEngineBuilderDefault::shouldSetDefaultValue( Node n ){
  return n.hasAttribute(ModelBasisArgAttribute()) && n.getAttribute(ModelBasisArgAttribute())==1;
}





void ModelEngineBuilderInstGen::analyzeQuantifiers( FirstOrderModel* fm ){
  //for new inst gen
  d_quant_selection_formula.clear();
  d_term_selected.clear();
  //analyze each quantifier
  for( int i=0; i<(int)fm->getNumAssertedQuantifiers(); i++ ){
    Node f = fm->getAssertedQuantifier( i );
    if( isQuantifierActive( f ) ){
      analyzeQuantifier( fm, f );
    }
  }
  //analyze each partially instantiated quantifier
  for( std::map< Node, Node >::iterator it = d_sub_quant_parent.begin(); it != d_sub_quant_parent.end(); ++it ){
    Node fp = getParentQuantifier( it->first );
    if( isQuantifierActive( fp ) ){
      analyzeQuantifier( fm, it->first );
    }
  }
}

void ModelEngineBuilderInstGen::analyzeQuantifier( FirstOrderModel* fm, Node f ){
  //determine selection formula, set terms in selection formula as being selected
  Node s = getSelectionFormula( d_qe->getTermDatabase()->getCounterexampleBody( f ),
                                d_qe->getTermDatabase()->getModelBasisBody( f ), true, 0 );
  Trace("sel-form") << "Selection formula for " << f << " is " << s << std::endl;
  if( !s.isNull() ){
    d_quant_selection_formula[f] = s;
    Node gs = d_qe->getTermDatabase()->getModelBasis( f, s );
    setSelectedTerms( gs );
  }
}


int ModelEngineBuilderInstGen::doInstGen( FirstOrderModel* fm, Node f ){
  int addedLemmas = 0;
  //we wish to add all known exceptions to our selection literal for f. this will help to refine our current model.
  //This step is advantageous over exhaustive instantiation, since we are adding instantiations that involve model basis terms,
  //  effectively acting as partial instantiations instead of pointwise instantiations.
  if( !d_quant_selection_formula[f].isNull() ){
    //first, try on sub quantifiers
    for( size_t i=0; i<d_sub_quants[f].size(); i++ ){
      addedLemmas += doInstGen( fm, d_sub_quants[f][i] );
    }
    if( addedLemmas>0 ){
      return addedLemmas;
    }else{
      Node fp = getParentQuantifier( f );
      Trace("inst-gen") << "Do Inst-Gen for " << f << std::endl;
      Trace("inst-gen-debug") << "Calculate inst-gen instantiations..." << std::endl;
      //get all possible values of selection formula
      InstGenProcess igp( d_quant_selection_formula[f] );
      igp.calculateMatches( d_qe, f );
      Trace("inst-gen-debug") << "Add inst-gen instantiations..." << std::endl;
      for( int i=0; i<igp.getNumMatches(); i++ ){
        //if the match is not already true in the model
        if( igp.getMatchValue( i )!=fm->d_true ){
          InstMatch m;
          igp.getMatch( d_qe->getEqualityQuery(), i, m );
          //we only consider matches that are non-empty
          //  matches that are empty should trigger other instances that are non-empty
          if( !m.empty() ){
            bool addInst = false;
            //translate to be in terms match in terms of fp
            InstMatch mp;
            getParentQuantifierMatch( mp, fp, m, f );

            //if this is a partial instantion
            if( !m.isComplete( f ) ){
              Trace("inst-gen-debug") << "- partial inst" << std::endl;
              //if the instantiation does not yet exist
              if( d_sub_quant_inst_trie[fp].addInstMatch( d_qe, fp, mp, true, NULL ) ){
                //get the partial instantiation pf
                Node pf = d_qe->getInstantiation( fp, mp );
                Trace("inst-gen-pi") << "Partial instantiation of " << f << std::endl;
                Trace("inst-gen-pi") << "                         " << pf << std::endl;
                d_sub_quants[ f ].push_back( pf );
                d_sub_quant_inst[ pf ] = InstMatch( &mp );
                d_sub_quant_parent[ pf ] = fp;
                mp.add( d_quant_basis_match[ fp ] );
                addInst = true;
              }
            }else{
              addInst = true;
            }
            if( addInst ){
              Trace("inst-gen-debug") << "- complete inst" << std::endl;
              //otherwise, get instantiation and add ground instantiation in terms of root parent
              if( d_qe->addInstantiation( fp, mp ) ){
                addedLemmas++;
              }
            }
          }
        }
      }
      if( addedLemmas==0 ){
        //all sub quantifiers must be satisfied as well
        bool subQuantSat = true;
        for( size_t i=0; i<d_sub_quants[f].size(); i++ ){
          if( d_quant_sat.find( d_sub_quants[f][i] )==d_quant_sat.end() ){
            subQuantSat = false;
            break;
          }
        }
        if( subQuantSat ){
          d_quant_sat[ f ] = true;
        }
      }
      Trace("inst-gen") << "  -> added lemmas = " << addedLemmas << std::endl;
    }
  }
  return addedLemmas;
}

bool ModelEngineBuilderInstGen::shouldSetDefaultValue( Node n ){
  return d_term_selected.find( n )!=d_term_selected.end();
}

//if possible, returns a formula n' such that ( n' <=> polarity ) => ( n <=> polarity ), and ( n' <=> polarity ) is true in the current context,
//   and NULL otherwise
Node ModelEngineBuilderInstGen::getSelectionFormula( Node fn, Node n, bool polarity, int useOption ){
  if( n.getKind()==NOT ){
    Node nn = getSelectionFormula( fn[0], n[0], !polarity, useOption );
    if( !nn.isNull() ){
      return nn.negate();
    }
  }else if( n.getKind()==OR || n.getKind()==IMPLIES || n.getKind()==AND ){
    //whether we only need to find one or all
    bool posPol = (( n.getKind()==OR || n.getKind()==IMPLIES ) && polarity ) || ( n.getKind()==AND && !polarity );
    std::vector< Node > children;
    for( int i=0; i<(int)n.getNumChildren(); i++ ){
      Node fnc = ( i==0 && fn.getKind()==IMPLIES ) ? fn[i].negate() : fn[i];
      Node nc = ( i==0 && n.getKind()==IMPLIES ) ? n[i].negate() : n[i];
      Node nn = getSelectionFormula( fnc, nc, polarity, useOption );
      if( nn.isNull()!=posPol ){   //TODO: may want to weaken selection formula
        return nn;
      }
      children.push_back( nn );
    }
    if( !posPol ){
      return NodeManager::currentNM()->mkNode( n.getKind()==AND ? AND : OR, children );
    }
  }else if( n.getKind()==ITE ){
    Node nn;
    Node nc[2];
    //get selection formula for the
    for( int i=0; i<2; i++ ){
      nn = getSelectionFormula( i==0 ? fn[0] : fn[0].negate(), i==0 ? n[0] : n[0].negate(), true, useOption );
      nc[i] = getSelectionFormula( fn[i+1], n[i+1], polarity, useOption );
      if( !nn.isNull() && !nc[i].isNull() ){
        return NodeManager::currentNM()->mkNode( AND, nn, nc[i] );
      }
    }
    if( !nc[0].isNull() && !nc[1].isNull() ){
      return NodeManager::currentNM()->mkNode( AND, nc[0], nc[1] );
    }
  }else if( n.getKind()==IFF || n.getKind()==XOR ){
    bool opPol = polarity ? n.getKind()==XOR : n.getKind()==IFF;
    for( int p=0; p<2; p++ ){
      Node nn[2];
      for( int i=0; i<2; i++ ){
        bool pol = i==0 ? p==0 : ( opPol ? p!=0 : p==0 );
        nn[i] = getSelectionFormula( pol ? fn[i] : fn[i].negate(), pol ? n[i] : n[i].negate(), true, useOption );
        if( nn[i].isNull() ){
          break;
        }
      }
      if( !nn[0].isNull() && !nn[1].isNull() ){
        return NodeManager::currentNM()->mkNode( AND, nn[0], nn[1] );
      }
    }
  }else{
    //literal case
    //first, check if it is a usable selection literal
    if( isUsableSelectionLiteral( n, useOption ) ){
      bool value;
      if( d_qe->getValuation().hasSatValue( n, value ) ){
        if( value==polarity ){
          return fn;
        }
      }
    }
  }
  return Node::null();
}

void ModelEngineBuilderInstGen::setSelectedTerms( Node s ){

  //if it is apply uf and has model basis arguments, then mark term as being "selected"
  if( s.getKind()==APPLY_UF ){
    Assert( s.hasAttribute(ModelBasisArgAttribute()) );
    if( !s.hasAttribute(ModelBasisArgAttribute()) ) std::cout << "no mba!! " << s << std::endl;
    if( s.getAttribute(ModelBasisArgAttribute())==1 ){
      d_term_selected[ s ] = true;
      Trace("sel-form") << "  " << s << " is a selected term." << std::endl;
    }
  }
  for( int i=0; i<(int)s.getNumChildren(); i++ ){
    setSelectedTerms( s[i] );
  }
}

bool ModelEngineBuilderInstGen::isUsableSelectionLiteral( Node n, int useOption ){
  if( n.getKind()==FORALL ){
    return false;
  }else if( n.getKind()!=APPLY_UF ){
    for( int i=0; i<(int)n.getNumChildren(); i++ ){
      //if it is a variable, then return false
      if( n[i].getAttribute(ModelBasisAttribute()) ){
        return false;
      }
    }
  }
  for( int i=0; i<(int)n.getNumChildren(); i++ ){
    if( !isUsableSelectionLiteral( n[i], useOption ) ){
      return false;
    }
  }
  return true;
}

Node ModelEngineBuilderInstGen::getParentQuantifier( Node f ){
  std::map< Node, Node >::iterator it = d_sub_quant_parent.find( f );
  if( it==d_sub_quant_parent.end() ){
    return f;
  }else{
    return getParentQuantifier( it->second );
  }
}

void ModelEngineBuilderInstGen::getParentQuantifierMatch( InstMatch& mp, Node fp, InstMatch& m, Node f ){
  int counter = 0;
  for( size_t i=0; i<fp[0].getNumChildren(); i++ ){
    Node icp = d_qe->getTermDatabase()->getInstantiationConstant( fp, i );
    if( fp[0][i]==f[0][counter] ){
      Node ic = d_qe->getTermDatabase()->getInstantiationConstant( f, counter );
      Node n = m.getValue( ic );
      if( !n.isNull() ){
        mp.setMatch( d_qe->getEqualityQuery(), icp, n );
      }
      counter++;
    }
  }
  mp.add( d_sub_quant_inst[f] );
}

generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback