summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/inst_gen.cpp
blob: 971b3a5eea78dddf9dbcdeae09fc0e309c917a70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*********************                                                        */
/*! \file inst_gen.cpp
 ** \verbatim
 ** Original author: Andrew Reynolds
 ** Major contributors: Morgan Deters
 ** Minor contributors (to current version): none
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2014  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Implementation of inst gen classes
 **/

#include "theory/quantifiers/inst_gen.h"
#include "theory/quantifiers/model_engine.h"
#include "theory/quantifiers/model_builder.h"
#include "theory/quantifiers/first_order_model.h"
#include "theory/quantifiers/term_database.h"

//#define CHILD_USE_CONSIDER

using namespace std;
using namespace CVC4;
using namespace CVC4::kind;
using namespace CVC4::context;
using namespace CVC4::theory;
using namespace CVC4::theory::quantifiers;



InstGenProcess::InstGenProcess( Node n ) : d_node( n ){
  Assert( TermDb::hasInstConstAttr(n) );
  int count = 0;
  for( size_t i=0; i<n.getNumChildren(); i++ ){
    if( n[i].getKind()!=INST_CONSTANT && TermDb::hasInstConstAttr(n[i]) ){
      d_children.push_back( InstGenProcess( n[i] ) );
      d_children_index.push_back( i );
      d_children_map[ i ] = count;
      count++;
    }
    if( n[i].getKind()==INST_CONSTANT ){
      d_var_num[i] = n[i].getAttribute(InstVarNumAttribute());
    }
  }
}

void InstGenProcess::addMatchValue( QuantifiersEngine* qe, Node f, Node val, InstMatch& m ){
  if( !qe->existsInstantiation( f, m, true ) ){
    //make sure no duplicates are produced
    if( d_inst_trie[val].addInstMatch( qe, f, m, true ) ){
      d_match_values.push_back( val );
      d_matches.push_back( InstMatch( &m ) );
      ((QModelBuilderIG*)qe->getModelEngine()->getModelBuilder())->d_instGenMatches++;
    }
  }
}

void InstGenProcess::calculateMatches( QuantifiersEngine* qe, Node f, std::vector< Node >& considerVal, bool useConsider ){
  Trace("inst-gen-cm") << "* Calculate matches " << d_node << std::endl;
  //whether we are doing a product or sum or matches
  bool doProduct = true;
  //get the model
  FirstOrderModel* fm = qe->getModel();

  //calculate terms we will consider
  std::vector< Node > considerTerms;
  std::vector< std::vector< Node > > newConsiderVal;
  std::vector< bool > newUseConsider;
  std::map< Node, InstMatch > considerTermsMatch[2];
  std::map< Node, bool > considerTermsSuccess[2];
  newConsiderVal.resize( d_children.size() );
  newUseConsider.resize( d_children.size(), useConsider );
  if( d_node.getKind()==APPLY_UF ){
    Node op = d_node.getOperator();
    if( useConsider ){
#ifndef CHILD_USE_CONSIDER
      for( size_t i=0; i<newUseConsider.size(); i++ ){
        newUseConsider[i] = false;
      }
#endif
      for( size_t i=0; i<considerVal.size(); i++ ){
        eq::EqClassIterator eqc( qe->getEqualityQuery()->getEngine()->getRepresentative( considerVal[i] ),
                                 qe->getEqualityQuery()->getEngine() );
        while( !eqc.isFinished() ){
          Node en = (*eqc);
          if( en.getKind()==APPLY_UF && en.getOperator()==op ){
              considerTerms.push_back( en );
          }
          ++eqc;
        }
      }
    }else{
      considerTerms.insert( considerTerms.begin(), fm->d_uf_terms[op].begin(), fm->d_uf_terms[op].end() );
    }
    //for each term we consider, calculate a current match
    for( size_t i=0; i<considerTerms.size(); i++ ){
      Node n = considerTerms[i];
      bool isSelected = ((QModelBuilderIG*)qe->getModelEngine()->getModelBuilder())->isTermSelected( n );
      bool hadSuccess CVC4_UNUSED = false;
      for( int t=(isSelected ? 0 : 1); t<2; t++ ){
        if( t==0 || !n.getAttribute(NoMatchAttribute()) ){
          considerTermsMatch[t][n] = InstMatch( f );
          considerTermsSuccess[t][n] = true;
          for( size_t j=0; j<d_node.getNumChildren(); j++ ){
            if( d_children_map.find( j )==d_children_map.end() ){
              if( t!=0 || !n[j].getAttribute(ModelBasisAttribute()) ){
                if( d_node[j].getKind()==INST_CONSTANT ){
                  if( !considerTermsMatch[t][n].set( qe, d_var_num[j], n[j] ) ){
                    Trace("inst-gen-cm") << "fail match: " << n[j] << " is not equal to ";
                    Trace("inst-gen-cm") << considerTermsMatch[t][n].get( d_var_num[j] ) << std::endl;
                    considerTermsSuccess[t][n] = false;
                    break;
                  }
                }else if( !qe->getEqualityQuery()->areEqual( d_node[j], n[j] ) ){
                  Trace("inst-gen-cm") << "fail arg: " << n[j] << " is not equal to " << d_node[j] << std::endl;
                  considerTermsSuccess[t][n] = false;
                  break;
                }
              }
            }
          }
          //if successful, store it
          if( considerTermsSuccess[t][n] ){
#ifdef CHILD_USE_CONSIDER
            if( !hadSuccess ){
              hadSuccess = true;
              for( size_t k=0; k<d_children.size(); k++ ){
                if( newUseConsider[k] ){
                  int childIndex = d_children_index[k];
                  //determine if we are restricted or not
                  if( t!=0 || !n[childIndex].getAttribute(ModelBasisAttribute()) ){
                    Node r = qe->getModel()->getRepresentative( n[childIndex] );
                    if( std::find( newConsiderVal[k].begin(), newConsiderVal[k].end(), r )==newConsiderVal[k].end() ){
                      newConsiderVal[k].push_back( r );
                      //check if we now need to consider the entire domain
                      TypeNode tn = r.getType();
                      if( qe->getModel()->d_rep_set.hasType( tn ) ){
                        if( (int)newConsiderVal[k].size()>=qe->getModel()->d_rep_set.getNumRepresentatives( tn ) ){
                          newConsiderVal[k].clear();
                          newUseConsider[k] = false;
                        }
                      }
                    }
                  }else{
                    //matching against selected term, will need to consider all values
                    newConsiderVal[k].clear();
                    newUseConsider[k] = false;
                  }
                }
              }
            }
#endif
          }
        }
      }
    }
  }else{
    //the interpretted case
    if( d_node.getType().isBoolean() ){
      if( useConsider ){
        //if( considerVal.size()!=1 ) { std::cout << "consider val = " << considerVal.size() << std::endl; }
        Assert( considerVal.size()==1 );
        bool reqPol = considerVal[0]==fm->d_true;
        Node ncv = considerVal[0];
        if( d_node.getKind()==NOT ){
          ncv = reqPol ? fm->d_false : fm->d_true;
        }
        if( d_node.getKind()==NOT || d_node.getKind()==AND || d_node.getKind()==OR ){
          for( size_t i=0; i<newConsiderVal.size(); i++ ){
            newConsiderVal[i].push_back( ncv );
          }
          //instead we will do a sum
          if( ( d_node.getKind()==AND && !reqPol ) || ( d_node.getKind()==OR && reqPol )  ){
            doProduct = false;
          }
        }else{
          //do not use consider
          for( size_t i=0; i<newUseConsider.size(); i++ ){
            newUseConsider[i] = false;
          }
        }
      }
    }
  }

  //calculate all matches for children
  for( int i=0; i<(int)d_children.size(); i++ ){
    d_children[i].calculateMatches( qe, f, newConsiderVal[i], newUseConsider[i] );
    if( doProduct && d_children[i].getNumMatches()==0 ){
      return;
    }
  }
  if( d_node.getKind()==APPLY_UF ){
    //if this is an uninterpreted function
    Node op = d_node.getOperator();
    //process all values
    for( size_t i=0; i<considerTerms.size(); i++ ){
      Node n = considerTerms[i];
      bool isSelected = ((QModelBuilderIG*)qe->getModelEngine()->getModelBuilder())->isTermSelected( n );
      for( int t=(isSelected ? 0 : 1); t<2; t++ ){
        //do not consider ground case if it is already congruent to another ground term
        if( t==0 || !n.getAttribute(NoMatchAttribute()) ){
          Trace("inst-gen-cm") << "calculate for " << n << ", selected = " << (t==0) << std::endl;
          if( considerTermsSuccess[t][n] ){
            //try to find unifier for d_node = n
            calculateMatchesUninterpreted( qe, f, considerTermsMatch[t][n], n, 0, t==0 );
          }
        }
      }
    }
  }else{
    //if this is an interpreted function
    if( doProduct ){
      //combining children matches
      InstMatch curr( f );
      std::vector< Node > terms;
      calculateMatchesInterpreted( qe, f, curr, terms, 0 );
    }else{
      //summing children matches
      Assert( considerVal.size()==1 );
      for( int i=0; i<(int)d_children.size(); i++ ){
        for( int j=0; j<(int)d_children[ i ].getNumMatches(); j++ ){
          InstMatch m( f );
          if( d_children[ i ].getMatch( qe->getEqualityQuery(), j, m ) ){
            addMatchValue( qe, f, considerVal[0], m );
          }
        }
      }
    }
  }
  Trace("inst-gen-cm") << "done calculate matches" << std::endl;
  //can clear information used for finding duplicates
  d_inst_trie.clear();
}

bool InstGenProcess::getMatch( EqualityQuery* q, int i, InstMatch& m ){
  //FIXME: is this correct? (query may not be accurate)
  return m.merge( q, d_matches[i] );
}

void InstGenProcess::calculateMatchesUninterpreted( QuantifiersEngine* qe, Node f, InstMatch& curr, Node n, int childIndex, bool isSelected ){
  if( childIndex==(int)d_children.size() ){
    Node val = qe->getModel()->getRepresentative( n );  //FIXME: is this correct?
    Trace("inst-gen-cm") << "  - u-match : " << val << std::endl;
    Trace("inst-gen-cm") << "            : " << curr << std::endl;
    addMatchValue( qe, f, val, curr );
  }else{
    Trace("inst-gen-cm") << "Consider child index = " << childIndex << ", against ground term argument " << d_children_index[childIndex] << " ... " << n[d_children_index[childIndex]] << std::endl;
    bool sel = ( isSelected && n[d_children_index[childIndex]].getAttribute(ModelBasisAttribute()) );
    for( int i=0; i<(int)d_children[ childIndex ].getNumMatches(); i++ ){
      //FIXME: is this correct?
      if( sel || qe->getEqualityQuery()->areEqual( d_children[ childIndex ].getMatchValue( i ), n[d_children_index[childIndex]] ) ){
        InstMatch next( &curr );
        if( d_children[ childIndex ].getMatch( qe->getEqualityQuery(), i, next ) ){
          calculateMatchesUninterpreted( qe, f, next, n, childIndex+1, isSelected );
        }else{
          Trace("inst-gen-cm") << curr << " not equal to " << d_children[ childIndex ].d_matches[i] << std::endl;
          Trace("inst-gen-cm") << childIndex << " match " << i << " not equal subs." << std::endl;
        }
      }else{
        Trace("inst-gen-cm") << childIndex << " match " << i << " not equal value." << std::endl;
      }
    }
  }
}

void InstGenProcess::calculateMatchesInterpreted( QuantifiersEngine* qe, Node f, InstMatch& curr, std::vector< Node >& terms, int argIndex ){
  FirstOrderModel* fm = qe->getModel();
  if( argIndex==(int)d_node.getNumChildren() ){
    Node val;
    if( d_node.getNumChildren()==0 ){
      val = d_node;
    }else if( d_node.getKind()==EQUAL ){
      val = qe->getEqualityQuery()->areEqual( terms[0], terms[1] ) ? fm->d_true : fm->d_false;
    }else{
      val = NodeManager::currentNM()->mkNode( d_node.getKind(), terms );
      val = Rewriter::rewrite( val );
    }
    Trace("inst-gen-cm") << "  - i-match : " << d_node << std::endl;
    Trace("inst-gen-cm") << "            : " << val << std::endl;
    Trace("inst-gen-cm") << "            : " << curr << std::endl;
    addMatchValue( qe, f, val, curr );
  }else{
    if( d_children_map.find( argIndex )==d_children_map.end() ){
      terms.push_back( fm->getRepresentative( d_node[argIndex] ) );
      calculateMatchesInterpreted( qe, f, curr, terms, argIndex+1 );
      terms.pop_back();
    }else{
      for( int i=0; i<(int)d_children[ d_children_map[argIndex] ].getNumMatches(); i++ ){
        InstMatch next( &curr );
        if( d_children[ d_children_map[argIndex] ].getMatch( qe->getEqualityQuery(), i, next ) ){
          terms.push_back( d_children[ d_children_map[argIndex] ].getMatchValue( i ) );
          calculateMatchesInterpreted( qe, f, next, terms, argIndex+1 );
          terms.pop_back();
        }
      }
    }
  }
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback