summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/fmf/bounded_integers.h
blob: 3e7466ed2e5aefdfdc61538e73e885db1e24bd16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*********************                                                        */
/*! \file bounded_integers.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Mathias Preiner, Mudathir Mohamed
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
 ** in the top-level source directory and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** [[ Add lengthier description here ]]
 ** \todo document this file
**/

#include "cvc4_private.h"

#ifndef CVC4__BOUNDED_INTEGERS_H
#define CVC4__BOUNDED_INTEGERS_H

#include "theory/quantifiers/quant_module.h"

#include "context/cdhashmap.h"
#include "context/context.h"
#include "expr/attribute.h"
#include "theory/decision_strategy.h"

namespace CVC4 {
namespace theory {

class RepSetIterator;
class DecisionManager;

/**
 * Attribute set to 1 for literals that comprise the bounds of a quantified
 * formula. For example, for:
 *   forall x. ( 0 <= x ^ x <= n ) => P( x )
 * the literals 0 <= x and x <= n are marked 1.
 */
struct BoundIntLitAttributeId
{
};
typedef expr::Attribute<BoundIntLitAttributeId, uint64_t> BoundIntLitAttribute;

namespace quantifiers {

class BoundedIntegers : public QuantifiersModule
{
  typedef context::CDHashMap<Node, bool, NodeHashFunction> NodeBoolMap;
  typedef context::CDHashMap<Node, int, NodeHashFunction> NodeIntMap;
  typedef context::CDHashMap<Node, Node, NodeHashFunction> NodeNodeMap;
  typedef context::CDHashMap<int, bool> IntBoolMap;
private:
  //for determining bounds
  bool hasNonBoundVar( Node f, Node b, std::map< Node, bool >& visited );
  bool hasNonBoundVar( Node f, Node b );
  /** The bound type for each quantified formula, variable pair */
  std::map<Node, std::map<Node, BoundVarType>> d_bound_type;
  /**
   * The ordered list of variables that are finitely bound, for each quantified
   * formulas. Variables that occur later in this list may depend on having
   * finite bounds for variables earlier in this list.
   */
  std::map< Node, std::vector< Node > > d_set;
  std::map< Node, std::map< Node, int > > d_set_nums;
  std::map< Node, std::map< Node, Node > > d_range;
  std::map< Node, std::map< Node, Node > > d_nground_range;
  //integer lower/upper bounds
  std::map< Node, std::map< Node, Node > > d_bounds[2];
  //set membership range
  std::map< Node, std::map< Node, Node > > d_setm_range;
  std::map< Node, std::map< Node, Node > > d_setm_range_lit;
  /** set membership element choice functions
   *
   * For each set S and integer n, d_setm_choice[S][n] is the canonical
   * representation for the (n+1)^th member of set S. It is of the form:
   * witness x. (|S| <= n OR ( x in S AND
   *   distinct( x, d_setm_choice[S][0], ..., d_setm_choice[S][n-1] ) ) )
   */
  std::map<Node, std::vector<Node> > d_setm_choice;
  //fixed finite set range
  std::map< Node, std::map< Node, std::vector< Node > > > d_fixed_set_gr_range;
  std::map< Node, std::map< Node, std::vector< Node > > > d_fixed_set_ngr_range;
  void process( Node q, Node n, bool pol,
                std::map< Node, unsigned >& bound_lit_type_map,
                std::map< int, std::map< Node, Node > >& bound_lit_map,
                std::map< int, std::map< Node, bool > >& bound_lit_pol_map,
                std::map< int, std::map< Node, Node > >& bound_int_range_term,
                std::map< Node, std::vector< Node > >& bound_fixed_set );
  bool processEqDisjunct( Node q, Node n, Node& v, std::vector< Node >& v_cases );
  void processMatchBoundVars( Node q, Node n, std::vector< Node >& bvs, std::map< Node, bool >& visited );
  std::vector< Node > d_bound_quants;
private:
 /**
  * This decision strategy is used for minimizing the value of an integer
  * arithmetic term t. It decides positively on literals of the form
  * t < 0, t <= 0, t <= 1, t <=2, and so on.
  */
 class IntRangeDecisionHeuristic : public DecisionStrategyFmf
 {
  public:
   IntRangeDecisionHeuristic(Node r,
                             context::Context* c,
                             context::Context* u,
                             Valuation valuation,
                             bool isProxy);
   /** make the n^th literal of this strategy */
   Node mkLiteral(unsigned n) override;
   /** identify */
   std::string identify() const override
   {
     return std::string("bound_int_range");
   }
   /** Returns the current proxy lemma if one exists (see below). */
   Node proxyCurrentRangeLemma();

  private:
   /** The range we are minimizing */
   Node d_range;
   /** a proxy of the range
    *
    * When option::fmfBoundLazy is enabled, this class uses a lazy strategy
    * for enforcing the bounds on term t by using a fresh variable x of type
    * integer. The point of this variable is to serve as a proxy for t, so
    * that we can decide on literals of the form x <= c instead of t <= c. The
    * advantage of this is that we avoid unfairness, say, if t is constrained
    * to be strictly greater c. Then, at full effort check, we add "proxy
    * lemmas" of the form: (t <= c) <=> (x <= c) for the current minimal
    * upper bound c for x.
    */
   Node d_proxy_range;
   /** ranges that have been proxied
    *
    * This is a user-context-dependent cache that stores which value we have
    * added proxy lemmas for.
    */
   IntBoolMap d_ranges_proxied;
  };
private:
  //information for minimizing ranges
  std::vector< Node > d_ranges;
  /** Decision heuristics for each integer range */
  std::map<Node, std::unique_ptr<IntRangeDecisionHeuristic>> d_rms;

 private:
  //class to store whether bounding lemmas have been added
  class BoundInstTrie
  {
  public:
    std::map< Node, BoundInstTrie > d_children;
    bool hasInstantiated( std::vector< Node > & vals, int index = 0, bool madeNew = false ){
      if( index>=(int)vals.size() ){
        return !madeNew;
      }else{
        Node n = vals[index];
        if( d_children.find(n)==d_children.end() ){
          madeNew = true;
        }
        return d_children[n].hasInstantiated(vals,index+1,madeNew);
      }
    }
  };
  std::map< Node, std::map< Node, BoundInstTrie > > d_bnd_it;

 public:
  BoundedIntegers(QuantifiersEngine* qe,
                  QuantifiersState& qs,
                  QuantifiersInferenceManager& qim,
                  QuantifiersRegistry& qr,
                  DecisionManager* dm);
  virtual ~BoundedIntegers();

  void presolve() override;
  bool needsCheck(Theory::Effort e) override;
  void check(Theory::Effort e, QEffort quant_e) override;
  void checkOwnership(Node q) override;
  /**
   * Is v a variable of quantified formula q that this class has inferred to
   * have a finite bound?
   */
  bool isBound(Node q, Node v) const;
  /**
   * Get the type of bound that was inferred for variable v of quantified
   * formula q, or BOUND_NONE if no bound was inferred.
   */
  BoundVarType getBoundVarType(Node q, Node v) const;
  /**
   * Get the indices of bound variables, in the order they should be processed
   * in a RepSetIterator. For example, for q:
   *   forall xyz. 0 <= x < 5 ^ 0 <= z <= x+7 => P(x,y,z)
   * this would add {1,3} to the vector indices, indicating that x has a finite
   * bound, z has a finite bound assuming x has a finite bound, and y does not
   * have a finite bound.
   */
  void getBoundVarIndices(Node q, std::vector<unsigned>& indices) const;
  /**
   * Get bound elements
   *
   * This gets the (finite) enumeration of the range of variable v of quantified
   * formula q and adds it into the vector elements in the context of the
   * iteration being performed by rsi. It returns true if it could successfully
   * determine this range.
   *
   * This method determines the range of a variable depending on the current
   * state of the iterator rsi and flag initial (which is true when rsi is
   * being initialized). For example, if q is:
   *   forall xy. 0 <= x < 5 ^ 0 <= y <= x+7 => P(x,y)
   * v is y, and rsi currently maps x to 4, then we add the elements 0...11 to
   * the vector elements.
   */
  bool getBoundElements(RepSetIterator* rsi,
                        bool initial,
                        Node q,
                        Node v,
                        std::vector<Node>& elements);
  /** Identify this module */
  std::string identify() const override { return "BoundedIntegers"; }

 private:
  /**
   * Set that variable v of quantified formula q has a finite bound, where
   * bound_type indicates how that bound was inferred.
   */
  void setBoundedVar(Node f, Node v, BoundVarType bound_type);
  //for integer range
  Node getLowerBound( Node q, Node v ){ return d_bounds[0][q][v]; }
  Node getUpperBound( Node q, Node v ){ return d_bounds[1][q][v]; }
  void getBounds( Node f, Node v, RepSetIterator * rsi, Node & l, Node & u );
  void getBoundValues( Node f, Node v, RepSetIterator * rsi, Node & l, Node & u );
  bool isGroundRange(Node f, Node v);
  //for set range
  Node getSetRange( Node q, Node v, RepSetIterator * rsi );
  Node getSetRangeValue( Node q, Node v, RepSetIterator * rsi );
  Node matchBoundVar( Node v, Node t, Node e );
  
  bool getRsiSubsitution( Node q, Node v, std::vector< Node >& vars, std::vector< Node >& subs, RepSetIterator * rsi );
  /** Pointer to the decision manager */
  DecisionManager* d_dm;
};

}
}
}

#endif
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback